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Abstract: Cancer is the leading cause of death, placing a substantial global health burden.

The development of the most effective treatment regimen is the unmet clinical need for

cancer. Inflammation plays a role in tumorigenesis and progression, and anti-inflammation

may be a promising option for cancer management and prevention. Emerging studies have

shown that non-steroidal anti-inflammatory drugs (NSAIDs) display anticarcinogenic and

chemopreventive properties through the regulation of autophagy in certain types of cancer. In

this review, we summarize the pharmacological functions and side effects of NSAIDs as

chemotherapeutic agents, and focus on its mode of action on autophagy regulation, which

increases our knowledge of NSAIDs and cancer-related inflammation, and contributes to

a putative addition of NSAIDs in the chemoprevention and treatment of cancer.
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Introduction
Approximately 1.81 million new cancer diagnoses and 606,520 cancer-related

deaths are projected to occur in the United States in 2020.1 Cancer research has

focused on the identification of less toxic and more efficient therapeutic approaches

to improve the overall prognosis of patients with cancer. Studies have shown that

multiple modes of cell death and cell inhibition, other than apoptosis, contributing

to chemotherapeutic efficacy.2 Autophagy is an evolutionarily conserved proteolytic

process that involves lysosomal degradation and recycling of damaged cellular

components and energy to maintain homeostasis.3,4 Autophagy is a survival

mechanism of self-rescuing that favors the degradation of harmful and unwanted

substances under stress conditions.5,6 Of note, autophagy is crucial for cell meta-

bolism mechanism eliminating damaged organelles, proteins, lips and like that to

maintain homeostasis and energy savings.7 By contrast, autophagic dysfunction

contributes to various disorders including cancers, immune diseases, metabolic

diseases, and neurological diseases.8–10 This review focuses on the recent progress

of cancer in the regulation of autophagy.

Non-steroidal anti-inflammatory drugs (NSAIDs) exert antipyretic, analgesic,

and anti-inflammatory effects.11 Although the chemical structures of these drugs

differ, the therapeutic effects of NSAIDs are fundamentally similar due to

decreased production of prostaglandins (PGs) through the inhibition of cyclooxy-

genases (COXs).12 Many experimental, epidemiological, and clinical studies have

suggested that NSAIDs, particularly selective COX-2 inhibitors, may reduce cancer
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risk.13–15 It has been well established a mode of action that

NSAIDs exert anticancer effects through induction of

apoptosis, DNA damage repair, immune surveillance, and

inhibition of tumor proliferation and invasion via COX-

dependent or/and -independent pathways.16–20 NSAIDs

regulate autophagy via Beclin1-dependent and Beclin1-

independent pathways, which may result in anti-cancer

effects.12,21 However, NSAIDs for cancer chemopreven-

tion is on debate because the safety, efficacy, and doses of

NSAIDs limit the clinical use in terms of cancer patients.

Furthermore, the exact effects of NSAIDs on the regula-

tion of autophagy are divergent according to the works of

literature in different types and stages of cancer. Herein,

we reviewed the pharmacological functions, side effects,

and effects and mechanisms of NSAIDs including cele-

coxib, aspirin, sulindac sulfide, and meloxicam on autop-

hagy regulation in cancer. This review may provide clues

for the potential use and clinical trials of NSAIDs in the

setting of clinical cancer treatment.

Pharmacological Activity of NSAIDs
Two forms of COX are present in tissues: constitutive COX-1

and inducible COX-2. The biological effects of COXs vary

with tissue specificity, synthases, and the expression and reg-

ulation patterns. Both forms of COX are rate-limiting enzymes

for the conversion of arachidonic acids and unsaturated fatty

acids to PGs. COX enzymes convert arachidonic acid to

PGH2, and generation of PGD2, PGE2, PGF2α, PGI2 or

thromboxanes (TXA2).22,23 PGs produced by COX-1 regulate

physiological processes such as hemostasis, stomach and kid-

ney blood flow, and gastric acid secretion. COX-1 acts as

a housekeeping gene and constitutively expressed in normal

cells and tissues of platelet, blood vessel, mesothelial cells,

stomach, and kidney. However, the COX-2 gene is not

expressed in normal tissues (although expressed in the kid-

ney). COX-2 expression is induced in inflammatory tissues by

cytokines, lipopolysaccharides, and TNF-α. In tumors, COX-2

expression increased by up to 80%.24–26 PGs produced by

COX-2 have important roles in inflammation, cell prolifera-

tion, angiogenesis, invasiveness, extracellular matrix adhe-

sion, immune escape, and apoptosis inhibition in cancer.27,28

NSAIDs can be divided into two categories: non-selective

COX inhibitors which inhibit COX-1/2, and selective COX-

2 inhibitors. Non-selective COX inhibitors include aspirin,

sulindac sulfide, acetaminophen, indomethacin, diclofenac

acid, ibuprofen, naproxen, flurbiprofen, loxoprofen, hydroxy-

butanone, and piroxicam. Selective COX-2 inhibitors include

celecoxib, meloxicam, rofecoxib, nimesulide, etc.29,30

Side Effects of NSAIDs
NSAIDs are also associated with a range of side effects that

vary according to their COX inhibition selectivity.31–33 The

side effects can be attributed to the systemic synthesis of

PGs and local production of carboxylic acid. The major side

effects in different systems are reviewed as follows. (1) In

the gastrointestinal system, it was reported that serious

gastrointestinal toxicity including upper gastrointestinal

ulcers, gross bleeding, or perforation appeared to occur in

patients for both long-term and short-term, with or without

warning symptoms in the duration of NSAIDs administra-

tion. Minor upper gastrointestinal adverse effects such as

dyspepsia, are common and occur at any time during

NSAID therapy. Mechanically, the use of NSAID results

in a reduction in the level of PGs that protects the membrane

of the stomach from its acidic environment, making it

susceptible to lesions. (2) Glomerular filtration rate and

renal hemodynamics depend on COX-1, whereas salt and

water excretion is mainly under the control of COX-2.

NSAIDs treatment-related side effects of kidney damage

through promotion of sodium and water retention, hypoxia,

and ischemia via inhibition of PG production. Renal PGs

have predominantly vasodilator effects on the kidneys.

NSAIDs, especially indomethacin, have potential uses in

various types of glomerulonephritis and nephrotic syn-

drome. The increased risk of analgesic nephropathy of

chronic nephritis and renal papillary necrosis may be

observed in the long term use of NSAIDs. (3)

Hypertension, thrombosis, and increased risk of stroke,

myocardial infarction, and heart failure are the main side

effect of the cardiovascular system in the long term use of

NSAIDs. COX-2 selective inhibitors have been shown to

disrupt homeostasis between TXA2, which is produced by

COX-1 and promotes platelet release and aggregation, and

PGI2, which is produced by COX-2 and inhibits platelet

release and aggregation from the endothelium. A large

number of clinical trials and studies have aimed to deter-

mine safe doses of NSAIDs and evaluate their clinical

potential.34 To minimize the potential risk for an adverse

event, the lowest effective dose should be found in clinical

practice and high-risk patients should be considered to

receive alternate therapies that do not involve NSAIDs.

Decreased Cancer Risk and NSAIDs
Numerous experimental, epidemiological, and clinical stu-

dies have shown that NSAIDs decrease the risk of certain

types of cancer.
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Aspirin
Primary guidelines of NSAIDs for prevention of cardiovascular

diseases in patients with colorectal cancer were established in

the United States and worldwide, based on the high-level evi-

dence of aspirin acting a beneficial role in cancer prevention.35

The results of six randomized trials and 26 case-controlled

studies showed that aspirin was associated with reduced risk

of colorectal cancer over a 20-year period.36 Recent epidemio-

logical studies have shown that low-dose aspirin is more effec-

tive than high-dose aspirin at reducing morbidity and mortality

associated with colorectal cancer.37 In 2011, a clinical trial by

Rothwell et al (25,570 patients) showed significant correlations

between long-termaspirin use and a lower risk of death resulting

from gastrointestinal and solid tumors.38 Furthermore, other

studies have demonstrated the beneficial effects of 5 or more

years of regular aspirin use against colorectal, esophageal, pan-

creatic, stomach, cholangiocarcinoma, prostate, breast, pancrea-

tic, and ovarian cancers.39–41

Non-Aspirin NSAIDs
Several non-aspirin NSAIDs, including celecoxib, sulindac

sulfide, piroxicam, loxoprofen, and ibuprofen, have been

shown to have anticancer effects. A randomized trial of

patients with familial adenomatous polyposis (FAP) showed

that sulindac sulfide and celecoxib inhibited the growth of

adenomatous polyps and eliminated polyps in some cases.42

Celecoxib was approved by the US Food and Drug

Administration in 1995 for prevention of colorectal adenomas

and adenocarcinomas in patients with FAP.43 Besides, cele-

coxib can be used to prevent and treat breast, lung, prostate,

stomach, head, and neck cancers.44 Similarly, loxoprofen was

shown to inhibit the growth of implanted Lewis lung carci-

noma in vivo.11 Furthermore, a study showed that ibuprofen

treatment resulted in 40–82% inhibition of tumor growth and

reduced liver metastases of colorectal cancer in vitro and

in vivo. 45 Thereafter, the relationship between chronic inflam-

mation and cancer has long been discovered in the retrospec-

tive studies of the use of NSAIDs in cancer treatment and

prevention. The mechanisms of action by which NSAIDs

exhibits its unique anticancer activity include inducing apop-

tosis and inhibiting proliferation and invasion of tumors by

COX-dependent and COX-independent inhibition pathway

are shown in Figure 1.

NSAID-Mediated Regulation of
Autophagy
Many studies have shown that regulation of autophagy is

an important mechanism associated with antitumor

Figure 1 Nonsteroidal anti-inflammatory drug-induced anticancer effects via COX-dependent and COX-independent pathways.

Notes: Up arrow: promotion; down arrow: inhibition.
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treatments.46,47 Therefore, we reviewed NSAID-mediated

regulation of autophagy in cancer. Autophagy comprises

the following four stages.48

1. Autophagy initiation. Extracellular or intracellular

stress factors (hunger, insulin, growth factors,

hypoxia, and endoplasmic reticulum stress) activate

the PKA and PI3K/AKT signaling pathways; this

results in inactivation of the AMPK signaling path-

way and inhibition of mTOR, which can cause the

release of ULK complexes (ULK1, ULK2, FIP200,

ATG101, and ATG13) and activation of autophagy.

2. Vesicular nucleation. Phosphorylation of ULK com-

plexes results in the activation of Vps34/Beclin-1

complexes. Class III PI3K forms a complex with

Beclin-1 and other proteins (AMBRA1, ATG14,

UVRAG) to form the phagophore. Binding of

AMBRA1 to Beclin-1 stabilizes the class III PI3K

complex, and binding of ATG14 and UVRAG to

Beclin-1 enhances binding of Beclin-1 to VPS34,

resulting in the formation of a double phagophore.

3. Vesicle elongation and completion. The phagophore

complex drives nucleation and elongation to form

annular vesicles; during this process, LC3-I is con-

tinuously converted to LC3-II under two types of

ubiquitin-like conjugation system (Atg8/LC3-PE

and Atg12-Atg5).

4. Autolysosome formation and degradation. In the pre-

sence of STX17, autophagosomes promote transport

of degradable substances to lysosomes, resulting in

the formation of autolysosomes. Autolysosomes play

an important part in the degradation and circulation of

damaging substances and energy. In vitro and in vivo

studies have suggested that NSAIDs modulate autop-

hagy in cancer via the classical Beclin-1-dependent

pathway and a non-classical independent pathway.

Specific mechanisms are shown in Figure 2.

Classical Beclin-1-Dependent Signaling

Pathway
BECN1, a homolog of yeast ATG6, is a candidate tumor

suppressor gene and encodes the Beclin-1 protein, which is

a well-established regulator of the autophagic pathway.

Deletion mutations of the Beclin-1 gene occur in ovarian

(75%), breast (50%), and prostate (40%) cancers.49 Beclin-1

is a component of the class III PI3K complex that promotes

autophagy through regulation of autophagosome nucleation.

Beclin-1 is regulated by the Bcl-2 anti-apoptotic family of

proteins, and Beclin-1 binds to the BH3 domain of Bcl-2/Bcl-

xL.50 Signaling of NSAIDs through the classical Beclin-1

dependent pathway interferes with the expression of Beclin-

1 (in the case of nimesulide) and the Bcl-2 family of proteins

(celecoxib and aspirin), dissociation of Beclin-1 from the

Vps34/class III PI3K complex, conversion of LC3-I to LC3-

II, and induction of autophagy.51,52

Non-Classical Beclin-1-Independent

Signaling Pathway
The non-classical Beclin-1 independent pathway is composed

primarily of the mTOR signaling pathway, which has a pivotal

role in the induction of autophagy.53 NSAID targets upstream

of the mTOR signaling pathway include PI3K/AKT, AMPK,

and MAP kinases. The PI3K/AKT pathway negatively regu-

lates mTOR signaling in the presence of various growth

factors. NSAIDs (celecoxib, aspirin, ibuprofen, sulindac sul-

fide, and meloxicam) induce autophagy through the PI3K/

AKT/mTOR signaling pathway, resulting in anticancer

effects.54–56 AMPK is a key cellular metabolic sensor of

AMP/ATP homeostasis and negatively regulates autophagy

via the mTOR signaling pathway.57 Nutrient deficiency, low

levels of endoplasmic reticulum stress, and reactive oxygen

species (ROS) induce protective autophagy to promote cell

survival and stability. Many studies have shown that NSAIDs

(sodium salicylate and meloxicam) inhibit ER stress and ROS

production, and disrupt the balance between cell death and cell

survival via autophagy regulation in cancer. By contrast, some

NSAIDs (celecoxib and OSU-03012) have been shown to

induce ER stress and ROS production, resulting in autophagic

tumor cell death.58 MAP kinases inhibit autophagy via the

mTOR signaling pathway. Studies have shown that celecoxib

activates JNK-mediated autophagic death, and aspirin pro-

motes conversion from protective autophagy to autophagic

death through p38.59,60 In addition, NSAIDs directly target

the LC3-II, p62, p53, Atg5, Atg12, and HGF genes. p53, the

most commonly mutated tumor suppressor gene in human

cancers, positively regulates autophagy in DNA-damaged

cells.61 Celecoxib directly upregulates p53-dependent

DRAM to induce autophagy.62 Furthermore, NSAIDs have

been shown to inhibit Bcl-2 and mTOR kinase through inhibi-

tion of the HGF/MET autocrine loop, which results in the

induction of autophagy and decreased drug resistance.63

Nimesulide has been shown to directly upregulate LC3-II,

Beclin-1, p62, Atg5-12, and p53, and induces autophagy to
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promote anticancer effects.64 Autophagy is a dynamic process

in which autophagosomes are continuously formed and

degraded, and studies have shown that NSAIDs (celecoxib

and indomethacin) regulate autophagy by modulating autop-

hagic flux in cancer.65,66

Regulation of Autophagy by NSAIDs
in Cancer Therapy
Many studies have shown that induction of autophagy inhi-

bits the development of tumors from premalignant lesions,

and the initiation and inhibition of autophagy may be pro-

mising strategies to treat advanced cancers. In cancer cells,

autophagy is a dynamic process that is regulated by the

intracellular microenvironment in different tumor stage and

tumor tape.67 Interestingly, NSAIDs induce anticancer

effects and increase chemotherapy/radiotherapy sensitivity

by inducing tumor-suppressive autophagy, and also regulate

cytoprotective autophagy in combination with chemothera-

peutic drugs to enable more efficacious treatment of apop-

tosis-resistant or drug-resistant tumors.

Celecoxib and Its Derivatives
Celecoxib selectively inhibits COX-2. In vivo and in vitro

studies have shown that celecoxib has significant potential

as an anticancer drug. Many studies have focused on the

role of autophagy in celecoxib-induced apoptosis. These

studies have evaluated whether celecoxib induces protec-

tive or deleterious effects based on cancer type, which has

provided insights into its use as an anticancer agent.4,44,68

Celecoxib further enhances apoptosis induced by Bcl-2/

Bcl-XL antagonists (ABT-737 and sabutoclax) via inducing

autophagy in colon cancer and oral squamous cells.69,70

Figure 2 Nonsteroidal anti-inflammatory drugs induce cytoprotection and suppress autophagy via Beclin-1-dependent and Beclin-1-independent pathways.

Notes: Black arrow: promotion; red arrow: suppression.
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Celecoxib induces apoptosis and autophagy through the

inhibition of the PI3K/Akt/mTOR signaling pathway, result-

ing in the inhibition of proliferation of tumor cells, including

multidrug-resistant hepatoma cells.71,72 In addition, combi-

nation treatment with celecoxib and CPT-11 inhibited tumor

growth in neuroblastoma through induction of autophagy.73

Moon reported that celecoxib induced autophagic death of

p53 wild-type glioma cells through direct upregulation of

p53, inhibition of DNA synthesis, and arrest of the cell

cycle at the G1 phase.74 The ER stress response system has

two distinct roles in NSAID-mediated autophagy. Under

moderate stress, NSAID-induced autophagy is self-

protective, such as in radio-resistant or drug-resistant tumor

cells. Under strong cellular ER stress, NSAID-induced

autophagy results in induction of apoptosis.75–78 Dimethyl

celecoxib, a derivative of celecoxib, effectively inhibits

colon cancer, triple-negative breast cancer, and glioma cell

growth through induction of ER stress and in combination

with chloroquine, bortezomib, and radiotherapy to play

synergic effects on the induction of tumor cell

autophagy.79,80 Celecoxib targets the pro-oxidative state of

highly metastatic cancer cells and cancer stem cells and

drives excess ROS production in these cells, resulting in

cell death.81 OSU-03012 inhibits the proliferation of liver

cancer through ROS-induced tumor-suppressive

autophagy.59 Recently, studies have shown that celecoxib,

2,5-dimethyl-celecoxib, and OSU-03012 increase the sensi-

tivity of multidrug-resistant cancer cells, including CD-44-

overexpressing cancer cells, to Hsp90 inhibitors through

activation of autophagy.82

By contrast, celecoxib in combination with chemother-

apeutic drugs may be a more effective approach for cancer

treatment through inhibition of autophagy. For example,

inhibition of autophagy (3-MA or bafilomycin A1)

increased celecoxib-induced apoptosis in human urothelial

carcinoma cells. In addition, induction of autophagy (by

rapamycin or GFP-LC3 transfection) alleviated celecoxib-

induced cytotoxicity.83 Zhou et al reported that inhibition

of autophagy enhanced celecoxib-induced apoptosis in

osteosarcoma.85 Moreover, celecoxib inhibited autophagy

through modulation of lysosomal function, which resulted

in anticancer effects in HL-60 cells and increased the

sensitivity of imatinib-resistant chronic granulocytes.66

Aspirin
Aspirin has been widely used as a clinical treatment. Regular

use of aspirin can reduce the risk of cancer incidence, recur-

rence, metastasis, and mortality.17,85,86 Recent prospective

studies showed that aspirin reduced the incidence of cancer

through suppressive or cytoprotective autophagy and acted

synergistically with chemotherapeutic agents. A number of

studies have shown that aspirin downregulates Bcl-2, result-

ing in the autophagic death of human hepatoma, colon, and

breast cancer cells. Huang et al reported that aspirin induced

Beclin-1-dependent autophagy in human hepatocellular car-

cinoma cells.52 In addition, aspirin suppressed growth

through induction of apoptosis and autophagy in PIK3CA-

mutant colorectal cancer cells, a mouse liver cancer and

sarcoma model, colorectal cancer, pancreatic cancer cells,

and PI3K-mutant breast cancer.55,71,87 A recent study

reported that 5-FU and anti-EGFR antibodies in combination

with aspirin increased autophagy in a three-dimensional

sphere culture system comprising HCT116 and HT29 color-

ectal cancer cells through increased autophagy.88 Autophagy

has dual roles in cancer. Many studies have shown that

autophagy can induce the development of tumors from pre-

malignant lesions. By contrast, promotion or inhibition of

autophagy may be an appropriate cancer treatment strategy

during late-stage disease.89–91 For example, the long-term

use of aspirin in combinationwith ABT-737 can induce lethal

autophagy in lung cancer through the p38/MAPK signaling

pathway. Furthermore, aspirin has been shown to induce

protective autophagy in the early stages of non-small-cell

lung cancer and autophagic death in the late stages of this

disease.60 However, another study showed that aspirin inhib-

ited autophagy and enhanced metformin-induced apoptosis

of TPC-1 thyroid cancer cells.92

Sulindac Sulfide
Sulindac sulfide is clinically used for the treatment of rheu-

matoid arthritis, osteoarthritis, and ankylosing spondylitis. It

is also used to treat gout and certain types of bursitis and

tendonitis. A previous study showed that sulindac sulfide

suppressed the growth of colorectal carcinoma HCA-7 and

HCT-116 cells and xenografts.93 Regulation of autophagy by

sulindac sulfide may be a promising novel cancer therapeu-

tic strategy. Sulindac sulfide has been shown to inhibit the

growth of lung adenocarcinoma cells through the induction

of autophagy via the Akt/mTOR signaling pathway.94

Furthermore, sulindac sulfide increased the sensitivity of

multidrug-resistant cancer cells to Hsp90 inhibitors through

the induction of autophagy.75 Sodium salicylate inhibited the

growth of A549 cells through the transformation from tumor

necrosis to tumor-suppressive autophagy.95 Moreover,

Bauvy et al reported that inhibition of autophagy increased

sulindac sulfide-induced apoptosis in HT-29 cells.96,97
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Meloxicam
Meloxicam has been shown to have anticancer effects against

various malignancies.98 A previous study in hepatoma cells

showed that meloxicam prevented apoptosis through induc-

tion of cytoprotective autophagy, and the autophagy inhibitor

3-MA promoted meloxicam-induced toxicity.99 Similarly,

Zhong et al reported that meloxicam induced apoptosis and

cytoprotective autophagy under conditions of low ER stress,

and inhibition of autophagy increased the toxicity of melox-

icam against hepatoma cells.100

Other NSAIDs
Other NSAIDs have been shown to regulate autophagy in

cancer cells. For example, ibuprofen increased the sensitivity

of multidrug-resistant cancer cells to Hsp90 inhibitors

through the induction of autophagy.95 Nimesulide induced

apoptosis and autophagy, resulting in aggravation of MPTP-

induced neuroblastoma cell death.65 Piroxicam increased the

cytotoxicity of carboplatin in human bladder cancer cells

through the induction of autophagy.101 Consistent with these

findings, indomethacin blocked autophagic flux through inhi-

bition of lysosomal function, resulting in increased sensitivity

of gastric cancer cells to indomethacin.67 These results

demonstrate that the regulation of autophagy by NSAIDs

plays an important part in anticancer therapy. Thus, the use

of NSAIDs in combination with chemotherapeutic drugs may

be a promising strategy for cancer treatment.

Conclusion and Future Perspectives
Anti-inflammation is believed to play a role in cancer man-

agement and chemoprevention. In the past few decades,

research has shown that NSAIDs decrease the risk of certain

types of cancer. The key mechanism of the protective action

of NSAIDs is the inhibition of COX, which catalyzes the

synthesis of PGs in inflammatory processes. In addition,

NSAIDs exert anticancer properties and inhibition of tumor

proliferation and invasion by inducing apoptosis, DNA

damage repair, and immune surveillance in a COX-

independent manner.20 However, epidemiological evidence

of the association between NSAIDs uptake and the risk of

cancer remains inconsistent and controversial. Based on the

data that patients with non-aspirin NSAIDs uptake (HR =

0.81, 95% CI: 0.70–0.94), but not aspirin (HR = 0.77, 95%

CI: 0.58–1.02), showed a statistically reduced the risk in

hepatocellular carcinoma.102 Of note, the mechanism of

NSAIDs in cancer prevention and treatment is still not

clear, NSAIDs induce autophagy is a newly identified

mechanism to explain the complicated effect of NSAIDs in

cancer cells respond to stress induced by chemoradiotherapy.

From the update results, a clear portrait emerges that diver-

gent effect of autophagy induced by NSAIDs depends on

tumor type, stage of tumorigenesis, tumor microenviron-

ment, as well as genetic and epigenetic factors. Our labora-

tory data showed 2.5-dimethyl-celecoxib increases

radiosensitivity in nasopharyngeal carcinoma by inhibiting

autophagic flux (data not shown). Nowadays, persuasive

evidence was reported to determine the fate of tumor cells

treatedwith NSAIDs bymolecular biology assays such as the

interfering of autophagy inducer or inhibitor, autophagy-

related gene over-expression and down-expression by plas-

mid, autophagy flux detection, and transgenic animal model

in vivo. The relation between autophagy regulation and

NSAIDs in cancer needs to more comprehensive laboratory

investigation, and importantly a cluster of prospective, ran-

domized controlled trials to determine the efficacy and safety

of NSAIDs in common types of malignancy would be estab-

lished to provide high-level evidence for clinical decision to

support the combination treatment of NSAIDs and chemor-

adiotherapy or NSAIDs alone, which may be presenting

a promising approach in the treatment of chemo- and radio-

resistance tumors.
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