
R E V I EW

Research Progress and Existing Problems for

Abscopal Effect
This article was published in the following Dove Press journal:

Cancer Management and Research

Di Wang1,*

Xia Zhang2,*

Yajie Gao1

Xiaonan Cui1

Yanqin Yang3

Weifeng Mao4

Minghuan Li5

Bin Zhang1,5

Jinming Yu5

1Department of Oncology, The First

Affiliated Hospital of Dalian Medical

University, Dalian, People’s Republic of
China; 2Department of Oncology, The Fifth

People’s Hospital of Dalian, Dalian, People’s
Republic of China; 3Department of

Radiation Oncology, The Second Affiliated

Hospital of Dalian Medical University,

Dalian, People’s Republic of China; 4The
School of Basic Medical Sciences, Dalian

Medical University, Dalian, People’s
Republic of China; 5Department of

Radiation Oncology, Shandong Cancer

Hospital and Institute, Shandong First

Medical University and Shandong Academy

of Medical Sciences, Jinan, People’s Republic
of China

*These authors contributed equally to this

work

Abstract: Radiation therapy plays a vital role in the treatment of tumours. In particular, the

occurrence of the “abscopal effect” brings about a favourable turn for the treatment of

patients with advanced metastatic malignant tumours. Because of the abscopal effect, non-

irradiated areas are also treated. However, the abscopal effect occurs by chance, not through

seeking. Although the abscopal effect has been studied enthusiastically, the desired result

does not appear to be achieved. Moreover, its combination with immunotherapy appears to

be overwhelming. There is an opinion that abscopal effect is difficult to achieve by irradia-

tion of a single tumour, and irradiation of multiple or total lesions is advocated to increase

the possibility of obtaining clinically meaningful outcomes. Obviously, there are still ques-

tions about the mechanism, condition and possibility underlying the occurrence of the

abscopal effect. Can the abscopal effect truly change the future treatment strategy as the

researchers expect? What are the current problems? This article reviewed the research in

recent years to explore the progress and controversy surrounding the abscopal effect of

radiation therapy.

Keywords: radiation therapy, abscopal effect, immunotherapy, immunomodulation, tumour

microenvironment

Following palliative pain relief or systemic treatment, patients with advanced malig-

nant tumours often receive radiation therapy for the purpose of local control of lesions

in a single organ or site. However, radiation therapy is often powerless to treat lesions

outside the irradiation field. The existence of the “abscopal effect” brings a glimmer of

hope. The concept of the abscopal effect originated in 1953. Mole et al found that the

irradiation of local tissues induced biological responses in the same or different types of

tissues far away from the radiation site and therefore proposed this concept. However,

the abscopal effect still “comes by chance, not through seeking”. A melanoma case

report by the Memorial Sloan Kettering Cancer Centre in 2012 implied the possibility

of immune checkpoint inhibitors to induce the abscopal effect.1 The patient underwent

palliative radiation therapy for metastatic thoracic lesions after treatment with immune

checkpoint inhibitors. Interestingly, other metastatic lesions also shrank. Doctors

examined the changes of immune biomarkers in the peripheral blood to verify the

relationship between the abscopal effect and immunity. Similar to throwing a stone into

water, this case aroused great enthusiasm for the subsequent study of such phenomena.

However, subsequent studies found that the abscopal effect failed to achieve the desired

results. Questions remain about the mechanism, condition, and possibility underlying

the occurrence of the abscopal effect. This article intends to provide an overview of

these questions.
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The Potential Mechanisms
Underlying the Occurrence of the
Abscopal Effect
Radiation-Induced Immune Phenomenon
As early as 2004, a study pointed out that the abscopal

effect might be mediated by immunity.2 Moreover, cellular

immunity might play a more important role than humoural

immunity.3 After many animal experiments, some

researchers hypothesized that radiation therapy introduces

ionizing radiation, resulting in the production of inflam-

matory signals. Cellular stress or damage causes the dying

tumour cells to release adenosine triphosphate (ATP),

tumour antigens, and danger signals such as high mobility

group box 1 (HMGB1) and calreticulin. Radiation also

increases the secretion of transforming growth factor beta

(TGF-β) and the inhibition of CD4+ regulatory T cells

(Tregs).4 In the context of radiation, the number and

diversity of these tumour-associated antigens are signifi-

cantly increased. The antigens are recognized by Toll-like

receptors (TLRs), which activate all components of the

immune system5 and stimulate the antigen-presenting

cells (APCs) to produce tumour-associated antigens.6,7

Activated APCs enter the tumour-draining lymph nodes,

where they activate naive CD8+ T lymphocytes to antag-

onize the tumour cells presenting these specific antigens.8,9

These newly activated lymphocytes are distributed to the

entire body via the circulatory system. They can also

extravasate at the unirradiated tumour site, resulting in

tumour shrinkage in non-irradiated regions. This phenom-

enon is known as the abscopal effect.

Cytokine Interactions in the Tumour

Microenvironment
The changes in the tumour microenvironment are also the key

to the occurrence of the abscopal effect after radiation

therapy.10,11 After radiation therapy, the levels of interferon-

gamma (IFN-γ), C-X-C motif chemokine ligand 9 (CXCL9),

C-X-C motif chemokine ligand 10 (CXCL10), and

C-X-C motif chemokine ligand 16 (CXCL16) are

increased.12 These radiation-induced key chemokines increase

T cell motility and vascular permeability, thereby attracting

effector T cells to the tumours.13,14 The factors produced by

radiation therapy are very important for tumour treatment. For

example, an exogenous increase of type I IFN is sufficient to

mimic the tumour-regression effect of radiation therapy.15

Interferon-beta (IFN-β) also plays an important role in the

activation of T cells.16 Radiation therapy-induced IFN-β was

also related to the development of the abscopal effect in

patients with non-small cell lung cancer (NSCLC).17 Shortly

after the completion of radiation therapy (day 22), serum IFN-

β levels in 7 respondents significantly increase from baseline.

IFN-β production is closely related to cytosolic DNA. In

regard to cytosolic DNA, the cyclic GMP-AMP synthase

(cGAS)-stimulator of interferon genes (STING) pathway

needs to be mentioned. The cGAS-STING pathway is

a component of the innate immune system. Once activated,

this pathway promotes the production of cytosolic DNA.

Therefore, it is deduced that the interferon-induced cGAS/

STING pathway promotes the emergence of anti-tumour

T cells.18 Other previous clinical trials have verified the rela-

tionship between the abscopal effect and p53.19,20 The down-

stream pathway of p53 is important for triggering the abscopal

effect, which, however, was not further elaborated (Figure 1).

The Factors Promoting the
Occurrence of the Abscopal Effect
Combination with Immune Factors

Increases the Occurrence Probability of

the Abscopal Effect
The appearance of “abscopal effect” (Figure 2) indicates that

patients can reduce the area of radiotherapy to reduce the side

effects of radiotherapy. For this reason, researchers have

carried out numerous clinical trials and preclinical studies

to explore how to promote the occurrence of the abscopal

effect, especially in metastatic tumours. Pfannenstiel et al

established two mouse models of metastatic melanoma,

representing BRAF mutant and non-mutant tumours.21 The

combination of radiation therapy and immunotherapy pro-

duced a stronger systemic anti-tumour immune response than

did immunotherapy alone, which led to a reduction in tumour

growth and an increase in the number of activated CD8+

cytotoxic T cells. In addition, the abscopal effect was

observed in unirradiated tumours and was independent of

BRAF status. In another melanoma-related study using the

combination of radiation therapy and immunotherapy,

administration of the inhibitors of the cytotoxic

T lymphocyte-associated antigen (CTLA4) and programmed

cell death-ligand 1 (PD-L1) increased the incidence of the

abscopal effect.22 Golden et al reported the first case of the

abscopal effect in a patient with refractory lung cancer who

was treated with radiation therapy and ipilimumab. The

patient showed no sign of disease progression even at

one year after the concurrent radiation therapy and
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ipilimumab treatment.23 Many clinical and preclinical trials

have confirmed that anti-CTLA4 or anti-programmed death-

1 (PD1) antibody can be used as immune checkpoint inhibi-

tor to increase T cell activity against tumour cells.24–28 The

above data demonstrate that the combination of radiation

therapy and immune checkpoint inhibitors induces anti-

tumour responses to control local and distant diseases.

In addition to combining with immune checkpoint inhibi-

tion, the possibility of abscopal effect occurrence can be

enhanced through using immunoadjuvants. For example,

FMS-like tyrosine kinase 3 ligand (FLT3L) can be used to

recruit and stimulate APCs.3 Anti-cluster of differentiation 40

(anti-CD40) antibody can be used to enhance the activation of

APCs.29 In a mouse model of pancreatic cancer, anti-CD40

treatment resulted in not only the regression of the untreated

contralateral tumours but also the development of long-term

immunological memory.30 Administration of the immunocy-

tokine L19-IL2 in combination with radiation therapy (a single

dose of 15 Gy) induced the abscopal effect in 20%

of the immunocompetent mice with colon tumours.31

Administration of the granulocyte-macrophage colony-

stimulating factor also promoted the occurrence of the absco-

pal effect in patients with metastatic cancer.32 The toll-like

receptor 7 (TLR7) agonist imiquimod promoted the radiation

therapy-elicited in situ vaccination, thereby enhancing the

incidence of the abscopal effect.33 ECI301 enhanced the anti-

tumour effect of radiation and induced the occurrence of the

abscopal effect in mice.34 New technologies developed in

recent years, including the multifunctional smart radiation

therapy biomaterials (SRB) loaded with CD40mAb, also

enhance the abscopal effect.35Antigen-capturing nanoparticles

(AC-NPs) delivered tumour-specific proteins to APCs and

significantly enhanced the efficacy of anti-PD-1 treatment,

thereby inducing the abscopal effect.36 In lymphoma,37 renal

cell carcinoma,38 breast cancer,39 hepatocellular carcinoma,40

prostate cancer,41 pancreatic cancer,42 and other metastatic

solid tumours,32 the abscopal effect also occurred after the

combined application of immunotherapy and radiation ther-

apy. In addition to the differences in the immune drugs or

adjuvants utilized, another noteworthy point is the mode of

administration. Local delivery of immunotherapeutic drugs

into the tumours leads to increased local drug concentration,

and the odds of abscopal effect occurrence are also increased.43

Appropriate Radiation Therapy Mode

Increases the Occurrence Probability of

the Abscopal Effect
The immune response to radiation therapy is inextricably

linked to tumour types, immunomodulation, and dose and

mode of radiation therapy. Ionizing radiation delivered by

Figure 1 The potential mechanisms underlying the occurrence of the abscopal effect.
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radiation therapy induces DNA damage, leading to the

apoptosis, senescence, and autophagy of tumour cells.44

Lymphocyte levels are reduced after radiation therapy.45,46

However, low doses of radiation appear to activate macro-

phage but do not induce cell death, while high doses of

radiation appear to induce immunogenic effects.47 In

a preclinical trial, low-dose radiation increased the infiltra-

tion of T cells into the irradiated area.48 Radiation therapies

using higher doses are more likely to cause increased DNA

damage and expose more antigens, thereby enhancing the

immune response. However, excessive radiation doses are

more harmful than beneficial to the patients. Is there

a suitable optimal radiation dose that maximally activates

the immune response in patients while promoting the occur-

rence of the abscopal effect? To explore this dose, Professor

Poleszczuk established a mathematical model. The model

suggested that the optimal radiation doses per fraction were

between 10 and 13 Gy, at least under the experimental

setting used for model calibration.49 However, in reality,

researchers believe that radiation therapy doses ranging

from 2 to 20 Gy may trigger immunogenic cell death.50

A pre-clinical trial showed that a combination of low-dose-

fractionated radiation therapy and immunotherapy was

more likely to trigger the abscopal effect.25 In contrast,

high-dose-hypofractionated radiation therapy was more

conducive to survival in a tumour mouse model.51 In clin-

ical cases of the abscopal effect, a hypofractionated dose of

30 Gy was delivered in 5 fractions or a total dose of 28.5

Gy was delivered over 3 fractions.1,23 Another study

showed that radiation-induced changes in the content of

the DNA exonuclease Trex1 (three prime repair exonu-

clease 1) in various cancer cells.52 Trex1 degrades the

DNAs in the cytosol to attenuate their immunogenicity,

thereby reducing the immune response.53 Therefore, it is

necessary to identify proper radiation doses that will not

induce Trex1. Repeated irradiation with these doses will

increase the content of cytosolic DNA. Further amplifica-

tion of interferon-β will lead to the recruitment and activa-

tion of Batf3-dependent dendritic cells (DCs), which is also

very important for the occurrence of the abscopal effect.

In addition, radiation therapy induces anti-tumour

immune response, which usually depends on the immuno-

genicity of the tumours. Tumour immunogenicity varies

greatly among different individuals, different types of can-

cers, and even the same type of cancers.1,54 High immuno-

genicity is more potent in stimulating immunity. Moreover,

Figure 2 Conditions that induce or limit the occurrence of the abscopal effect.
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immunogenicity level is related to prognosis. The immuno-

genicity of tumours induced by different modes of radiation

therapy varies considerably. Current combination therapies

aim to stimulate and enhance immunogenicity to the great-

est extent.55,56 The nature of the radiation ray cannot be

ignored. High linear energy transfer (LET) radiation mainly

Table 1 Clinical trials or cases with abscopal effect

Years Tumors Radiation therapy Immunotherapy Sequence of RT and

immunotherapy

Reference

2014 Melanoma RT of brain metastasis or

extracranial sites

Anti-CTLA-4 (ipilimumab, 3 mg/kg/3

weeks)

RT after ipilimumab [105]

2015 Metastatic solid

tumors

35 Gy/10 fractions GM-CSF (125 μg/m2/2 weeks) Concurrent [32]

2015 Melanoma Lung/bone 8 Gy × 2 or 8 Gy × 3

Liver/subcutaneous 6 Gy × 2 or

6 Gy × 3

Anti-CTLA-4 (ipilimumab) RT before ipilimumab [22]

2016 Melanoma SBRT Anti-CTLA-4 (ipilimumab, 3 mg/kg/3

weeks)

Concurrent and post-

radiation

[106]

2017 Melanoma 30 Gy/10 fractions Anti-PD-1 (pembrolizumab, 2 mg/kg/

3 weeks or nivolumab, 3 mg/kg/3

weeks)

Concurrent [107]

2017 Melanoma Conventional external beam

radiation and stereotactic

radiosurgery

Anti-CTLA-4 (ipilimumab, 3 mg/kg/3

weeks)

Concurrent [108]

2018 Advanced cancer Stereotactic ablative RT DC vaccination and TLR-3 agonist Concurrent [109]

2018 Metastatic breast

cancer

22.5 Gy/3 fractions Anti-TGFβ (fresolimumab,1 mg/kg/3

weeks or 10 mg/kg/3 weeks)

Concurrent [110]

2018 Melanoma 26 Gy/3–5 fractions Anti-PD-1 (pembrolizumab, 2 mg/kg/

3 weeks or nivolumab, 3 mg/kg/2

weeks)

Concurrent and post-

radiation

[111]

2018 Metastatic NSCLC Phase I:6 Gy X 5/fractions

Phase II :9.5 Gy X 3/fractions

Anti-CTLA-4 (ipilimumab, 3 mg/kg/3

weeks)

Concurrent [17]

2018 Refractory

Hodgkin’s

Lymphoma

total 40 Gy in 20 fractions,

mediastinal nodes

Anti-PD-1 (Nivolumab, 2 doses) Concurrent and post-

radiation

[112]

2018 Prostate cancer SABR Hiltonol intratumoral injections (DC

Local ReactionG1)

Concurrent [109]

2019 Unresectable stage

IIIB/IV bulky

`NSCLC

SBRT-PATHY None None [113]

2019 Renal cell

carcinoma

high-dose-rate interstitial

brachytherapy (HDR-ISBT)

Anti-PD-1 (Nivolumab infusions of

240 mg /alternate week)

Nivolumab was

restarted nine days after

HDR-ISBT.

[114]
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acts directly on the biological macromolecules in the tissues

and cells, causing damage. The physical characteristic of

high-LET radiation is the presence of Bragg peaks, while

the biological characteristics of high-LET radiation include

high relative biological effect and low oxygen enhancement

ratio. Low-LET radiation mainly acts indirectly. Because

organisms are in a high-water environment, low-LET radia-

tion interacts with the water molecules in the biological

tissues, generating free radicals. These free radicals then

interact with biological macromolecules and damage them.

Low-LET radiation can be used to achieve non-

discriminatory killing of tumour cells that display hetero-

geneous radiosensitivity due to the different oxygen content

in tumours.57 In a review, Professor Pouget proposed the

idea of complex DNA damage leading to immune signal

transduction: clustered DNA damage will eventually cause

persistent DNA damage, leading to cell aging or cell death

(ie, apoptosis), triggering different “dangerous” signals or

damage-associated molecular patterns (damps: ATP, short

DNAs/RNAs, ROS and others). In terms of targeted radio-

nuclide therapy, Proton/carbon ion radiation therapy and

alpha-particles deliver high-LET radiation.58 Low energy γ
ray or carbon ion and coradiation elicit the abscopal effect,

which is closely related to macrophages.59

Exploration of the Cause That
Prevents the Occurrence of the
Abscopal Effect
Numerous clinical trials and basic research aim to promote

the occurrence of the abscopal effect (Figure 2). In reality,

however, the odds of abscopal effect occurrence have not

reached expectations.60 Combined administration of radia-

tion therapy and immunotherapy improves the occurrence

rate of the abscopal response compared to radiation therapy

or immunotherapy alone. However, the overall occurrence

rate of the abscopal effect remains unsatisfactory, which

indicates its limitations. A systematic review found that

there were only 46 documented cases of abscopal effect of

radiation therapy between 1969 and 2014.61 A study con-

ducted in Brazil explored the probability of abscopal effect

occurring after anti-PD1 therapy and associated radiation

therapy. The study examined 16 patients, including 12

patients with metastatic melanoma, 2 patients with meta-

static NSCLC, and 2 patients with metastatic renal cell

carcinoma. Three patients with melanoma developed the

abscopal effect, a rate of 18.7%. In contrast, no patients

with NSCLC or renal cancer exhibited the abscopal effect.62

We summarized the reasons behind the unsatisfactory rate

of abscopal effect occurrence into the following aspects:

The Complex Tumour Microenvironment
The post-radiotherapeutic changes in the tumour microenvir-

onment are not all beneficial. In fact, it is difficult to over-

come the inhibitory effect of the tumour microenvironment

even if radiation therapy activates the anti-tumour CD8 +

T cells,63 and the infiltration of the anti-tumour effectors to

tumour tissues remains weak.64 The tumour microenviron-

ment is not singular and orderly. Radiation therapy leads to

the release of a variety of inhibitory factors, including TGF-

β. TGF-β is an immunosuppressive factor. It not only inhibits

the immune response by reducing the antigen-presenting

capacity of DCs and the activation of effector T cells65,66

but also induces radioresistance in tumour cells and

decreases their radiosensitivity.67 In addition, the appearance

of interleukin 6 (IL-6), interleukin 10 (IL-10) and colony-

stimulating factor 1 (CSF-1) also promotes tumour cell pro-

liferation and invasion.68–70 Their appearance not only

reduces the occurrence of abscopal effect but also reduces

the efficacy of radiation therapy.71 However, radiation ther-

apy induces the release of a variety of cytokines such as

interleukin 1 beta (IL-1β), which promote anti-tumour

effects.72,73 Radiation therapies using different doses and

modes will inevitably yield inconsistent outcomes. These

facts strongly confirm the complexity and contradictions of

various factors in the tumour microenvironment.

In addition, the tumour microenvironment is equally

complex at the cellular level. After irradiation, tumours

develop a variety of resistance mechanisms that promote

tumour recurrence, including the production of suppressive

immune cells capable of inhibiting T cell activation. These

suppressive immune cells, including Tregs, bone marrow

myeloid-derived suppressor cells (MDSCs), and tumour-

associated macrophages (TAMs),74–76 infiltrate more into

tumour tissues after radiation therapy.74,77 Tregs are key

cells in the maintenance of tumour immune tolerance, and

they downregulate immunity and even promote tumour

angiogenesis.78 In addition, Tregs not only produce

a variety of inhibitory cytokines (including tumour necrosis

factor β (TNF-β),79 interleukin 35 (IL-35),80 and IL-1081)

but also preempt IL-2 and reduce the activation of cytotoxic

T cells.82 MDSCs not only reduce immune activity at the

immune level but also promote tumour infiltration and

migration.83 TAMs are the main white blood cells that

infiltrate solid tumours, comprising up to 50% of the tumour

mass. TAMs promote cancer cell proliferation, invasion,
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metastasis, and angiogenesis through releasing cytokines,

growth factors, extracellular matrix-degrading enzymes,

the angiogenic factor prokineticin (Bv8), and matrix metal-

loproteinase 9 (MMP9).76 On the other hand, radiation ther-

apy renders tumour cells more susceptible to immunity.

Reits et al found that under high doses of radiation (10–26

Gy), the expression of the major histocompatibility complex

I (MHC-I) increased in a dose-dependent manner. Increased

MHC-I expression promoted the production of APCs and

activated the effector T cells.7 It is evident that both the

suppressive and the promotive immune cells change after

radiation therapy. At present, there is no definite conclusion

about which is the dominant type of immune cell. However,

the dual nature of the microenvironment and the difficulty of

inducing the abscopal effect are implied. In addition to

immune cells, tumor stromal cells not only provide physical

support for tumor cells but also drive tumorigenicity.

Cancer-associated fibroblasts (CAFs) are one of the most

important types.84 The soluble factors secreted by CAFs

induce various phenotypes of adjacent tumor epithelial

cells and other stromal cells, and then promote the develop-

ment of tumor.85 Although there is no study on the relation-

ship between CAFs and distant effect, radiation enhances the

migration and invasion promoting ability of CAF in vitro

and in vivo.86

The Sophisticated Systems of the Human

Body
As mentioned in the theory of the mechanism of the absco-

pal effect, radiation therapy leads to the exposure of tumour

antigens and the appearance of a “tumour vaccine”, thereby

promoting immune activity. However, in reality, the absco-

pal effect mechanism is far from simple. The human

immune system is a sophisticated and complex system. It

is difficult to improve the overall effect through one single

point or pathway. Moreover, differences exist among indi-

viduals, which undoubtedly render it more difficult to

induce the abscopal effect. First, the activation of cytotoxic

T cells, the cells that actually function in immunity, requires

more than the stimulation imposed by the antigen-MHC

complex. Other costimulatory signals such as cluster of

differentiation 80 (CD80), CD40 ligand (CD40 L), and

cluster of differentiation 28 (CD28) are also essential for

the activation of CD8+ T cells. Such facts indicate that

radiation-induced DNA damage and exposure of “tumour

vaccine” are not sufficient for stimulation of immunity.

A preclinical trial of colon cancer found that systemic

immune enhancement occurred several weeks (rather than

immediately) after radiation therapy and was not long-

lasting.51 Poleszczuk et al established a mathematical

model.87 Examination of virtual cases using this model

revealed that the dissemination of activated T cells among

multiple metastatic sites was complex, and not all metastatic

sites participated equally in systemic immune surveillance.

The above findings demonstrate that the likelihood of pro-

moting systemic immunity is rather low. Moreover, the

systemic anti-tumour immunity cannot be maintained in

the long term even if the abscopal effect has occurred,

which is one reason why new radioimmunotherapy strate-

gies are currently being explored.88 Finally, application of

combination therapy to promote abscopal effect has become

a new research hotspot since the discovery of immune

checkpoints. However, similar to radiation therapy, immune

checkpoint inhibitors and immunological adjuvants may

cause a variety of side effects, even highly toxic side

effects.4,89,90 The combined application of the two will

inevitably increase the likelihood of these adverse

events.91 However, PACIFIC and LUN14-179 experiments

also confirmed that the incidence of side effects, such as

pneumonia, in the study group receiving PD-L1 mAb after

concurrent radiotherapy and chemotherapy did not increase

significantly compared with the control group. More clinical

trials need to be conducted to determine how to minimize

the additive toxic effect of radiation and immunotherapy4,92

and optimize the order of these two types of treatments.

Proper selection of immune checkpoint inhibitors/immuno-

logical adjuvants, timing of administration, mode of admin-

istration, dosage, and mode of combination are critical to

the success of radiation therapy and immunotherapy.

However, there is still a lack of definite answers to these

questions. These questions further indicate the difficulty of

inducing abscopal effect.

The Inhibitory Effect of Malignant

Tumours Themselves
Malignant tumour cells exhibit extremely strong mutabil-

ity, heterogeneity, and atypia, which also increase the

difficulty of eliciting the abscopal effect. Studies have

shown that the genetic mutations in the primary lesion

are not completely consistent with the genetic mutations

in the metastatic lesions. Because the local antigen is not

necessarily identical to the distant antigen, the immune

responses induced by simply targeting local antigens are

likely to be ineffective. With the enrichment of the
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therapeutic approaches aiming to boost immunity, cancer

cells have evolved a series of immune-resistance mechan-

isms that facilitate their evasion of anti-tumour immune

responses. This process is known as immunoediting.93,94

Immunoediting downregulates vascular cell adhesion

molecule 1 (VCAM1) and intercellular adhesion molecule

1 (ICAM1), resulting in the enhancement of the tumour

vasculature capable of inhibiting T cell colonization and

migration. Immunoediting also leads to the downregula-

tion of the major histocompatibility complex (MHC) and

the promotion of suppressive immune cell infiltration. In

addition, hypoxic regions are present in some tumours,

which may induce immunosuppression through causing

immune cell failure.95 For example, hypoxia alters the

antigen-presenting ability of APCs.96 Even if the immune

cells that are capable of targeting distant metastases are

produced, it is unclear whether these immune cells can

smoothly pass through various barriers and successfully

reach the targeted area. As demonstrated by studies, the

ability of immune cells to accurately reach non-irradiated

areas may be one of the rate-limiting steps that trigger the

radiation-induced abscopal effect.87 These complex inter-

actions contribute to the development of cancer cells and

further limit the effect of immunotherapy.97,98 Even so, the

immune system can still recognize and eliminate cancer

cells. However, in the cases in which the metastases con-

tain a large number of tumour cells, the limited number of

immune cells is a drop in the bucket. Moreover, patients

with advanced cancer have more or less impaired immune

functions and compensatory ability. The patients often

receive concurrent chemotherapy,99 while one of the side

effects of chemotherapy is immunosuppression. The integ-

rity of the host immune system determines the sensitivity

of the tumours to radiation therapy.100 Therefore, the

above factors also limit the occurrence of the abscopal

effect.

The Unknowns About the Modes and

Methods of Radiation Therapy
Many studies are striving to identify the optimal radiation

therapy dose for induction of the abscopal effect.

However, fractionated radiation therapy fails to diversify

the T cell receptor repertoire in the distal non-irradiated

areas.22,101 The above information suggests that the differ-

ences in radiation therapy dose, the employed fractionation

schemes, and the size and location of the irradiated lesions

are also factors influencing the occurrence of the abscopal

effect.87,102 To explore the optimal conditions for the

induction of the abscopal effect, radiation therapy needs

to be standardized.103

ACorrectViewof theAbscopal Effect
Radiation therapy and immunotherapy both occupy pivotal

positions in cancer treatment. Currently, numerous clinical

studies have explored the combinations of radiation ther-

apy and immunotherapy. A large number of clinical trials

and data show that the combination of the two types of

treatments not only alleviates the related symptoms of

tumour patients and effectively prolongs survival time

but also enhances the possibility of abscopal effect occur-

rence. Will immunotherapy be overly used? Whether the

evaluation of curative effect of the combination of two

treatment strategies based on the standard RECIST stan-

dard is a little single? More than 90% of these clinical

studies attempted to induce clinically significant abscopal

effects by irradiating individual tumours for the purpose of

controlling all tumours. However, Brooks and Chang pro-

posed that the abscopal effect was difficult to achieve by

irradiating single tumours. They advocated irradiating

multiple or all lesions to increase the likelihood of obtain-

ing clinically meaningful outcomes.104 There are still

questions and controversies surrounding the mechanisms

and existence of the abscopal effect. However, the combi-

nation of the treatment methods is undoubtedly beneficial

to patients. Perhaps there should be more preclinical stu-

dies to determine how to better combine radiation therapy

and immunity, such as T-cell immunoglobulin and mucin-

domain containing-3 (TIM-3) and indoleamine 2,3-dioxy-

genase (IDO), which suppress immune signals, as well as

OX40 and 4–1BB, which activate immune signals.

Questions still need to be addressed, such as whether it

is possible to combine these signalling pathways with

different radiotherapy modes to improve the patients’ sur-

vival and quality of life, and how to weigh the benefits and

harms elicited by single-site radiotherapy and multi-site

/whole body radiotherapy. Because of the unaddressed

questions, the occurrence of the abscopal effect is still

unclear. We look forward to subsequent studies and better

methods to bring about improved and more beneficial

treatments.
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