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Abstract: Intestinal microbiome influences host immunity and several diseases, including

cancer, in their areas of colonization. Microbial dysbiosis and over-colonization of specific

microbes within the colorectal mucosa can impact the progress of carcinogenesis.

Investigations initially focused on the mechanisms by which the intestinal microbiome

initiates or promotes the development of colorectal cancer, including DNA damage, induc-

tion of chromosomal instability, and regulation of host immune responses. Some studies on

the clinicopathological features have reported that specific strains present at high abundance

are associated with advanced stage and positive lymph nodes in colorectal cancer. In this

context, we reviewed the relationship between the intestinal microbiome and the clinical

features (patient age, disease staging, prognosis, etc.) of patients with colorectal cancer, and

evaluated the potential pathogenesis caused by the intestinal microbiome in disease progress.

This article assessed whether changes in distinct species or strains occur during the period of

cancer advancement. Overall, age grouping does not bring about significant differences in the

constitution of microbiome. The disease stages show their distinct distribution in some

species and strains. Oncogenic species are generally enriched in patients with poor prognosis,

including low infiltration of CD3+ T cells, poor differentiation, widespread invasion, high

microsatellite instability, CpG island methylator phenotype, BRAF mutation, short overall

survival, and disease-free survival. The implications of those changes we discussed may

assist in comprehensive understanding of the tumorigenesis of colorectal cancer from a

microbiological perspective, finding potential biomarkers for colorectal cancer.
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Introduction
Recent research on human symbiotic microbiome has revealed its significant impact

on human health. Associations have been shown between microbiota and diabetes,

liver diseases, hypertension, and chronic kidney diseases1–3. The microbiota also

plays a significant role in cancer development through inflammation, DNA damage,

and cellular immunity4–9. Since the colorectum is the area most densely populated

by the microbiota in vivo, the roles of the intestinal microbiome in the processes of

colorectal cancer development are of scientific interest.10

The latest Global Cancer Incidence, Mortality, and Prevalence (GLOBOCAN)

statistics indicate that colorectal cancer is the second leading cause of cancer-

associated deaths worldwide.11 Lifestyle and diet are closely related to sporadic

colorectal cancer.12 Improper diets alter the composition, abundance, and balance of
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the intestinal microbiome, destabilizing the stasis between

microbiota and the intestinal epithelium, resulting in

intestinal inflammation and cancer.13 Even familial color-

ectal polyposis with a genetic predisposition may develop

early carcinogenesis due to epithelial damage caused by

interactions between specific intestinal bacterial types and

interleukin-17.14 Some investigators have questioned the

vital role of the microbiome, reporting intestinal microbial

changes are accompanied consequences in tumor

formation.15 However, mice have been shown to be more

susceptible to colorectal dysplasia after being fed feces

from patients with colorectal cancer.16

The intestinal microbiome can not only initiate the tumor-

igenesis of colonic epithelial cells but promote the growth

and metastasis of cancers that have already developed.

Specific colonizing bacteria identified in the cancerous color-

ectal mucosa have been shown to be diverse from those

found in mucosa adjacent to the tumor, in patients with

benign colorectal diseases, and in healthy individuals.17,18

Moreover, recent reports addressed that colonization of spe-

cific species was associated with positive regional lymph

nodes, vessel carcinoma embolus, and gene mutations.19,20

These relations give those distinctive gut bacteria and their

metabolites the potential to become non-invasive biomarkers

of colorectal cancer. Recently, this review focused on recent

changes in the composition, abundance, and balance of

intestinal microbiome in colorectal cancer and their relation-

ship to the clinical feature (age, stage, and prognosis) of

patients (Table 1), to explore the evidence of their influence

on the development of colorectal cancer.

Literature Search
Characteristics of Intestinal Microbiota in

Colorectal Cancer
Analysis of the 16S rRNAgene sequence in feces or colorectal

tissues has identified distinctive changes in intestinal micro-

biota. The overall microbiota diversity (i.e., the number of

different taxa) declined in patients with colorectal cancer;

however, the microbial diversity in those patients was not

significantly different compared to that in the control group

(i.e., the distribution of taxa).21 Comparison of taxonomic

groups based on phyla between cancer patients and control

volunteers revealed significant enrichment of Fusobacteria (to

the greatest extent),Proteobacteria, and Bacteroidetes in CRC

patients. In contrast, Actinobacteria and Firmicuteswere rela-

tively depleted.18,22 Another study reported the enrichment of

Fusobacterium, Porphyromonas, and Atopobium in colorectal

cancer.21 Firmicutes depletion was commonly observed in

several studies. Clostridia was the most significantly reduced

among Firmicutes compared to the declines in Coprococcus

and Lachnospiraceae.18,21 Coprococcus ferments dietary fiber

and other complex carbohydrates into butyric acids, the pri-

mary metabolite that inhibits colonic inflammation and

tumorigenesis.21 A Chinese study reported a relative reduction

in butyrate-producing bacteria (Clostridiaceae, Rumino-

coccus, etc.), suggesting that these bacteria could protect the

colorectal mucosa from carcinogenesis.23

Some studies have focused on distinctive microbiota in

colorectal cancer according to species taxonomy. A meta-

genomic classifier for colorectal cancer detection revealed

that the four most discriminative species included two

Fusobacterium species, Porphyromonas asaccharolytica

and Peptostreptococcus stomatis, and two subspecies, F.

nucleatum vincentii and F. nucleatum animalis, which

distinguished colorectal cancer with an accuracy of

0.63.22 A study that characterized bacterial communities

in stool samples found that colorectal cancer-associated

bacteria belonged to taxa commonly associated with peri-

odontal disease,22,24 including Pophyromonas asaccharo-

lytica, Fusobacterium nucleatum, Parvimonas micra,

Peptostreptococcus stomatis, Gemella spp., and an unclas-

sified Prevotella.22

Integrated microbial genome (IMG of species), opera-

tional taxonomic unit (OTU), and metagenomic linkage

group (MLG) analysis revealed three oral pathogens,

Parvimonas micra, Fusobacterium nucleatum, and

Solobacterium moorei to be enriched in colorectal cancer

tissue, while over-colonization of Peptostreptococcus sto-

matis was only detected by two of these methods.25 A

multicenter metagenome sequencing study among China,

Austria, the United States, Germany, and France con-

firmed that seven distinctive bacteria are over-represented

in colorectal cancer (Bacteroides fragilis, Fusobacterium

nucleatum, Porphyromonas asaccharolytica, Parvimonas

micra, Prevotella intermedia, Alistipes finegoldii, and

Thermanaerovibrio acidaminovorans).26 Besides, levels

of Peptostreptococcus anaerobius were elevated in color-

ectal cancer mucosa compared to those in colorectal

polyps.27 Discrepancy analysis revealed significant

enrichment of Enterococcus faecalis, Enterotoxigenic

Bacteroides fragilis (ETBF) in carcinoma tissues com-

pared to that in tumor-adjacent tissues in colorectal

cancer.28 In contrast, levels of Eubacterium rectale and

Faecalibacterium prausnitzii (both butyric acid-producing

bacteria) were reduced by four-fold in colorectal
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cancer patients compared to those in healthy control

volunteers.29,30 Also, Eubacterium ventriosum showed

higher levels in control microbiomes compared to those

in colonic cancerous microbiomes.25

Studies on Fusobacterium and the development of color-

ectal cancer are more abundant and thorough than those on

any other cancer-related microbiome. DNA extracted from

tissues in a cohort study revealed that the average total abun-

dance of Fusobacterium in tumor samples was 415 times

higher than those of matched healthy samples.31 Data from

The Cancer Genome Atlas (TCGA) cohort showed that

microorganisms present at the metastatic niche in the liver

of patients with Fusobacterium-positive colorectal cancer

were similar to those in the primary site, suggesting that the

high relative abundance of Fusobacterium significantly

increases the risk of liver metastasis.32 To exclude the poten-

tial confounding of the results due to a connection between

Fusobacterium and liver tissues, Fusobacterium sequencing

of primary hepatic carcinoma and metastatic tumor revealed

deficient concentrations of Fusobacterium in primary liver

cancer.32 Fusobacterium nucleatum appears to play a signifi-

cant role in the Fusobacterium over-colonization of color-

ectal cancer mucosa.31 Rather than the other colorectal sites

(cecum, spleen to the sigmoid colon, sigmoid colon, and

rectum), Fusobacterium nucleatum appears to prefer the

ascending and transverse colons.33 The proportions of cancer

patients with high relative abundances of Fusobacterium

nucleatum increased from 2.5% (4/157) for rectal cancer to

11% (19/178) for cecal cancer, a linear and significant trend.34

Compared with other sites, a reduction in the abundance of

Fusobacterium nucleatum in the rectum, ascending colon,

and cecum is often observed.34 Consistent with the conclu-

sions above, Fusobacterium nucleatum present in both the

primary site and the corresponding metastatic tumor is more

likely to be abundant in metastatic carcinomas of the cecum

and ascending colon rather than in other sites.32

Fusobacterium nucleatum can inhibit positive immune from

natural killer cells by Fap2 protein, inducing immune

evasion.35 Moreover, Fusobacterium nucleatum can utilize

the E-cadherin/β-catenin pathway to not only increase sus-

ceptibility to colorectal tumorigenesis but also exacerbate

cancer cell proliferation and invasion.36

In addition to Fusobacterium nucleatum, other strains

with distinctive pathogenic factors have also attracted atten-

tion. The presence of enterotoxigenic Bacteroides fragilis

(ETBF) and afaC or polyketide synthase (pks)-positive

Escherichia coli (afaC- or pks- E. coli) was significantly

associated with colorectal cancer.37 Bacteroides fragilis

toxin (bft) is a toxic protein secreted by ETBF. Among

diverse bft isoforms, bft-1, and bft-2 were more commonly

detected in colorectal cancer cases (67.8%) than in the con-

trol group (34.4%).38 A study utilizing transgenic mice found

that CXCR2-positive multinuclear immature myeloid cells,

which are recruited by the CXCL1 concentration gradient,

cooperate with ETBF to initiate distal colonic tumorigenesis

with IL-17-dependent NF-κB activation in the epithelium of

colorectal cancer tissue.39 Colonic epithelial cells activated

by Bft and IL-17 promote differentiation from macrophages

to marrow-derived suppressor cells, which selectively upre-

gulate arginase 1, nitric oxide synthase 2, and nitric oxide,

finally inhibiting T cell growth.40 Pks-positive E.coli can

affect the progression of colorectal cancer by aggravating

the infiltration of inflammatory cells.41

Intestinal Microbes in Colorectal Cancer

Patients of Different Ages
Although a few recent studies have focused on the differ-

ences in intestinal microbiota between different age groups

of patients with colorectal cancer, there are many clues. A

similar enrichment was widely found between elderly (over

65 years of age) and younger (not over 65 years) patients in

macrogene linkage group analysis, indicating that cancer-

associated microbiota in diverse age groups shares common

features.42 An investigation of the prognosis of colorectal

cancer patients with over-representation of Fusobacterium

nucleatum, Bacteroides fragilis, or Clostridium, observed no

significant differences in the relative abundances of the 16S

RNA levels of these bacteria in mucosal tissues between

older (over 60 years) and younger patients (less than 60

years).43 Fisher’s exact tests of the correlation between

high-abundance Fusobacterium and clinical factors revealed

no association between Fusobacterium and patient age.31

However, a South African study reported that a high level

of Fusobacterium colonization of colorectal cancer mucosa

wasmore likely to be present in younger patients and those of

black ethnicity.37 Patients with low- andmoderate-level colo-

nization were predominantly between 60–70 years of age,

while high-level colonization occurred mostly in patients

50–60 years of age, a statistically significant difference.

About 31% of patients below 60 years of age, and 11% of

those above 60 years had high levels of Fusobacterium

colonization.37 Differences in these findings between studies

may be related to differences in ethnicity. Collectively, it

appears that significant age-associated changes in the intest-

inal microbiome have not been observed.
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Intestinal Microbes in Different Stages of

Colorectal Cancer
Evidence suggests the presence of distinctive enrichment

patterns of intestinal microbes according to the disease

stage. A metagenomic sequencing study observed that

seven of the 126 macrogene linkage groups (MLG-190,

MLG-603, MLG-604, MLG-629, MLG-219, MLG-893,

and MLG-1002; each MLG contained >100 genes) extracted

from intestinal mucosa differed significantly between stages,

peaking in patients with stage II or III colorectal cancer.

These seven MLGs included gene groups shared by

Lachnospiraceae bacterium, Clostridium symbiosum, and

Bacteroides ssp.42 In the multi-national metagenomic

sequencing project previously mentioned, Bacteroides fragi-

lis, Fusobacterium nucleatum, Porphyromonas asaccharoly-

tica, Parvimonas micra, Prevotella intermedia, Alistipes

finegoldii, and Thermanaerovibrio acidaminovorans, which

were distinctively enriched in 526 intestinal mucosa color-

ectal cancer samples, were more likely to be abundant in

early-stage than late-stage disease.26 In contrast, a metage-

nomic classifier study in Germany using species and sub-

species of Fusobacterium detected microbe changes in both

early-stage (I and II) and late-stage (III and IV) disease.22

Furthermore, Fusobacterium are more likely to exhibit

over-colonization in stage III colonic cancerous mucosa than

in stage I or stage II disease.37 Patients with pathological T3

stage (pT3, subserosal layer) disease had more copies of

Fusobacterium nucleatum DNA in their tumor tissues com-

pared to that in patients with stage T1 or T2 disease; however,

a similar phenomenon was not observed for the pathological

N stage.33 The enrichment of Fusobacterium nucleatum

peaks in AJCC stage II, which is correlated to highly differ-

entiated colonic carcinoma.33

Levels of ETBF are higher in stage III and IV disease

than those in stage I and stage II colorectal cancer. A similar

finding was also reported in a comparison between stage I

and IV tumor-adjacent mucosa.37 Moreover, the enterotoxin-

encoding gene from Bacteroides fragiliswas widely detected

in the intestinal mucosa of patients with colorectal cancer,

especially in those with stage III or IV disease, indicating that

the bft gene may be a risk factor for advanced colorectal

cancer. The rate of mucosal bft positivity in colorectal cancer

showed an increasing trend between stage I and stage IV,

although this trend was not statistically significant (72.7%

and 100%, respectively).38 In order to eliminate confounding

in the microbiome detection resulting from preoperative

antibiotics, bft detection was done among patients with

different stages of colorectal cancer undergoing mechanical

preparations and not oral administration of antibiotics, with

similar frequencies to those observed previously.38

E. coli strain 11G5, a member of the B2 phylogroup,

possesses a pks gene island encoding colibactin. It is con-

sidered the representative colon cancer-associated E. coli

strain because of its high levels of colonization of the

tumor-adjacent mucosa and cancerous tissues of patients

with advanced cancer (T4) and liver metastasis (M1).44

Compared to stage I (43%), B2 phylogroup E. coli is more

likely to be detected in patients with stage II (80%) and stage

III/IV (68%) disease. Cyclomodulin-positive E. coli strains

throughout the entire colorectal mucosa or tumor tissues are

found significantly more often in patients with TNM stage II

(64%) and III/IV (67%) disease than in those with stage I

disease (45%). The colonization level of E. coli in the

mucosa or tumor had no impact on the ratio of these two E.

coli strains.44 The detection frequency in patients with stage

II–IV colorectal cancer (59.3%) was significantly increased

compared to that in patients with stage I disease (0.3%).45

Intestinal Microbes and Prognosis in

Patients with Colorectal Cancer
A growing body of evidence supports that intestinal

microbes provide clues for colorectal cancer with poor

prognosis. Analysis of the Chao diversity index showed a

lower microbial community diversity in recurrence-free

survival patients than that of patients with recurrent color-

ectal cancer.21 Analysis of the relative abundance of OTU

demonstrated diverse compositions in the studied groups

in patients with various prognoses (death, survival with

relapse, and survival without relapse). Proteobacteria

(33.8–49.4%), Firmicutes (16.9–22.7%), Bacteroidetes

(21.1–27.9%), and Fusobacterium (3.38–10.8%) predomi-

nated in these groups.43 High-abundance Bacteroides is

associated with intestinal extramural vascular invasion of

colorectal cancer. At the same time, Firmicuteria is more

likely to be connected to the presence of lymphatic vessel

infiltration and Proteobacteria, Aggregatibacter spp. are

related to KRAS mutations.46 Wei et al reported a rela-

tively higher abundance of Shewanella, Methylobacterium,

Faecalibacterium, and Sphingomonas in surviving patients

than that in non-surviving patients. Methylbacteria had a

higher relative abundance in recurrence-free survival

patients compared to that in patients with relapse.43

Specific bacteria, including Alloprevotella, Treponema,

and Desulfovibrio are significantly enriched in colorectal
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cancer with high CD3+ T cell infiltration, whereas

Prevotella, Bacteroides, and Fretibacterium are widely

detected in cancers with low infiltration of CD3+ T cells.

Furthermore, patients with high CD3 density had a sig-

nificantly longer survival compared to that in patients with

low CD3 density.47

At the species level, F. streptococcus spp., F.

Solobacterium spp., and Clostridium XI spp., which belong

to Firmicuteria, were more likely to exhibit over-coloniza-

tion in poorly differentiated tumors, while F. subdoligranu-

lum was detected at a low frequency.46 In addition, a relative

abundance above 0.52% in the colonic mucosa was defined

as high-abundance Fusobacterium nucleatum, which was

significantly associated with positive lymph node status and

advanced tumor invasion. An abundance of 0.55% for

Clostridium was only significantly associated with wide-

spread tumor invasion.43

The presence ofFusobacterium, especiallyFusobacterium

nucleatum, is highly correlated with severe invasion and poor

prognosis of colorectal cancer. A higher relative abundance

of Fusobacterium likely exists in poorly differentiated

carcinoma.46 Moreover, the relative abundance of

Fusobacterium nucleatum is negatively correlated with

E-cadherin on the surface of tumor cells and cancerous tis-

sue-infiltrating T cells.9 In contrast, its relative abundance is

positively correlated with N-cadherin and Nanog (a gene

thought to maintain self-renewal of embryonic stem

cells), suggesting the epithelial-mesenchymal transition of

colorectal cancer cells.48 Tumors with relatively abundant

Fusobacterium are more likely to have regional lymph node

metastasis, as indicated by the TNM score.31 Specifically, the

proportions of patients with lymph node metastasis with high

and low abundances of Fusobacterium were 74% and 45%,

respectively.31 The colorectal cancer-specific mortality among

patients with low (multivariate hazard ratio [HR]: 1.25; 95%

confidence interval [CI]: 0.82–1.92) or high (HR:1.58, 95%

CI: 1.04–2.39) loads of Fusobacterium nucleatum in their

colonic mucosa was significantly higher than that in

Fusobacterium nucleatum-negative patients.33 A high

Fusobacterium nucleatum load was associated with high

microsatellite instability (MSI) (odds ratio: 5.22, 95% CI:

2.86–9.55) independent of the CpG island methylator pheno-

type (CIMP) and BRAFmutation status inmultivariable logis-

tic regression analysis. In this study,Fusobacterium nucleatum

was also associated with CIMP-high, LINE-1 hypomethyla-

tion, and BRAF mutation.33 Another study reported by

Lennard showed that activation in inflammatory and DNA

damage pathways was strong relative to Fusobacterium

nucleatum alongwithEnterococcus faecalis.49 Colorectal can-

cer with dMMR/MSI has specific phenotypes, including prox-

imal colon preference, poor differentiation, and lymphocyte

enrichment50–52. This study revealed that these two spaces

might boost the disease development and progression via a

transcriptional remodeling, including an increase of regenerat-

ing islet derived protein (REG3A, REG1A, and REG1P, high-

abundance Fusobacterium nucleatum) and up-regulation of

CXCL10 and BMI1 (high-abundance E. faecalis).49 These

findings indicate the association between the Fusobacterium

nucleatum load in colorectal cancer tissue and poor survival.

No or low fold-increase of Fusobacterium nucleatum in tumor

tissues relative to the matched tumor-adjacent tissues in color-

ectal cancer resulted in a significant advantage in survival over

patients with high fold-increases (no fold increase: <25, high

fold-increase: >216). The median survival in patients with

high- and low-fold Fusobacterium nucleatum was two and

three years, respectively.53 Both disease-specific and disease-

free survival were higher in patients with stage III or IV color-

ectal cancer with a lower relative abundance ofFusobacterium

nucleatum compared to survival in patientswith higher relative

DNA expression.48

Wei et al reported a significantly more reduced three-year

overall survival in patients with high abundances of

Bacteroides fragilis andFusobacterium nucleatum compared

to that in patients with low abundances of these strains based

on Kaplan-Meier analysis and Log rank tests of the relation-

ship between patient survival and relative bacterial abun-

dance in colorectal cancer tissues.43 Besides, patients with a

low abundance of Clostridium had a poor three-year overall

survival, but the difference was not statistically significant.43

Similarly, patients with high abundances of Bacteroides fra-

gilis and Fusobacterium nucleatum had lower disease-free

survival rates than those in low-abundance patients.43 Cox

regression and multivariate analysis showed that over-repre-

sentation of Bacteroides fragilis (HR:2.010; 95% CI:1.020–

3.961) and Fusobacterium nucleatum (HR:1.993; 95%

CI:1.024–3.879) was associated with low overall survival

after radical surgery in patients with colorectal cancer,

which were independent predictors for three-year overall

survival.43

Conclusion
The intestinal microbiome involves in the development of

colorectal cancer by altering the intestinal epithelial cells and

the balance of the immune microenvironment. The species

present in Fusobacteria, Proteobacteria, Firmicutes,

Bacteroidetes, and Clostridia mainly play an indispensable
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role in promoting the growth of tumors already present. The

interaction between gut microbiota and colorectal cancer is

multi-level and manifold. Different species in the microflora

have a different impact on the malignant behaviors of the

tumor. Molecular mutations (KRAS and BRAF), regional

lymph node metastasis, and CD3+T cells inhibition are

some of their potential targets. Their associations make

assessing changes in the intestinal microbiome a convenient

predictive tool for colorectal cancer. Useful biomarkers can

influence treatment strategies for patients with colorectal

cancer. Specific microbial can mediate the response to che-

motherapy and radiotherapy, resulting in changing the prog-

nosis of patients. Analysis of the gut microbiome offers the

potential to develop non-invasive diagnostic tests that can

serve as filtrating markers for improving treatment response.

The potential of regulating the intestinal microbiome via

changing the diet and using probiotics provides hope for

reducing the risk of cancer development and improving the

effectiveness of treatment.
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