
OR I G I N A L R E S E A R C H

Combination BET Family Protein and HDAC

Inhibition Synergistically Elicits Chondrosarcoma

Cell Apoptosis Through RAD51-Related DNA

Damage Repair
This article was published in the following Dove Press journal:

Cancer Management and Research

Songwei Huan1,*

Tao Gui1,*

Qiutong Xu1,*

Songkuan Zhuang2

Zhenyan Li1

Yuling Shi3

Jiebin Lin3

Bin Gong1

Guiqiang Miao1

Manseng Tam4

Huan-Tian Zhang1

Zhengang Zha1

Chunfei Wu3

1Institute of Orthopedic Diseases and

Department of Bone and Joint Surgery,

The First Affiliated Hospital, Jinan

University, Guangzhou 510630,

Guangdong, People’s Republic of China;
2School of Life Science, Xiamen

University, Xiamen, Fujian 361005,

People’s Republic of China; 3Department

of Orthopedics, The Third Affiliated

Hospital, Guangzhou University of

Chinese Medicine, Guangzhou,

Guangdong 510405, People’s Republic of

China; 4IAN WO Medical Center, Macao

Special Administrative Region, People’s
Republic of China

*These authors contributed equally to

this work

Background: Chondrosarcoma is the second-most common type of bone tumor and has

inherent resistance to conventional chemotherapy. Present study aimed to explore the ther-

apeutic effect and specific mechanism(s) of combination BET family protein and HDAC

inhibition in chondrosarcoma.

Methods: Two chondrosarcoma cells were treated with BET family protein inhibitor (JQ1)

and histone deacetylase inhibitors (HDACIs) (vorinostat/SAHA or panobinostat/PANO)

separately or in combination; then, the cell viability was determined by Cell Counting Kit-

8 (CCK-8) assay, and the combination index (CI) was calculated by the Chou method; cell

proliferation was evaluated by 5-ethynyl-2′-deoxyuridine (EdU) incorporation and colony

formation assay; cell apoptosis and reactive oxygen species (ROS) level were determined by

flow cytometry; protein expressions of caspase-3, Bcl-XL, Bcl-2, γ-H2AX, and RAD51 were

examined by Immunoblotting; DNA damage was determined by comet assay; RAD51 and γ-

H2AX foci were observed by immunofluorescence.

Results: Combined treatment with JQ1 and SAHA or PANO synergistically suppressed the

growth and colony formation ability of the chondrosarcoma cells. Combined BET and

HDAC inhibition also significantly elevated the ROS level, followed by the activation of

cleaved-caspase-3, and the downregulation of Bcl-2 and Bcl-XL. Mechanistically, combina-

tion treatment with JQ1 and SAHA caused numerous DNA double-strand breaks (DSBs), as

evidenced by the comet assay. The increase in γ-H2AX expression and foci formation also

consistently indicated the accumulation of DNA damage upon cotreatment with JQ1 and

SAHA. Furthermore, RAD51, a key protein of homologous recombination (HR) DNA repair,

was found to be profoundly suppressed. In contrast, ectopic expression of RAD51 partially

rescued SW 1353 cell apoptosis by inhibiting the expression of cleaved-caspase-3.

Conclusion: Taken together, our results disclose that BET and HDAC inhibition synergis-

tically inhibit cell growth and induce cell apoptosis through a mechanism that involves the

suppression of RAD51-related HR DNA repair in chondrosarcoma cells.
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Introduction
Chondrosarcoma is the second-most frequent primary malignant tumor of bone and

is characterized by the production of a cartilage-like extracellular matrix.1 Poor

vascularity and abundant hyaline-dense cartilage matrix have been elucidated as the

fundamental factors leading to the inherent resistance of chondrosarcoma to
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conventional chemotherapy and radiotherapy.2,3

Accumulated evidence has suggested that increased

expression of antiapoptotic proteins such as the Bcl-2

family members and survivin play a critical role in the

chemotherapy resistance of chondrosarcoma cells.4,5

Therefore, therapeutics aimed at modulating the apoptotic

signaling pathway have increasingly been recognized as

a promising treatment strategy for the chemo-resistant

chondrosarcoma cells.

During the past decade, most therapeutic strategies have

been developed based on genetic mutations, while recent

advances have dramatically shifted towards targeting epige-

netic regulators, including the bromodomain and extraterminal

domain (BET) protein6, [Zhang et al, 2017]. Some small-

molecule inhibitors targeting BET proteins, including JQ1,

have been undergoing clinical trials and have exhibited excel-

lent efficacy in suppressing cell growth in a wide range of

cancers.7,8 Mechanistically, the role of JQ1 in treating cancers

is achieved via displacement of the bromodomain containing 4

(BRD4) protein from chromatin, which inhibits the expression

of several oncogenes, such as c-Myc and YAP, as well as

impairs the homologous repair (HR) DNA repair signaling

pathway.9–13We have recently demonstrated that JQ1 remark-

ably inhibits chondrosarcoma cell growth via the YAP/p21

signaling axis, yet little cell apoptosis is induced (Zhang et al,

2017 ). Understanding how JQ1 affects DNA damage repair

might suggest a way to increase chondrosarcoma cell

apoptosis.

Histone acetylation is another form of the epigenetic

landmark related to gene regulation, and its dysfunction is

frequently observed in chondrosarcoma.14,15 In general, the

abundance of histone acetylation marks is fine-tuned by

histone acetyltransferases (HATs), histone deacetylases

(HDACs), and BET proteins. HDACs are frequently over-

expressed in cancers, including sarcoma, and inhibitors tar-

geting HDACs have been reported to induce growth arrest,

apoptosis, and differentiation in chondrosarcoma cells.16,17

Despite their efficacy, HDAC inhibitors (HDACIs) have

shown only a modest benefit in early clinical trials as

a single agent.18–20 Combination HDAC inhibition and

BET inhibition is known to be an effective strategy for

several cancers, but the synergistic effect has not been inves-

tigated in chondrosarcoma. In the current study, we demon-

strated that combination BET family protein and HDAC

inhibition synergistically inhibits chondrosarcoma cell

growth, induces DNA damage, and subsequent cell apopto-

sis. Mechanistically, JQ1 synergizes with the HDACIs to

impair the RAD51-related HR repair signaling.

Materials and Methods
Cell Culture and Reagents
Two chondrosarcoma cell lines (SW 1353 cells and Hs

819.T cells) were purchased from American Type Culture

Collection and cultured as we described previously (Zhang

et al, 2017). HDACIs (SAHA and PANO) were purchased

from Selleck (Shanghai, China). BET bromodomain inhi-

bitor (JQ1) and caspase-3 inhibitor (Z-DEVD-FMK) were

obtained from MedChem Express (Beijing, China). JQ1

and HDACIs stock solutions were prepared by dissolving

the compounds in dimethyl sulfoxide (DMSO, MP

Biomedicals, USA) according to the manufacturer’s

instructions and were stored at −20 °C.

Cell Counting and Viability Assays
After seeding chondrosarcoma cells for 24 h, the cells

were treated with DMSO, JQ1 (20 µM), SAHA (1 µM

for SW 1353 cells and 2 µM for Hs 819.T cells) or their

combination for 24, 48, and 72 h, respectively. Then, cells

were counted at each time point using an Automatic Cell

Counter (AMQAF1000, Countess II FL, USA).

For cell viability assay, cells were treated with JQ1,

SAHA, PANO, or their combinations for 48 h, followed by

the incubation with 10 μL enhanced Cell Counting kit-8

(CCK-8, C0042, Beyotime, China) solution for 2 h at 37 °

C. Subsequently, the cell viability was examined at 450

nm using a spectrophotometer (VarioskanTM LUX,

Thermo Scientific, USA). Relative cell viability was ana-

lyzed from at least three independent experiments.

Calculation of Drug Synergy
For the determination of drug synergy, JQ1 and HDACIs

were used in fixed-dose ratios. For each cell line, at least

five different combinations of concentrations were applied.

The IC50 values of JQ or HDACIs were shown in

Table S1, while the combination index (CI) was calculated

by the Chou-Talalay algorithm with CompuSyn software

1.0 (ComboSyn Inc.). A CI value of less than 1 was

considered synergism.21

Immunoblotting (IB) Analysis
IB was performed as we previously described.13 The pri-

mary antibodies used in this study were listed as follows:

anti-phospho-histone H2AX (20E3, 1:1000, CST), anti-

Bcl-2 (D17C4, 1:1000, CST), anti-cleaved-caspase-3

(5A1E, 1:1000, CST), and anti-Bcl-XL (54H6, 1:1000,

CST), the secondary antibodies were HRP-conjugated
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(1:1000–1:2000, CST). Antibodies against RAD51

(PC130, 1:2500, Merck) was obtained from Merck, and

anti-acetyl-histone H3 (Lys9, H3K9, #3079121, 1:500)

was purchased from Millipore. Anti-β-actin (8H10D10,

1:2000, CST) was used as an internal control. The IB

images captured by the Automatic chemiluminescence

image analysis system (5200, Tanon, China) were further

quantified by Image J software.

5-Ethynyl-2′-Deoxyuridine (EdU)

Incorporation Assay
Briefly, cells were treated with individual agents or their

combinations for 48 h, after that, the cells were incorpo-

rated with 20 µM EdU solution (EdU, C10310-1, Ribobio,

Guangzhou, China) for another 2 h. After fixation and

permeabilization, the cells were stained with EdU solution

at room temperature (RT) for 30 min followed by the

treatment with Hoechst 33342 for another 30 min. The

images were captured with a microscope (Olympus IX71,

Tokyo, Japan). The EdU-positive cells were counted from

ten random areas, with a minimal cell number of more

than 500.

Colony Formation Assay
SW 1353 or Hs 819.T cells were seeded in a 6-well plate at

a density of 1000 cells/well and cultured in complete

medium for 48 h; next, the cells were treated with JQ1,

SAHA, PANO, or their combinations for another 48

h. Then, the crystal violet solution was added to each

well after cells were further cultured with fresh medium

for 5 d. The colonies with more than 50 cells were counted

under a SZ760 series microscope (Chongqing Optec

Instrument Co., China).

Analysis of Apoptosis by Flow Cytometry
After treatment with JQ1, SAHA, or their combination for

48 h, 1~5×105 cells were collected and resuspended in 500

µL binding buffer. Then, the cells were stained with

Annexin V-FITC/propidium iodide (PI) Apoptosis

Detection Kit (KGA107, KeyGEN BioTECH, China) at

RT for 15 min. Finally, the cells were subjected to flow

cytometry (BD AccuriTM C6 PLUS, USA) to determine

the proportions of apoptotic cells.

Reactive Oxygen Species (ROS) Assay
In brief, chondrosarcoma cells were cultured until they

reach 85% confluence. Then the cells were treated with

10 μM DCFH-DA (KGT010, KeyGEN BioTECH, China).

After that, cells were collected and resuspended in ice-cold

PBS, and the DCF fluorescence intensity (FI) was detected

by flow cytometry.

DNA Damage Comet Assay
Chondrosarcoma cells were treated with DMSO, JQ1,

SAHA or their combinations for 48 h. Then, the cells

were harvested and analyzed using the comet assay as

we described previously.22 The Olive tail moment

(OTM) was analyzed by Open comet software.23

Determination of DNA Damage and

Repair Foci
SW 1353 cells were cultured on slides and fixed with 4%

paraformaldehyde after the above treatments. After per-

meabilization and blocking, cells were incubated with the

RAD51 antibody at RT for 2 h, followed by incubation

with the secondary antibody (Alexa Fluor 555-labeled

anti-rabbit IgG, 1:100, CST) and 4,6-diamidino-2-pheny-

lindole (DAPI, 1:1000, Life Technologies, CA, USA) at 4

°C overnight. The RAD51 foci were captured with

a confocal microscope (ZEISS LSM 700, Germany).

Reverse Transcription and Real-Time

Polymerase Chain Reaction (PCR)
Reverse transcription was performed according to our

previous protocols.13 Briefly, total RNA from SW 1353

cells was purified, and then reverse-transcribed into

complementary DNA (cDNA). Real-time PCR was con-

ducted in a QuantStudio™ 3 Real-Time PCR Instrument

(No.A28132, Thermo Fisher Scientific, Singapore). The

primers used for RAD51 amplification were listed as

follows: 5ʹ-CTCTGGCAGTGATGTCCTGG-3ʹ (sense)

and 5ʹ-TGTTCTGTAAAGGGCGGTGG-3ʹ (antisense).

The primers used for RUVBL1 amplification were 5ʹ-

TGCTGGACATTGAGTGCTTCACC-3ʹ (sense) and 5ʹ-

TGATGACACAGTTGCCTCGGTTG-3ʹ (antisense).

GAPDH was used as the endogenous control to calcu-

late the relative mRNA levels.

Plasmids Construction and Transfection
Genomic DNA from SW 1353 cells was used to amplify

the RAD51 coding region by regular PCR using a high-

fidelity polymerase. The primers used for amplification

were 5ʹ-TCTGTCGACAATGGCAATGCAGATGCA

GCT-3ʹ and 5ʹ-TAAAGCGGCCGCCCAATGATTCAGTC
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TTTGGCAT-3ʹ. Then the PCR product was subcloned into

the HA-CMV vector at XhoI and EcoRI sites. The HA-

RAD51 construct was verified by sequencing and the

expression check.

Statistical Analysis
Results from each experiment were presented as mean±SD

from three independent experiments. Differences were

tested for significance using ANOVA among groups or

unpaired t-test for two groups in the GraphPad Prism 7

software (Graphpad Software, IL, USA). P values less

than 0.05 were considered statistically significant.

Results
JQ1 and HDACIs Inhibit

Chondrosarcoma Cell Growth in

a Synergistic Manner
Our previous study has demonstrated that JQ1 substantially

inhibits cell proliferation, accompanied by limited apoptosis

in chondrosarcoma cells (Zhang et al, 2017). Given that

HDACIs play a key role in regulating cell apoptosis in

several cancers,17,24,25 we sought to examine whether

HDACIs synergize with JQ1 in suppressing cell growth

and/or inducing apoptosis in chondrosarcoma cells. SW

1353 and Hs 819.T cells were treated with different concen-

trations of JQ1 and SAHA at a fixed-ratio for 48 h. As shown

in Figure 1A and B, in each cell line tested, the combination

treatment of JQ1 and SAHA resulted in a sharp dose-

dependent decline in relative cell viability when compared

to treatment with the single agent. The combined treatment

with JQ1 and SAHA showed synergistic anticancer effects in

chondrosarcoma cells (CI value < 1),21 as determined by the

Chou and Talalay method (Figure 1C). A similar synergistic

effect of JQ1 with another HDACI, PANO, was observed in

both chondrosarcoma cell lines (Figure 1D-F). Next, we

compared the effect of JQ1 or SAHA alone or in combination

on chondrosarcoma cell growth. As expected, compared to

treatment with DMSO, treatment with JQ1 or SAHA alone

remarkably reduced the total cell numbers of chondrosar-

coma, and that cotreatment with JQ1 and SAHA further

reduced the total cell numbers compared to treatment with

the single inhibitor (Figure 1G and H). The expression of

H3K9, which indicates enhanced histone acetylation upon

treatment with SAHA, was confirmed as the internal control

(Figure 1I and S1A).

Considering the drug efficiency and toxicity, the final

drug concentrations used for subsequent experiments were

given in Table S2, and the treatment timewas 48 h. In support

of the above findings, combined treatment with JQ1 and

SAHA also significantly attenuated the percentage of EdU-

incorporated cells, indicating their inhibitory role in chon-

drosarcoma cell proliferation (Figure 2A and B). Further, we

did show that combined BET bromodomain and HDAC

inhibition substantially suppressed colony formation of

chondrosarcoma cells, when compared to the DMSO or

single-agent groups (Figure 2C-F). These results together

suggest that JQ1 and HDACIs synergistically inhibit chon-

drosarcoma cell growth.

BET Bromodomain and HDAC Inhibition

Synergistically Cause Cell Apoptosis
Next, we investigated whether combination treatment with

JQ1 and HDACIs has a synergistic effect on chondrosar-

coma cell apoptosis. As shown in Figure 3A and B, treat-

ment with JQ1 or SAHA alone increased the percentage of

apoptotic cells modestly (12.37% and 11.26%, respec-

tively), while combined treatment with JQ1 and SAHA

dramatically elevated the percentage of apoptotic cells to

44.1%. ROS is one of the most important contributing

factors of cell apoptosis.21 In agreement with this, we

also found that cotreatment with JQ1 and SAHA remark-

ably enhanced the relative DCF-fluorescence intensity

(FI), which reflects the ROS level (Figure 3C and D).

Furthermore, we examined the changes of apoptotic sig-

naling proteins including cleaved-caspase-3, Bcl-2, and

Bcl-XL, by IB analysis. Compared with JQ1 or HDACIs

treatment alone, combination treatment with JQ1 and

HDACIs significantly increased the expression of cleaved-

caspase-3 (Caspase-3) and decreased the expressions of

Bcl-2 and Bcl-XL in chondrosarcoma cells

(Figure 3 E-G). The caspase-3 inhibitor, Z-DEVD-FMK

partially rescued the cell apoptosis induced by the combi-

nation treatment with JQ1 and SAHA (Figure S1B), indi-

cating caspase-3-dependent apoptosis. Similarly,

cotreatment with JQ1 and PANO also enhanced chondro-

sarcoma cell apoptosis (Figure 3H and I). Thus, we con-

clude that JQ1 and HDACIs act synergistically in inducing

apoptosis of chondrosarcoma cells.

Cotreatment with JQ1 and HDACIs

Induces DNA Damage and Impairs HR

Signaling
Given that combined treatment with JQ1 and HDACIs

significantly induced ROS level and promoted cell
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apoptosis, we next investigated the underlying regulatory

mechanisms, eg, triggering DNA damage or impairing

DNA repair. As shown in Figure 4A-C, cotreatment with

JQ1 and SAHA significantly induced DSBs in chondro-

sarcoma cells, as evidenced by the comet assay. DNA

damage markers, such as the formation of γ-H2AX foci,

were further investigated. The results showed that com-

bined treatment with JQ1 and SAHA robustly promoted

the formation of γ-H2AX foci (Figure 4D). Consistently,

the expression of γ-H2AX was significantly increased

(Figure 4E and S1C), indicating that JQ1 in combination

with HDACIs indeed triggers more severe DNA damage

than either single inhibitor.

The functional HR DNA repair pathway is an important

hallmark against cell apoptosis and DNA damage. Since BET

proteins, such as BRD4, were recently found to be involved

in HR-mediated DNA damage repair,26 we hypothesized that

combination treatment with JQ1 and SAHA also plays a role

in regulating HR repair signaling. Although JQ1 alone sig-

nificantly downregulated the mRNA expression of DNA

repair genes such as TIP60, EZH2, BRCA1, and BRCA2;

combined treatment with SAHA did not further suppress the

expression of these genes (Figure S1D). Notably, we found

that cotreatment with JQ1 and SAHA significantly inhibited

RAD51 mRNA expression when compared with treatment

with JQ1 or SAHA alone (RUVBL1 as control, Figure 5A). It

is well-recognized that RAD51 is a highly conserved protein

that catalyzes HR DNA repair thus directly modulating cel-

lular sensitivity to DNA-damaging treatments.27,28 We next

sought to quantify RAD51 foci formation and its expression

BA

D E

C

F

IHG

Figure 1 The synergistic effect of JQ1 and HDACIs on chondrosarcoma cells. (A–B) Synergy analysis of JQ1 and SAHA in chondrosarcoma cells. SW 1353 and Hs 819.T

cells were treated with the indicated concentrations of JQ1 and SAHA at a fixed-ratio for 48 h, and then the relative cell viability was measured by the CCK-8 assay. (C) The

combination indexes (CIs) in (A) and (B) were calculated by the Chou method. CI < 1 was considered to represent a synergistic anti-cancer effect. (D–E) SW 1353 and Hs

819.T cells were treated with the indicated concentrations of JQ1 and PANO at a fixed-ratio for 48 h, and then the relative cell viability was measured. (F) The combination

indexes (CIs) in (D and E) were calculated. (G–H) JQ1 synergizes with SAHA in suppressing chondrosarcoma cell growth in a time-dependent manner. SW 1353 and Hs

819.T cells were treated with 20 µM JQ1, 1 µM SAHA (2 µM for Hs 819.T), or a combination for 24, 48 or 72 h, and then the total cell number was counted and analyzed.

(I) SW 1353 and Hs 819.T cells were treated as in (G) and (H) for 48 h, and the expression of H3K9 was evaluated by immunoblotting. *P <.05; **P <.01; ***P <.001.
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in SW 1353 cells. As shown in Figure 5B-E, RAD51 foci

formation along with its protein expression was dramatically

compromised upon cotreatment with JQ1 and SAHA, indi-

cating severe impairment of the DNA repair capacity.

Nevertheless, ectopic expression of RAD51 in SW 1353

cells by transfection with a plasmid encoding HA-RAD51

partially compromised the apoptosis elicited by the cotreat-

ment with JQ1 and SAHA (Figure 5F and G). Overall, we

conclude that combined treatment with JQ1 and HDACIs

induces DNA damage and impairs HR signaling by suppres-

sing the RAD51 protein, which is pivotal for the induction of

chondrosarcoma apoptosis in a caspase-3-dependent manner

(Figure 5H).

Discussion
Chondrosarcoma represents the second-most frequent pri-

mary bone malignancy and, is poorly responsive to con-

ventional chemotherapy and radiotherapy.29

Understanding the underlying mechanisms will lead to

new treatment options for chondrosarcoma resistance.

Recently, targeting epigenetic readers, such as BET pro-

teins, by specific inhibitors, was shown to be essential for

B

D

E

C

F

A B

D

E

C

F

A

Figure 2 Combination treatment with JQ1 and HDACIs inhibits cell proliferation and colony formation. (A–B) SW 1353 and Hs 819.T cells were treated with DMSO, JQ1

(20 µM), SAHA (1 µM or 2 µM) or their combination for 48 h, and cell proliferation was determined by the EdU incorporation assay. The percentages of EdU-positive cells

were calculated from ten random fields and the results are presented. Scale bar = 50 μm. (C and E) SW 1353 or Hs 819.T cells were seeded into 6-well plates and treated

with JQ1 (20 µM), SAHA (1 µM for SW 1353 and 2 µM for Hs 819.T)/PANO (10 nM for both cell lines), or a combination of both for 48 h. The colonies were stained with

crystal violet solution after incubation with fresh medium for 5 d. (D and F) The number of colonies (more than 50 cells) was manually counted from three independent

experiments. *P <.05; **P <.01; ***P <.001. ****P <.0001.
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suppressing cancer cell growth both in vitro and in vivo,

and the strategies mainly worked by modulating the cell

cycle, facilitating differentiation and inducing cell

apoptosis.7–9,30,31 In our previous work, we showed that

JQ1 efficiently inhibited chondrosarcoma cell prolifera-

tion, yet targeting YAP/p21 signaling did not elicit pro-

nounced cell apoptosis in chondrosarcoma (Zhang et al,

2017). In the current study, we present evidence that

a BET inhibitor and HDACIs inhibit the growth and

induce the apoptosis of chondrosarcoma cells synergisti-

cally. Mechanistically, the apoptosis induced by combina-

tion treatment with JQ1 and HDACIs was attributed to an

accumulation of DNA damage and impairment of HR

repair via suppression of RAD51 expression.

HDACs are critical epigenetic gene expression and

chromatin structure modulators during cell proliferation,

differentiation, and apoptosis.17,32,33 Substantial evidence

has shown that HDACIs can induce apoptosis in a variety

BA

ED

C

F G

H

I

Figure 3 Combination treatment with JQ1 and HDACIs leads to apoptosis of chondrosarcoma cells. (A) SW 1353 cells were treated with the indicated inhibitors (JQ1:

20µM, SAHA: 1 µM) for 48 h, and then apoptotic cells were assessed by flow cytometry using the Annexin V-FITC/PI kit. (B) The percentage of apoptotic cells was

calculated from three independent experiments. (C–D) After the indicated treatment, SW 1353 cells were incubated with 10 μM DCFH-DA in serum-free medium at 37 °C

for 20 min. DCF fluorescence intensity (FI) was detected by flow cytometry, the relative DCF-FI was calculated and presented. (E–I) SW 1353 and Hs 819.T cells were

treated with JQ1 (20 µM), SAHA (1 µM for SW 1353 and 2 µM for Hs 819.T)/PANO (10 nM for both cell lines) or their combinations for 48 h. The total cell lysate was

prepared and the expression levels of Bcl-2, Bcl-XL, and caspase-3 were determined by immunoblotting analysis, and the protein expression was quantified using the Image

J software (n = 3). *P <.05; **P <.01; ***P <.001; ****P <.0001.

Dovepress Huan et al

Cancer Management and Research 2020:12 submit your manuscript | www.dovepress.com

DovePress
4435

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


of cell types including chondrosarcoma cells,1,16 empha-

sizing their potential for applications in cancer therapy.

However, as a single agent, HDAC inhibitors show

a limited clinical benefit for patients with solid tumors,

prompting the investigation of rational drug combination

strategies to improve efficacy.34 Several attempts have

been made using combination treatments with a BET inhi-

bitor and an HDAC inhibitor in several cancer types.

Meng et al found that cotreatment with PANO and JQ1

or OTX015 synergistically suppressed cell proliferation

and caused apoptosis in glioblastoma cells.35 Shahbazi

et al also reported that JQ1 and PANO synergistically

reduced LIN28B gene and N-Myc protein expression,

and synergistically induce growth inhibition and apoptosis

in neuroblastoma cells.36 Fiskus et al found that cotreat-

ment with JQ1 and the HDAC inhibitor PANO synergisti-

cally greatly attenuated oncogenes, such as c-MYC and

BCL2.37 These studies have suggested that the true ther-

apeutic potential of HDACIs is most likely lies in combi-

nation with other anticancer drugs, eg, the BET inhibitor,

in chondrosarcoma. Notably, our studies suggest that

HDACIs synergize with JQ1 in suppressing cell

proliferation and inducing apoptosis in chondrosarcoma

(Figures 1–3), indicating the promise of combination treat-

ments targeting an epigenetic reader and eraser as novel

strategies for chemotherapy-refractory chondrosarcoma.

The generation of γ-H2AX upon DNA damage,

together with other histone modifications, is essential for

the recruitment of HR DNA repair proteins, including

RAD51, which in turn promotes the repair of the original

lesion.38 Accumulated evidence has suggested that

enhanced DNA repair signaling enables cancer cells to

survive the DNA damage induced by chemotherapeutic

drugs and that inhibition of a specific DNA repair pathway

can favor cancer cells undergoing apoptosis upon

chemotherapy.39,40 King and colleagues recently illustrated

that RAD51 overexpression contributed to the resistance

of glioblastoma cells to radiation,41 and HR defects caused

by impaired RAD51 expression may sensitize the affected

tumors to DNA-damaging agents.42 Therefore, it is reason-

able to assume that RAD51 is closely related to sensitivity

to chemotherapeutic agents. We next sought to explore the

mechanisms underlying the apoptosis-induced by cotreat-

ment with JQ1 and HDACIs. As shown in Figures 4 and 5,

BA

EDC

Figure 4 Combination treatment with JQ1 and SAHA elicits DNA damage in chondrosarcoma cells. (A) SW 1353 and Hs 819.T cells were treated with JQ1 (20 µM) or

SAHA (1 µM for SW 1353 and 2 µM for Hs 819.T) alone or their combinations for 48 h, and then DNA damage was visualized by the comet assay. Scale bar = 50 μm. (B–C)

The Olive tail moment (OTM) in A was analyzed by Open comet software. (D) Representative images of γ-H2AX foci formation (red) in SW 1353 cells under treatment

with DMSO or the combination. The nucleus was stained with DAPI (blue). Scale bar = 10 μm. (E) After treatment as indicated, γ-H2AX expression in SW 1353 and Hs 819.

T cells was analyzed by immunoblotting. n.s., no significance; ***P <.001; ****P <.0001.
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combination BET inhibition and HDAC inhibition favors

DNA damage while impairing HR DNA repair signaling

by targeting RAD51, and ectopic RAD51 expression par-

tially abolished the sensitivity of chondrosarcoma cells to

JQ1 and SAHA. Our findings are in line with previous

studies showing HDACIs and JQ1 as single-agent plays an

important role in the proper assembly and expression of

RAD51 and subsequent HR DNA repair in several cancer

cells.10,43,44 Interestingly, we noticed that although com-

bined treatment with JQ1 and HDACIs robustly abolished

the expression of endogenous RAD51, the expression of

exogenous HA-RAD51 (under a CMV promoter) was

essentially unaffected. RAD51 expression can be regulated

via transcription, miRNAs including miR-96, −99, −107,
−222 and −155, and protein stability,45 further studies are

warranted to disclose the detailed regulatory mechanism of

JQ1 combined with HDACIs in regulating RAD51 expres-

sion in chondrosarcoma.

In summary, we have demonstrated that the combina-

tion of the BET inhibitor JQ1 and HDACIs leads to

profound synergistic anti-cancer activity against chondro-

sarcoma cells by suppressing RAD51-related HR DNA

repair (Figure 5F). These findings indicate that the combi-

natorial targeting of an epigenetic reader and an eraser

may represent a promising novel strategy for treating

chondrosarcoma.

A B

D F

E

C

G
H

Figure 5 Combined treatment of JQ1 with HDACIs impairs the homologous repair (HR) pathway by targeting RAD51. (A) SW 1353 cells were treated with the indicated

concentrations of DMSO, JQ1 (20 µM), SAHA (1 µM) or their combinations for 48 h, and the mRNA expressions of RAD51 and RUVBL1 were examined by real-time PCR.

n.s., no significance; *P <.05; **P <.01. (B) Representative images of RAD51 (red) staining in SW 1353 cells are shown. The nucleus was stained with DAPI (blue). Scale bar =

20 μm. (C) The percentage of cells with more than 10 RAD51 foci per nucleus was calculated from three different experiments. **P <.01; ****P <.0001. (D) After treatment

as indicated, RAD51 expression in SW 1353 and Hs 819.T cells was analyzed by immunoblotting. (E) A plasmid encoding HA-RAD51 was transfected into SW 1353 cells for

48 h. Then, the cells were treated with DMSO, JQ1 (20 μM) plus SAHA (1 μM) for 24 h, and the expression levels of apoptotic-related markers caspase-3 and RAD51 were

evaluated by immunoblotting. (F–G) Relative protein expression levels in (D) and (E) from three independent experiments were quantified by Image J software (n = 3).

*P <.05; **P <.01; ***P <.001. (H) Upon treatment with JQ1 and HDACIs (SAHA and PANO), the ROS level was elevated, accompanied by a downregulation of Bcl-XL and

Bcl-2, while the expression of caspase-3 increased, together triggering apoptosis. The combined treatment also elicited pronounced nuclear γ-H2AX expression and foci

formation, along with the impairment of HR DNA repair signaling via suppression of RAD51. The imbalance of accumulated DNA damage and HR repair, in turn, contributed

to cell apoptosis.
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Highlights
● BET inhibitors and HDACIs inhibit cell growth and

induce apoptosis of chondrosarcoma cells in

a synergistic manner
● Combination BET and HDAC inhibition elicits DNA

damage in chondrosarcoma cells
● BET inhibition and HDAC inhibition synergize to

impair RAD51-related HR repair signaling
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