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Introduction: Transdermal drug delivery is gaining popularity as an alternative to tradi-

tional routes of administration. It can increase patient compliance because of its painless and

noninvasive nature, aid compounds in bypassing presystemic metabolic effects, and reduce

the likelihood of adverse effects through decreased systemic exposure. In silico physiological

modeling is critical to predicting dermal exposure for a therapeutic and assessing the impact

of different formulations on transdermal disposition.

Methods: The present study aimed at developing a physiologically based transdermal

platform, “BIOiSIM”, that could be globally applied to a wide variety of compounds to

predict their transdermal disposition. The platform integrates a 16-compartment model of

compound pharmacokinetics and was used to simulate and predict drug exposure of three

chemically and biologically distinct drug-like compounds. Machine learning optimization

was composed of two components: exhaustive search algorithm (coarse-tuning) and descent

(fine-tuning) integrated with the platform used to quantitatively determine parameters influ-

encing pharmacokinetics (eg permeability, kperm) of test compounds.

Results: The model successfully predicted drug exposure (AUC, Cmax and Tmax) following

transdermal application of morphine, buprenorphine and nicotine in human subjects, mostly

with less than two-fold absolute average fold error (AAFE). The model was further able to

successfully characterize the relationship between observed systemic exposure and intended

pharmacological effect. The predicted systemic concentration of morphine and plasma levels

of endogenous pain biomarkers were used to estimate the effectiveness of a given therapeutic

regimen.

Conclusion: BIOiSIM marks a novel approach to in silico prediction that will enable

leveraging of machine learning technology in the pharmaceutical space. The approach to

model development outlined results in scalable, accurate models and enables the generation

of large parameter/coefficient datasets from in vivo clinical data that can be used in future

work to train quantitative structure activity relationship (QSAR) models for predicting

likelihood of compound utility as a transdermally administered therapeutic.

Keywords: transdermal absorption, computational modeling, machine learning, BIOiSIM

Introduction
Transdermal drug delivery (TDD) has been gaining traction over recent years due to

increasing incidences of chronic diseases, technological development in health care

and biotechnology, advent of new minimally invasive products, and a rise in regula-

tory approval of medical devices.1 In 2018, the global TDD system market was

estimated at $5.8 billion and is projected to reach about $8 billion by 2025.2

Transdermal application poses a safer, widely accepted alternative to oral and par-

enteral administration of therapeutics, specifically hypodermic injections, and is also
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highly relevant to the field of cosmetics.1 After application

on skin, the drug permeates through the stratum corneum

into the epidermal and dermal layers (see Figure 1), and

enters the systemic circulation through the dermal microcir-

culatory system.3,4 Xenobiotics with poor oral bioavailabil-

ity can be potentially administered transdermally as the route

circumvents first-pass metabolic pathways and provides

minimal systemic exposure to avoid undesired side effects.1

Transdermal application can also enable dosing in patients

who are unconscious or are susceptible to gastric disorders,

and is associated with better patient compliance.1 There has

been rising interest in using TDD as an inexpensive and

painless method for administering vaccines and other pro-

tein/large molecule drugs.

According to the FDA, transdermal dosage forms can

be characterized as semi-solid (cream, ointment, gel, paste,

powder), liquid (emulsion, lotion, solution, spray, suspen-

sion) and “special formulation” (microemulsion, nanoe-

mulsion, patch).5 Most of these formulations are

designed to ensure steady drug delivery to the active site

by exerting a local effect following topical application.

However, the formulation can be modified by adding exci-

pients that aid deeper drug entry to the deeper skin layers

and possibly into systemic circulation. The formulation

composition has a significant impact on dermal absorption;

one such study conducted by Stahl et al observed that

ibuprofen (5%) exhibited highest transdermal absorption

when administered as an aqueous solution and gel (con-

taining 2-propanol) followed by the cream (with propylene

glycol).5 The transdermal route is mostly suitable for drugs

with a certain degree of lipophilicity, limiting its use in

administering hydrophilic xenobiotics. However, innova-

tive techniques such as chemical enhancers (propylene

glycol, sodium lauryl sulfate, ethanol), biochemical enhan-

cers (magainin), electroporation, iontophoresis, ultrasound,

microneedles and thermal ablation have shown promise in

improving TDD for drugs that are low or moderately

lipophilic by maintaining steady drug concentrations

while simultaneously minimizing adverse effects asso-

ciated with high systemic exposure.3,5 The magnitude of

complexity in such transdermal formulations needs to be

appropriately captured in order to predict absorption

kinetics with reasonable confidence.

Numerous test models are available for predicting dermal

absorption. Animal models have been by far the most exten-

sively used for performing risk assessment for drugs with

topical formulations. However, more recently this inhumane

nature of drug testing has met with strong resistance and

criticism from industry, academia and regulatory bodies, espe-

cially in the EU.6 In addition to the ethical issues, the clinical

translatability of animal models to predict pharmacokinetics

(PK) in humans is questionable, especially when using tradi-

tional allometric scaling practices. There are significant differ-

ences in the composition of dermal layers, density of hair

follicles and skin thickness that can inevitably lead to distinct

absorption profiles in animal species compared to humans.7

Computational modeling has beenwidely used to predict

and simulate systemic exposure following topical adminis-

tration of a compound.8–12 However, the existing paradigm

results in models that are extremely drug-specific and with

physiological considerations relevant only for the given

drug, limiting their scope of application (as evidenced by

the plethora of PBPK publications with distinct

methodologies).8–11 Most current transdermal models are

complex, modeling the skin as a series of interconnected

compartments with parameters that can vary significantly

between species and subjects; while useful in specific appli-

cations where these parameters have been characterized to a

high degree of accuracy with in vitro or in vivo studies,

unfortunately the requirement to capture excessively drug-

specific parameters results in models that are highly data-

intensive and unscalable. These inputs, which can span

physics associated with drug diffusion, binding, and per-

meation through the dermal layers, further introduce varia-

bility in the prediction and make the models more error-

prone. Effectively, the outputs obtained from such a com-

plex model are difficult to interpret because they can be

frequently overfitted and thus the underlying mechanistic

factors contributing to the observed results cannot be cor-

rectly identified. This tends to constrain the scope of model

application to only a single drug under very specific experi-

mental conditions.

VeriSIM Life (VSL) has developed BIOiSIM,

a dynamic, biology-driven platform which provides a
Figure 1 Major layers of human skin.

Note: The figure was generated in house and data from Tortora and Derrickson.4
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scalable computational solution through the use of machine

learning (ML) integrated physiological modeling to make

accurate and faster predictions that can be applied to larger

compound datasets. Integration of ML with mechanistic

modeling allows BIOiSIM to fill in missing data gaps

commonly found in biological datasets. The methodology

is built on creating mechanistic computational models

which incorporate only the key parameters that influence

drug disposition, thus broadening their domain of applic-

ability. The aim of this study was to develop and validate a

simple and physiologically relevant transdermal model

built using BIOiSIM. The model was further applied to

describe the relationship between systemic exposure and

intended therapeutic effect. A dataset comprising three bio-

logically and chemically distinct drug-like compounds with

prevalent transdermal application was chosen to validate

the model; namely nicotine, morphine, and buprenorphine.

Methods
Overview of BIOiSIM Platform
BIOiSIM is a dynamic drug PK prediction platform that

learns, adapts and refines its predictions with each iteration

of training. The core of the platform is a 16-compartment

physiological, mechanistic model with compartments cor-

responding to vital organs and fluid reservoirs in the body

(Figure 2), and ordinary differential equations used to

define the standard mass balance relationships across the

compartments (as a function of organ-specific fluid

dynamics, physiological parameters, and partitioning), an

approach described previously.13 Derived from mass trans-

port, these equations follow the general form:

Vorgan
dCorgan

dt
¼ QorganðCblood;in � Corgan

KT:P;unbound � funbound;plasma � B : PÞ

(1)

for distribution compartments, and for metabolizing and

clearance compartments (such as liver and kidney):

Vorgan
dCorgan

dt
¼ QorganðCblood;in � Corgan

KT:P;unbound � funbound;plasma � B : P

� CLorgan � CorganÞ
(2)

where organ-specific parameters include V (volume), Q (flow

rate), CL (organ-level clearance), K (organ-plasma unbound

partition coefficient);B:P is blood:plasma binding, andC is the

concentration in a specific compartment. Themain interactions

characterized with the model are passive diffusion into and out

of organs driven by concentration gradient of the compound

species, fluid dynamics and mass balances across organ com-

partments, and clearance in hepatic and renal compartments.

The model has been validated using an internal test set of

structurally diverse drug-like compounds. In keeping with

the principles of good modeling (“as simple as possible, but

no simpler”), the BIOiSIM model includes additional com-

plexity (eg enzyme-specific metabolism, transporter

dynamics) only for cases where those model inputs are reli-

able and the presence of these mechanisms is associated

explicitly with the PK of a specific compound class. Model

development is guided relative to its performance across the

training set, thus ensuring that it is complex enough to

capture drug-specific disposition in a mechanistic/semi-

mechanistic manner and to use ML techniques to refine and

extend the model beyond one specific drug or species. The

system-dependent parameters capture physiological charac-

teristics (perfusion rate, organ composition, organ volume,

etc) specific for a given species—human or animal. Further

characterization in the physiological parameters was

achieved by performing simulations using values specific

for the species, ethnicity, and gender used in the observed

clinical study to make translatable predictions across differ-

ent populations. The physiological parameters were derived

from previously published reputable sources.14–18 A set of

well-defined and experimentally determined drug-dependent

parameters (clearances, unbound plasma fractions, bioavail-

ability, log P, pKa, solubility, etc) incorporate relevant infor-

mation about the drug’s physicochemical and PK properties

to enable prediction of their absorption, distribution, meta-

bolism, and excretion (ADME) mechanisms.19–31 Another

set of important drug-dependent parameters are tissue-to-

plasma partition coefficients (Kp) for the organs included in

the mechanistic model. Kp values characterize the pattern of

drug distribution throughout the body and degree of accu-

mulation at specific anatomical locations. The platform also

stores study design related information such as dosing regi-

men, patient population, and formulation characteristics to

simulate the observed study as closely as possible. BIOiSIM

allows incorporation of variability in drug and system depen-

dent parameters to predict exposure in target populations in

lieu of a “one-size-fits-all” approach. In this study, the varia-

bility and sensitivity evaluation was focused on only the

unknown drug-specific parameters and demonstrated using

convergence plots of error associated with outputs AUC,

Cmax, and tmax. Biological datasets with missing drug para-

meters are simultaneously optimized using ML models

trained on pharmacological outputs. BIOiSIM is cloud-
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based, and translates to faster computation and a linearly

scalable overall high throughput.

Transdermal Modeling
Key assumptions were made when modeling transdermal

drug permeation regarding both the skin physiology and

physics. For the purpose of this study, skin was treated as a

uniform barrier—this assumption is predicated on the

assumption that the cornified layer (stratum corneum) of

the skin is the main barrier to compound diffusion for intact

skin, and that in de-epithelialized skin the dermis is the rate-

limiting barrier. The skin was treated as an isotropic and

static barrier at a constant hydration level. Passive, one-

dimensional Fickian diffusion was assumed to be the

dominant transport mechanism, with compounds undergoing

no chemical/enzymatic reactions, and species in the formula-

tion were assumed to be mostly nonionized.32 The plasma

compartment was acting as an infinite sink when describing

the concentration gradient attained during topical exposure to

a therapeutic—ie, the concentration of drug at the surface of

the skin was significantly higher than the concentration of

drug in the plasma compartment. It was assumed that there

was a single rate-limiting barrier to diffusion: the stratum

corneum. The compound vehicle was assumed to be well-

mixed—concentration of compound uniform at any point in

the vehicle—nonevaporating, and not containing any pene-

trants, moisturizers or other agents that alter skin/stratum

corneum properties, moisture content, or clearance.

Figure 2 Overview diagram of BIOiSIM Mechanistic Model.

Note: Some compartments are omitted for clarity.

Abbreviations: CLliver, hepatic clearance; CLrenal, renal clearance.
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The amount of compound that is available for transder-

mal absorption was defined by two variables: the dose

(a concentration of compound in formulation) and the sur-

face area of application. Nicotine and buprenorphine were

administered as a patch and had no information regarding

the thickness of the patch applied or the concentration of

compound within it; given that the main force behind pas-

sive diffusion is the concentration gradient across a barrier,

the patch thickness for both buprenorphine and nicotine was

assumed to be 100 μm and an effective administration

volume was calculated from the surface area of application

and thickness to enable concentration calculation.

There are two compound-barrier specific parameters

that describe the time-dependent kinetics and extent of

transdermal absorption of a compound: the skin barrier

permeability (kperm, cm/h) and compound dermal bioavail-

ability (Fderm). Most changes in transdermal permeation of

compounds can be ascribed to different factors influencing

these parameters. This includes environmental factors (eg

humidity) and formulation (eg moisturizers).33 The rela-

tion can be summarized as:

da
dt

¼ SA � Dose � Fderm � Kperm (3)

where dA/dt represents the rate of mass transport, and SA

is the surface area of formulation application.

Optimization for missing parameters in the system was

done with proprietary ML algorithms (based on Monte

Carlo and derivative optimization) that converged on opti-

mal parameter values consistent across the different routes

and doses for a compound.

Test Dataset
A chemically diverse dataset with distinct pharmacological

indications was chosen to validate the model. Tables 1 and 2

summarize information on some basic physicochemical

properties of the test drugs essential to their PK simulation.

These compounds were selected based on the availability of

PK parameters (protein binding, clearance, dissociation),

their chemical diversity, and the robustness of in vivo

human datasets.

Subjects
The species-specific parameters (eg organ flow, volume,

composition) for the different physiological compartments

in the BIOiSIM model were adapted from reputed litera-

ture sources.14–18

Statistics and Tools
Datasets (including error bars) were manually digitized from

source publications using “WebPlotDigitizer” version 4.2.34

All model development and validation was done in Python;

libraries used included matplotlib (v2.0.2) and Numpy

(v1.14.2). Microsoft Excel (2016) and GraphPad Prism ver-

sion 8.4.1 (GraphPad Software, San Diego, CA, USA) were

utilized for calculations and statistical analysis. Sensitivity

of the model to optimized parameters was evaluated using

convergence plots generated during optimization of the para-

meters. Model validation and analysis of model goodness-

of-fit/accuracy was conducted using three quantitative

metrics: absolute average fold error (AAFE), average fold-

error (AFE), and chi-squared statistic (χ2) and associated p-

value (null hypothesis defined as no difference in predicted

vs experimental measurements). AAFE and AFE were uti-

lized to evaluate the accuracy of the PK outputs AUC, Cmax,

and tmax using the general equations:

AFE ¼ Average fold error ¼ 10
1
n ∑

n

i¼1
log

predictedi
observedi

� �
(4)

Table 1 Physicochemical and Physiological Properties of Compounds

Drug Name Indication Chemical

Class

LogP pKa fu,

plasma

B:P Fderm CLtotal

(L/h/kg)

Buprenorphine Pain management and opioid

dependence

Phenanthrenes

and derivatives

4.9820 7.5 (acid)

12.54

(base)20

0.0448 0.5522 0.1523 1.0024,38,48

Nicotine Smoking cessation aid and

treatment of nicotine-dependence

Pyridines and

derivatives

1.1721 8.86 (base)21 0.9548 0.825 0.78526,27 0.9328,48

Morphine Pain management Morphinans 1.0419 10.26 (acid)

9.12 (base)19
0.6548 1.17529 0.7530 1.3330,48

Abbreviations: fu,plasma, fraction unbound in plasma; B:P, blood to plasma binding ratio; Fderm, transdermal bioavailability; CLtotal, total clearance.

Dovepress Maharao et al

Drug Design, Development and Therapy 2020:14 submit your manuscript | www.dovepress.com

DovePress
2311

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


AAFE ¼ Absolute average fold error ¼ 10
1
n ∑

n

i¼1
log

predictedi
observedi

� ���� ���
(5)

where n is the total number of compounds used in the

analysis, and Predicted_i/Observed_i correspond to pre-

dicted and observed values of PK parameters, respectively.

Chi-squared was calculated using the relationship:

χ2 ¼ 1

n
∑
n

i¼1

predictedi � observedi
observederror;i

� �2

(6)

where observederror is defined as standard error in the

measurements in the individual experimental data time-

points, obtained by digitizing the error bars from the

respective publications. Optimization convergence was

driven and measured by AAFE of AUC, Cmax, and tmax.

In addition to quantitative metrics, visual comparison

of the ascending and terminal portions of the PK curves as

well as tests of significance comparison of the curve plots

against the standard error of the experimental measure-

ments was conducted.

Results
Simulation Accuracy
To characterize the performance of the base model simula-

tion across different compounds, comparison between

experimental data (with standard error as extracted from

the references) and the simulation profiles was conducted

using AAFE, χ2, p-value and visual analysis of the good-

ness-of-fit (summarized in Table 3). Buprenorphine profiles

were predicted accurately across different doses for IV

administration, and translated well between transdermal

and IV routes, with all outputs predicted within 1.5 average

absolute fold error (AAFE, see Table 3). Visualization of

the plots indicates that the BIOiSIM platform captured both

the early-phase and terminal profiles well (Figure 3A) and

within the confidence interval, as defined by the standard

error bars.

For nicotine, the transdermal profiles across the different

doses are of similar accuracy (average AAFE: AUC = 1.15 ±

0.05, Cmax = 1.09 ± 0.06, tmax = 2.25 ± 0.60) indicating that

the mechanistic model captured the appropriate mechanisms

involved in drug disposition (Figure 3B). Prediction of mor-

phine disposition across the two routes of administration was

consistent, and evident after inspection of the log-linear plots

(Figure 3C). The AAFE for AUC0-t post-IV administration

was higher; althoughmethodology of the paper indicated that

the concentration the researchers obtained post administra-

tion was higher, that section of the profile was not clearly

depicted in the publication and therefore excluded during

parameter optimization.

Predicted Morphine Dose
The topical dose of morphine used in this study showed a

maximum predictedCmax plasma concentration of 3.04 μg/L.
Morphine is reported to have a minimum effective concen-

tration of 10 μg/L to treat pain.35 BIOiSIM prediction dic-

tates that a dose of approximately 33mgwould be required to

maintain the analgesic effect of topical morphine. It should

Table 2 Experimental Setup and BIOiSIM-optimized PK Parameter Values (kperm, Kp)

Drug Name Formulation Experimental Setup kperm
(cm/h)

Kp

Buprenorphine

(IV)24
2, 4, 8, 12 and 16 mg, Buprenorphine

hydrochloride

Administered via bolus over 1 min; n=5 subjects 0.00054 7.47

Buprenorphine

(TD)36
Butrans patch (BTDS); 1.68 mg

Patch thickness assumed as 100 μm

Patch applied to arm, upper back and lower back for seven days to

surface area of 12.5 cm2; n=37 subjects

Nicotine

(TD)31
Nicotine (TBS-NCT) patch; 9, 15.8

and 24 mg. Patch thickness assumed as

100 μm

Transdermal patch applied to 10 cm2 area for 24 h, and

subsequently removed. Profile captures pre- and postremoval

trends; n=32 subjects

0.00077 14.99a

Morphine

(IV)30
10 mg (20 mL) morphine

hydrochloride

Administered via infusion over 20 min; n=12 subjects 0.16 3.41

Morphine

(TD)30
Gauze + Solution: Morfin Epidural; 10

mg morphine hydrochloride

Single chamber, covered with polyurethane film over de-

epithelialized lesion; n=12 subjects

Note: aAverage value across all organs.

Abbreviations: PK, pharmacokinetics; kperm, skin barrier permeability; Kp, tissue-to-plasma partition coefficient; IV, intravenous; TD, transdermal; BTDS, Buprenorphine

transdermal system; TBS-NCT, transdermal nicotine patch (developed by TBS Laboratories Inc).
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be noted that this dose suggestion assumes that the volume of

the formulation remains constant; given that passive diffu-

sion is driven entirely by the concentration gradient across

some barrier, it is critical that the driving force have this

scalar increase in magnitude to maintain similar PK.

Sensitivity and Convergence Testing
To evaluate how well the optimization algorithms were

able to converge on a confident set of parameter values,

convergence plots were generated to compare absolute

minimum with regard to cost. For each compound,

a discrete parameter combination was converged upon

during coarse optimization (Figure 4). For morphine,

these values were: [kperm = 0.1, Kp = 4]; for buprenor-

phine: [kperm = 0.001, Kp = 10]; and for nicotine: [kperm
= 0.001, Kp = 20]. For buprenorphine, variance around the

converged parameter kperm = 0.001 cm/h combinations

was highest amongst the compounds (39%), indicating

that population variability in organ composition (lipids,

water) could have a more significant effect on the disposi-

tion of the compound in vivo. For nicotine, variance

around kperm = 0.001 cm/h was 7.3% across different

coefficients. For morphine, at the fixed permeability of

0.1 cm/h the sensitivity to changes in Kp were relatively

low; from the set of Kp tested {0.4, 1, 4, 10, 40} the

variance in the cost was 19%, minimal given the signifi-

cant deviations in partition coefficients tested. This gives

higher confidence in the utility of model predictions, as

small variations in populations are unlikely to have an

impact.

Discussion
In recent years, transdermal drug delivery has been gaining

popularity as a painless and noninvasive route of delivery

with ease of access due to the large surface area of the skin.

Computational modeling has been extensively used for

developing transdermal therapeutics; however, several of

these published approaches have a restrictive scope of

application. Owing to their excessively specific nature,

these models are useful only under limited experimental

conditions and often only to a small set of compounds.

Hence, the aim of this study was to develop a model that

can be globally employed to predict transdermal disposition

of a wide variety of compounds. As a proof of concept, the

Table 3 Comparison of Model-predicted Outputs to Experimentally Derived Outputs

Buprenorphine24,36 Nicotine31 Morphine

Hydrochloride30

Output metric ROA IV IV IV IV IV TD TD TD TD IV TD

Dose (mg) 2 4 8 12 16 1.68 9 15.8 25 10 10

AUC (0-t) (μg*h/L) Observed N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Calculated 31.48 64.35 119.67 185.60 206.29 25.99 112.89 200.89 276.00 146.58 46.80

Predicted 27.35 54.65 109.16 163.63 217.98 25.91 136.39 219.93 320.67 52.91 50.05

AAFE 1.15 1.18 1.10 1.13 1.06 1.00 1.21 1.09 1.16 2.77 1.07

AFE 0.87 0.85 0.91 0.88 1.06 1.00 1.21 1.09 1.16 0.36 1.07

Cmax (μg/L) Observed 21.60 56.30 110.80 164.50 174.80 N/A 5.50 9.40 19.90 137.47 5.14

Calculated 19.65 44.76 85.88 107.76 134.29 0.20 5.40 9.29 13.40 107.40 3.75

Predicted 17.40 34.60 68.56 102.33 135.64 0.20 5.39 8.24 11.88 131.41 3.04

AAFE 1.13 1.29 1.25 1.05 1.01 1.02 1.00 1.13 1.13 1.22 1.23

AFE 0.89 0.77 0.80 0.95 1.01 1.02 1.00 0.89 0.89 1.22 0.81

tmax (μg/L) Observed N/A N/A N/A N/A N/A N/A 9.00 10.50 8.50 N/A 6.52

Calculated 0.17 0.17 0.17 0.18 0.18 48.02 8.04 8.08 8.09 0.33 4.96

Predicted 0.17 0.17 0.17 0.18 0.18 30.84 24.00 18.08 12.29 0.33 6.78

AAFE 1.00 1.00 1.00 1.00 1.00 1.56 2.99 2.24 1.52 1.01 1.37

AFE 1.00 1.00 1.00 1.00 1.00 0.64 2.99 2.24 1.52 1.01 1.37

Chi-squared 3.95 6.75 18.98 34.19 62.72 4.14 10.27 11.50 6.38 1.12 0.27

p-value (χ2) <0.01 <0.01 0.25 >0.50 >0.50 <0.01 0.02 0.03 <0.01 <0.01 <0.01

Notes: “Observed” values for the outputs were extracted directly from values provided in the paper in-table or in-text. “Calculated values” were calculated using the raw

plasma concentration-time profile; the maximum measured timepoint was used for (tmax, Cmax) estimation, and trapezoid rule for AUC estimation. AFE, AAFE, and chi-

squared were calculated using the “calculated” values for outputs using Equations 4–6, respectively.

Abbreviations: ROA, route of administration; IV, intravenous; TD, transdermal; AUC, area under the curve; AAFE, absolute average fold error; AFE, average fold error; N/A, not

available; Cmax, maximum plasma concentration; tmax, time corresponding to Cmax.
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disposition of three physicochemically distinct and popular

transdermal drugs, ie buprenorphine, morphine, and nico-

tine was successfully predicted using a novel ML-integrated

modeling platform, BIOiSIM. Unlike current modeling

approaches, BIOiSIM’s proprietary ML algorithms can

help fill in knowledge gaps by optimizing missing experi-

mental information within the bounds of physiology.

The model successfully predicted the disposition of

buprenorphine post intravenous and transdermal applica-

tion. The transdermal validation data from the published

study was significantly variable (CV=0.403).36 However, in

spite of this experimental variability, the predicted results

match the profile closely and even the tmax AAFE (1.56) is

similar. While the lower doses of the compound were accu-

rately simulated (p-values <0.05), doses greater than 4 mg

had a higher p-value, indicating that the predicted values

were not as similar. Given the goodness-of-fit seen in visual

analysis, it is possible that small differences in the sampling

timepoints (not accounted for in the probability analysis)

can lead to the differential chi-squared calculation at the

individual points being higher than expected. Additionally,

the variability in experimental physiological parameters is

not surprising, given the difference in skin composition/

thickness between different application sites (the study

involved applying patches to the arm, upper/lower back)

and the variability in clearance between different patients;

interestingly, however, the simulation results using the same

parameters closely matched even though the data for bupre-

norphine comes from two distinct studies (and effectively

two distinct healthy patient populations), indicating that

there may be a normal distribution for parameters across

these patient populations.37–40

Similarly to buprenorphine, the PK of nicotine was

well-predicted by the BIOiSIM model. However, the

ascending phase of the curve was captured better for

high doses, indicating that there may be some change in

accuracy as a result of the lower limit of detection (the

higher error at higher doses is indicative of this as well).

The terminal phase was modeled with the assumption that

at t=24 h (upon the removal of the patch), the topical dose

disappears instantaneously; it is possible that there is a

temporary reservoir remaining after patch removal in the

in vivo studies simply because of compound partitioning

into the skin local to the site of administration. The term-

inal phase simulation differs slightly from the experimen-

tal data, indicating that either the average experimental

clearance value used for prediction or the population

used in the study deviated from a normally distributed

subset. Overall, translation between different doses

(9, 15.8, and 24 mg) and accurate fit of the

profiles (AAFE <1.3 for AUC, Cmax; AAFE <3 for tmax;

Figure 3 Dose and route-of-administration dependent prediction of compound

plasma concentration for (A) Buprenorphine, transdermal administration (top left)

and IV administration (different doses). (B) Nicotine transdermal administration for

three doses; (C) Morphine, IV administration (left) transdermal administration

(right). Red lines correspond to BIOiSIM simulation outputs. Error bars and indivi-

dual data points were digitized from the original publications (citations in output

Table 3), and correspond to standard error/standard deviation, as presented in the

original work.

Abbreviation: IV, intravenous.
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p-values <0.05 for all doses) is evidence of the model’s

predictive capabilities.

Morphine was chosen to demonstrate the utility of

extrapolating the PK disposition to predict effectiveness

of observed pharmacodynamic effects. We selected mor-

phine because it has proven to be an effective analgesic

agent and researchers are increasingly studying its topical

applications to treat inflammation and pain in palliative

care settings.41,42 Morphine administration was modeled

accurately by the base model across both the IV and

transdermal route of administration, as measured by

AAFE <3.0 for AUC0-t and AAFE <1.5 for Cmax, tmax

across both experimental profiles. The higher optimized

permeability value (0.16 cm/h) is expected given that the

skin at the application site was de-epithelialized prior to

compound administration.

This is evidenced additionally by a visual interrogation

of the plasma concentration-time profile, where the pre-

dicted datapoints fall within the confidence interval for the

experimental measurements, especially in the terminal

phase. The p-value based on the reduced chi-squared metric

is <0.01 for both doses, indicating that there significant

similarity between the predicted and observed profiles.

The premise that topical opioids can prove effective in

treating pain is based on data that indicates the presence of a

similar population of opioid receptors on peripheral nerve

terminals, as its central nervous system counterpart.35 For

successful pain management, it is essential to strike a bal-

ance between achieving pain relief without experiencing

excessive undesirable effects. Higher systemic exposure to

opiates like morphine is associated with adverse effects

such as nausea, constipation, respiratory depression, cogni-

tive impairment, etc.43 Transdermally dosed morphine was

successful in managing chronic pain in patients suffering

from arthritis pain. In this study, the authors detected the

presence of morphine (31–191 ng/mL) in the urine of three

arthritis patients over time, suggesting possible contribution

of systemically absorbed morphine to the observed analge-

sic effect.44 More recently, Ciałkowska-Rysz et al found

self-administered topical morphine to be a highly effective

and safe medication for treating mucosal and skin lesions in

palliative cancer patients, providing sustained pain relief for

over 28 days.41 The studies discussed above also suggest

that the transdermal route is associated with a higher patient

compliance as it offers evasive dosing, the possibility of

self-administration, and flexibility in adjusting dosing regi-

men to experience rapid and long-lasting pain relief, hence

the interest in accurate modeling and simulation.

Interestingly, while the type of formulation for adminis-

tration varied between the different compounds—buprenor-

phine and nicotine were applied via patches, while morphine

was applied as a solution to de-epithelialized skin—the pre-

diction accuracy was still high (AAFE=1.38 across outputs)

for all of the compounds, indicating that the assumption of

Figure 4 Convergence onto discrete parameter combinations during coarse optimization for (A) buprenorphine, (B) nicotine and (C) morphine. Relative cost on the y-axis

is calculated as: Costrelative = AAFECmax*AAFEtmax*AAFEAUC, normalized to the lowest Cost calculation for a parameter combination.

Abbreviations: kperm, skin barrier permeability; Kp, tissue-to-plasma partition coefficient; AAFECmax, AAFEtmax; AAFEAUC, absolute average fold error; Cmax, maximum

plasma concentration; tmax, time corresponding to Cmax; AUC, area under the curve predictions.
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a single rate-limiting barrier holds valid across different

experimental setups. The validated model can be utilized to

optimize therapeutic regimens by incorporating subject-spe-

cific parameters (eg polymorphic metabolism, disease con-

ditions, gender, age, etc) that capture population variability

and can cater to personalized medical needs. With this vali-

dation, predictions from BIOiSIM can be further correlated

to the biomarker levels observed in healthy and diseased

patients to obtain valuable pharmacodynamic insights.

Following the morphine example above, the biopathway of

pain and nociceptor response can be characterized by the

presence of several endogenous biomarkers such as cystatin

C, substance P, nociception, tau proteins and others.45–47

A study by Albo et al found that there is a marked elevation

in the tryptase and substance P levels in patients with chronic

pain.46 The levels of such endogenous mediators can be

linked to the expected drug concentrations in plasma or

active site to gain a deeper understanding of the interaction

of drug with the active site components and their downstream

pharmacological effects—integration of these biomarkers

with VSL’s BIOiSIM platform can extend the prediction of

safety and efficacy to drug therapies in healthy and diseased

populations.

Conclusion
Apowerful outcome that BIOiSIM enables from this approach

is the generation of datasets that can be utilized for ML

training and prediction. Work from Lombardo et al, has

focused on accumulating datasets from existing literature to

aid these types of efforts, and the parameters optimized utiliz-

ing the framework applied in this work augments the existing

efforts.48 BIOiSIM presents researchers with the opportunity

to extend this type of approach to internal datasets and to

continually re-analyze databases to extract parameters that

were not explicitly measured or calculated previously. This is

evidenced by the extraction of partition coefficient values and,

more specifically, kperm from datasets where these parameters

were not of explicit interest to researchers at the time. The

accumulated dataset can afterwards be used for trainingQSAR

models to predict the likelihood of specific characteristics of

xenobiotics (eg solubility, ionization state, molecule size) con-

tributing to successful transdermal drug delivery. Vehicle char-

acteristics (eg lotions, patches) can be evaluated as well, and

cross-validation between different therapeutics and formula-

tions will enable researchers to make prediction of transder-

mally administered compound success either at an earlier stage

in drug development or for drug repurposing without the need

for testing in preclinical in vivo subjects.
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