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Purpose: Diethylaminoethyl-chitosan (DEAE-CH) is a derivative with excellent potential as 
a delivery vector for gene therapy applications. The aim of this study is to evaluate its 
toxicological profile for potential future clinical applications.
Methods: An endotoxin-free chitosan (CH) modified with DEAE, folic acid (FA) and poly-
ethylene glycol (PEG) was used to complex small interfering RNA (siRNA) and form nanopar-
ticles (DEAE12-CH-PEG-FA2/siRNA). Based on the guidelines from the International 
Organization for Standardization (ISO), the American Society for Testing and Materials 
(ASTM), and the Nanotechnology Characterization Laboratory (NCL), we evaluated the effects 
of the interaction between these nanoparticles and blood components. In vitro screening assays 
such as hemolysis, hemagglutination, complement activation, platelet aggregation, coagulation 
times, cytokine production, and reactive species, such as nitric oxide (NO) and reactive oxygen 
species (ROS), were performed on erythrocytes, plasma, platelets, peripheral blood mononuclear 
cells (PBMC) and Raw 264.7 macrophages. Moreover, MTS and LDH assays on Raw 264.7 
macrophages, PBMC and MG-63 cells were performed.
Results: Our results show that a targeted theoretical plasma concentration (TPC) of DEAE12 

-CH-PEG-FA2/siRNA nanoparticles falls within the guidelines’ thresholds: <1% hemolysis, 
2.9% platelet aggregation, no complement activation, and no effect on coagulation times. 
ROS and NO production levels were comparable to controls. Cytokine secretion (TNF-α, IL- 
6, IL-4, and IL-10) was not affected by nanoparticles except for IL-1β and IL-8. 
Nanoparticles showed a slight agglutination. Cell viability was >70% for TPC in all cell 
types, although LDH levels were statistically significant in Raw 264.7 macrophages and 
PBMC after 24 and 48 h of incubation.
Conclusion: These DEAE12-CH-PEG-FA2/siRNA nanoparticles fulfill the existing ISO, 
ASTM and NCL guidelines’ threshold criteria, and their low toxicity and blood biocompat-
ibility warrant further investigation for potential clinical applications.
Keywords: chitosan, nanoparticles, siRNA, biocompatibility assays, gene therapy, toxicity

Introduction
Biocompatibility studies on nanoformulations for biomedical applications have 
been a subject of increasing interest in the last decades, as they are being submitted 
to the Food and Drug Administration (FDA) and marketed. A review of the 51 
nanomedicines currently approved by the FDA, and some of the 77 products 
undergoing clinical trials have been the subject of a previous study.1 Pursuing the 
preclinical development of a new formulation depends not only on its efficacy, but 
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also on its safety. Nowadays, regulatory agencies, stan-
dards development organizations, and laboratory research 
teams develop screening methodologies to improve the 
assessment of the estimated biological response to 
a specific nanomaterial.

Over the past decade, our laboratory has developed 
a modified chitosan (CH) with excellent potential for gene 
therapy applications and evaluated its different therapeutic 
uses.2 CH, a natural polymer composed of glucosamine 
units, showed good biocompatibility and biodegradability 
properties.3 Its versatility allows it to be used in several fields, 
including wastewater treatment, agriculture, textiles, food pro-
tection and cosmetics.4 It has a tremendous potential for 
biomedical and pharmaceutical applications as a drug delivery 
vehicle,5 in vaccine systems,6 tissue engineering, wound dres-
sing, diagnosis,7 and gene therapy,8 among others.

In terms of toxicity outcomes, CH and its derivatives, 
show low blood toxicity, as they generally do not induce 
significant hemolysis and do not affect the complement acti-
vation system.9–11 However, the data on blood compatibility 
are contradictory. There were reports that this polymer can 
induce hemagglutination,9 or impact platelet activation and 
clotting time,10 depending on its physicochemical character-
istics. Cell viability can also be differentially affected, 
depending on CH modifications and the cell type studied. 
For example, HUVEC cell line survival increases when 
incubated with a CH-heparin nanoparticles coating on ano-
dized NiTi (nickel-titanium),12 while a glycol CH-nanogel 
induces slight cell toxicity on Raw 264.7 macrophages, 3T3 
fibroblasts and HMEC.13 Similarly, in L929 cells, viability is 
not affected by lauroyl sulfated CH microparticles,11 whereas 
CH/polyglutamic acid hollow spheres affect the viability of 
HUVEC and HUASMC, in a cell, time, size, and charge- 
dependent manner.10

The physicochemical differences in all these nanofor-
mulations explain most of the variability in hematocom-
patibility and cytotoxicity responses. Another factor is the 
heterogeneity in screening protocols, coupled with the 
general assumption that CH is biocompatible, resulting in 
a limited number of reports on its hemagglutination and 
oxidative stress response. Finally, the lack of information 
on endotoxin contamination in CH formulations makes it 
difficult to interpret results from cytokine up-regulation, as 
the presence of endotoxins alone can induce the produc-
tion of important pro-inflammatory mediators, such as 
tumor necrosis factor alpha (TNF-α) and interleukin-6 
(IL-6).14 These facts underscore the need to follow 

available guidelines when evaluating the toxicological 
profile of a newly synthesized nanoparticle.

A good starting point for biocompatibility studies are 
the guidelines from the International Organization for 
Standardization (ISO), the American Society for Testing 
and Materials (ASTM), and the Nanotechnology 
Characterization Laboratory (NCL), which provide proto-
cols and recommendations to perform preclinical studies 
on nanoformulations. Reviews of standards, guidelines and 
agencies are available in several reports.15–18

Our goal is to design safe and functionalized nanopar-
ticles that release their therapeutic cargo, namely small 
interfering RNA (siRNA), to target cells with minimal 
toxicity to tissues. As we aim for a parenteral administra-
tion, we decided to use the existing guidelines to achieve 
validated outcomes before proceeding to a clinical appli-
cation. The present study systematically evaluates the 
safety of a pegylated diethylaminoethyl CH (DEAE12-CH- 
PEG-FA2), with or without siRNA-SSB complexation. 
This derivative showed a high in vitro transfection effi-
ciency on varied cell lines19 and its in vivo therapeutic 
efficacy was demonstrated in a murine collagen antibody- 
induced arthritis model.2 Among the assays proposed by 
ISO 10,993–4:2009,20 ISO/TR 16,197,17 ASTM F1903,21 

ASTM E56.03 committee,22 and NCL protocols,23 the 
following were chosen: endotoxin contamination, physico-
chemical characterization, cytotoxicity assay, hemotoxicity 
(hemolysis, hemagglutination, complement activation, pla-
telet aggregation and coagulation tests), inflammatory 
response (cytokines) and oxidative stress response (reac-
tive oxygen species (ROS) and nitric oxide (NO)).

Materials and Methods
Materials
Medical grade deacetylated CH (ChitoClear®, 43,010, 270 
kDa) was obtained from Primex ehf (Siglufjordur, Iceland). 
RPMI 1640 medium, EMEM medium, fetal bovine serum 
(FBS), 0.25% trypsin-EDTA solution, penicillin- 
streptomycin (P/S) and lymphocyte separation medium 
(LSM) were purchased from WISENT Bioproduct Inc 
(Montréal, Qc, Canada). siRNA-SSB (GenBank accession 
number NM_009278) with the oligonucleotide sequence: 
antisense 5ʹ-uuacauuaaagucuguuguTT-3ʹ; and sense 5ʹ- 
acaacagacuuuaauguaaTT-3ʹ (as mentioned by Abrams et al,24 

and Seitzer et al)25 with a 2ʹ-O-Me-rA (rC, rG, rU) modifica-
tion, was purchased from Alpha DNA S.E.N.C. (Montréal, 
Qc, Canada). Pyrogen-free consumables (Biosphere® plus 
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certified) were purchased from Sarstedt (Montréal, Qc, 
Canada). Other chemicals or solutions, if not otherwise sta-
ted, were purchased from Sigma Aldrich Canada (Oakville, 
ON, Canada). Raw 264.7 macrophage and MG-63 cells were 
purchased from American Type Culture Collection (ATCC, 
Manassas, VA, USA).

Ethics Committee
Experiments with human blood were approved by the 
Hôpital du Sacré-Cœur de Montréal - Centre Intégré 
Universitaire de Santé et de Services Sociaux du Nord de 
l’Ile de Montréal (CIUSSS NIM) - Research Ethics 
Committee (Protocol # 2017–1462). Informed consent 
was obtained from healthy donor volunteers who were 
not ill nor under medication at the time of blood sample 
collection. PBMC were collected from healthy volunteers 
who provided blood samples. The CIUSSS NIM Research 
Ethics Committee approved the use of these cells and the 
corresponding experimental procedures (Protocol # 
2017–1462).

Synthesis of DEAE12-CH-PEG-FA2
Groups of diethylaminoethyl (DEAE), polyethylene glycol 
(PEG - 3 kDa spacer) and folic acid (FA) were grafted to 
the CH structure. DEAE12-CH conjugation was prepared 
as described by Oliveira et al.26 Final conjugation of 
DEAE12-CH and PEG-FA was performed as reported by 
Cho et al,27 with slight modifications, described in our 
previous study.28

Limulus Amebocyte Lysate (LAL) Assay
All the materials used for this test were purchased pyro-
gen-free. One sample from each stage of synthesis, pre-
pared at 1 mg/mL, was analyzed for the presence of 
endotoxins by LAL assay (88,282, Thermo Fisher, Saint- 
Laurent, Qc, Canada), according to NCL method STE- 
1.129 and the manufacturer’s instructions. The kit’s 
detection levels were in the 0.1 EU/mL to 1 EU/mL range.

Characterization of Modified CH
Polymer characterization was performed as described in 
our previous studies.26,28 Nuclear magnetic resonance 
(1H-NMR) was used to assess the degree of CH deacetyla-
tion (DDA) and the DEAE percentage incorporated into 
the polymer structure. The percentage of PEG-FA incor-
porated was calculated by measuring FA absorbance 
(λ363nm) in a nanophotometer, using CH-DEAE as 
a blank. An extinction coefficient of 6165 M−1 cm−1 

(FA)28 was used for calculations. The molecular weight 
(MW) of the CH polymer was evaluated by gel permeation 
chromatography (GPC). Additional Information about 
DEAE12-CH-PEG-FA2 characterization is described in 
our previous study.19

Nanoparticle Preparation in DPBS pH 7.2
DEAE12-CH-PEG-FA2 was dissolved overnight in a 0.1 
M HCL solution, then heated at 50°C for 30 min, adjusted 
with Dulbecco’s Phosphate-Buffered Saline (DPBS) to the 
desired final concentration, and finally filtered with a 0.45 
μm polyether sulfone membrane filter. To prepare DEAE12 

-CH-PEG-FA2/siRNA-SSB nanoparticles, siRNA-SSB 
and modified CH stock solutions were added to DPBS 
and vortexed immediately at moderate speed for 1 min. 
Nanoparticles were always freshly prepared prior to each 
experiment.

Characterization of DEAE12-CH-PEG-FA2 

/siRNA Nanoparticles in DPBS pH 7.2
The size and charge (zeta potential) were evaluated with 
a Zetasizer Nano ZS90 (Malvern Instruments Ltd., Malvern, 
UK), using a 1 mL nanoparticle solution containing 0.02 mM 
of siRNA. Size versus (vs) time studies were performed to 
analyze the particle’s stability for 24 h. DEAE12-CH-PEG- 
FA2/siRNA nanoparticles at amino groups/phosphate groups 
(N/P) ratios of 5:1, 10:1, 15:1, 20:1, 30:1 and 40:1 were 
prepared as indicated above. The DEAE12-CH-PEG-FA2 

/siRNA nanoparticle formation was evaluated by 2% agarose 
gel electrophoresis, by loading 10 μL of nanoparticle solution 
with 0.5 μg of siRNA.

Nanoparticle Concentrations Selection 
for in vitro Assays and Controls
DEAE12-CH-PEG-FA2/siRNA nanoparticle concentrations 
were chosen according to a theoretical therapeutic dose for 
their future use in vivo. Thus, a theoretical plasma concen-
tration (TPC) for in vitro assays was calculated, based on 
NCL recommendations30 and FDA directives.31 Our pre-
vious work showed the efficiency of a 50 μg siRNA-TNFα 
/intraperitoneal injection/mouse in a mouse model of 
arthritis.2 These results and those in the literature gave us 
a framework to determine the dose that we could test in vivo 
for a future intravenous administration in a mouse model. 
Thereby, the dose of 30 μg siRNA-SSB/intravenous injec-
tion/mouse (1.5 mg/kg, for a 20 g mouse) was chosen as the 
target dose to be complexed with DEAE12-CH-PEG-FA2. 
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Based on NCL guidelines,30 an equivalent human dose 
(0.1219 mg/kg) was calculated and the corresponding TPC 
(1.52 μg/mL siRNA-SSB). Table 1 summarizes the concen-
trations used for in vitro assays.

This study evaluates the safety of our pegylated diethyla-
minoethyl CH (DEAE12-CH-PEG-FA2) with or without 
siRNA-SSB complexation. Positive and negative controls 
were used in each assay to confirm the cells’ ability to respond 
to a given substance. Cell-free particle controls were con-
ducted to verify nanoparticle interference with the assay.

Cell Cytotoxicity
This assay is based on slightly modified ASTM E2526-08 
(2013)32 and NCL GTA-2 (2015)33 guidelines. Cell 
viability, in response to DEAE12-CH-PEG-FA2/siRNA 
nanoparticles, was measured by MTS (3-(4,5-dimethylth- 
iazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)- 
2H-tetrazolium, G5421, Promega, Madison, WI, USA) and 
lactate dehydrogenase release (LDH, 11,644,793,001, 
Roche, Laval, QC, Canada) assays on human MG-63 cells, 
murine Raw 264.7 macrophages and human peripheral blood 
mononuclear cells (PBMC). Briefly, MG-63 and Raw 264.7 
cells were plated in a 96-well plate at a confluence of 1.5 
x 104 cells/well (EMEM medium) and 3.5 x 104 cells/well 
(RPMI medium), respectively. Cells were incubated in 10% 
FBS phenol red-free medium for 24 h at 37°C. Then, medium 
was replaced with fresh medium (1% FBS) containing sam-
ples and incubated for 4, 24, and 48 h at 37°C. PBMC were 
isolated based on NCL method ITA-10, using LSM.34 PBMC 
were collected, washed, resuspended in 1% FBS RPMI 1640 
medium, and incubated with samples at 2 x 105 cells/well in 
a 96-well plate. After the exposure period, MTS and LDH 
assays were performed according to the manufacturer’s 
instructions, with absorbance readings at 490 nm in 
a microplate reader (EL800, Bio-Tek instruments). DPBS 
was used as the negative control. Hydrogen peroxide (500 
μM H2O2) and triton X-100 (1% v/v) were used as positive 
controls for the MTS and LDH assays, respectively. Cell-free 
particle interference controls were treated in the same 

experimental conditions. Cell viability and cytotoxicity 
were calculated with the following equations:

%cell viability ¼
sample

cell control

� �

� 100 

%total LDH leakage ¼
sample � cell control

triton control � cell control

� �

� 100 

As the guidelines did not mention an acceptable threshold 
for the MTS assay, ISO 10,993–5 criteria were used, 
where a viability <70% is considered toxic.35

Hemolysis Assay
This assay is based on ASTM E2524-08 (2013)36 with some 
modifications. In summary, human blood was collected in Na- 
heparin tubes. Plasma-free hemoglobin (PFH) and total blood 
hemoglobin (TBH) were determined and treated according to 
the procedure described in the guideline. Then, 20 μL of 
diluted whole blood, 20 μL of samples and 140 μL of DPBS 
were incubated in microcentrifuge tubes for 3 h at 37° 
C. A minus blood interference control was also prepared. 
Then, tubes were centrifuged for 8 min at 2000×g. The quanti-
tative hemolysis determination was carried out by mixing 100 
μL of the sample’s supernatant with 100 μL of cyanmethemo-
globin reagent (hemoglobin reagent, Pointe Scientific, Canton, 
MI, USA). The absorbance was read at 490 nm and a standard 
curve (0.025 to 0.8 mg/mL) prepared with human hemoglobin 
was used for calculations. Triton X-100 (10%) and DPBS 
served as positive and negative controls, respectively. 
Percentage hemolysis was calculated with the following 
equation:

%Hemolysis ¼
Hemoglobin in sample

TBHd
X100 

Hemolysis >5% indicates a positive hemolytic response 
according to ASTM guidelines.36

Hemagglutination Test
The chosen method is the one reported by Banerjee et al,37 

Lima et al,38 and Stavitsky et al,39 with minor modifica-
tions. Briefly, human blood collected in Na-heparin tubes 
was centrifuged at 1500 RPM for 12 min to isolate ery-
throcytes. Plasma was discarded and red blood cells were 
washed 3 times with a 0.9% NaCl solution. Finally, a 2% 
cell suspension in NaCl was prepared and incubated with 
nanoparticles in a 96-well U-bottom plate for 1 h at 37°C. 
DPBS and lectin from Phaseolus vulgaris were used as 

Table 1 Nanoparticle Concentrations in vitro

20x 10x 5x TPC 1/5x 1/25x

siRNA-SSB (μg/mL) 30.4 15.2 7.60 1.52 0.30 0.06

DEAE12-CH-PEG-FA2 (μg/mL) 324.2 162.1 81.0 16.2 3.24 0.64

Notes: The higher concentrations represent 20, 10 and 5-fold the TPC. The lower 
concentrations are two serial 1:5 dilutions of TPC: 20x concentration was only 
used in the complement activation test. 
Abbreviation: TPC, theoretical plasma concentration.
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negative and positive controls, respectively. Wells were 
photographed and scored according to the scale proposed 
by Stavitsky et al,39

“+ + + + compact granular agglutinate;
+ + + Smooth mat on bottom of tube with folded 

edges;
+ + Smooth mat on bottom of tube, edges somewhat 

ragged;
+ Narrow ring of red around the edge of smooth mat;
± Smaller area of tube covered than +, and heavier ring 

around the edge;
- discrete red button in center at the bottom of the 

tube.”

Complement Activation Assay
This test was performed according to NCL method ITA-5.1 
(2015)40 with some modifications. Briefly, whole human 
blood was drawn in tubes containing sodium citrate. 
Plasma was collected after blood centrifugation at 2500×g 
for 10 min. Then, equivalent volumes of plasma and samples 
were mixed and incubated for 30 min at 37°C. 8.1 Units of 
cobra venom factor (CVF) and DPBS were used as positive 
and negative controls, respectively. Next, Laemmli buffer 
was added and tubes were heated at 95°C for 5 min. 
Samples were finally loaded at 10 μg/well in an 8% SDS- 
polyacrylamide gel and transferred electrophoretically onto 
a nitrocellulose membrane for protein immunodetection. The 
primary antibodies deployed were the anti-C3/C3b antibody 
(1:500, ab11871, Abcam, Toronto, ON, Canada), and the 
serum loading control anti-transferrin antibody (1:1000, 
ab109503, Abcam, Toronto, ON, Canada). After serial 
washes, the primary antibodies were revealed by the corre-
sponding HRP-conjugated secondary antibodies. According 
to NCL guidelines,40 a sample with ≥2 folds the density of 
DPBS, for the C3c fragment, was considered positive.

Platelet Aggregation Test
This test was performed according to NCL method ITA- 
2.2 (2015)41 with some modifications. Briefly, whole 
human blood was collected in sodium citrate tubes. 
Platelet-rich plasma (PRP) and platelet poor plasma 
(PPP) were obtained by blood centrifugation at 200xg for 
8 min and 2500×g for 10 min, respectively. Then, 6 min 
runs were performed at 37°C in a platelet aggregation 
profiler (PAP-8E, Bio/Data Corporation) using 225 μL of 
PRP and 25 μL of samples. A baseline correction was 
performed using PPP and samples for possible particle 
interference. Collagen (100 μg/mL) and DPBS were the 

positive and negative controls, respectively. Non-treated 
PRP runs at the beginning and the end of the assay were 
used as internal test controls. The percentage of aggrega-
tion was calculated with the following equation, where 
AUC represents the area under the curve:

%Aggregation ¼
AUC sample

AUC collagen
X100 

A platelet aggregation >20% was considered a positive 
response according to NCL Method ITA-2.1 (2015).42

Plasma Coagulation Test
This assay was carried out according to NCL method ITA- 
12 (2015).43 Briefly, whole human blood was collected in 
sodium citrate tubes. Plasma was collected after blood 
centrifugation at 2500×g for 10 min. Then, samples were 
incubated with plasma in a microcentrifuge tube for 30 
min at 37°C, and finally centrifuged at 17000×g for 5 min. 
After exposure, activated partial thromboplastin time 
(APTT), prothrombin time (PT) and thrombin time (TT) 
were measured using the STA-R Evolution coagulometer 
(Diagnostica Stago). Non-treated plasma and DPBS were 
used as internal and negative controls, respectively. 
Normal limits for plasma clotting time, established by 
the certified clinical laboratory at Hôpital du Sacré-Cœur 
de Montréal, were: APTT 28 ≤ 40s, PT 11 ≤ 15s, and TT 
14 ≤ 21s.

Cytokine Assay
This assay was performed based on NCL method ITA-10 
(2015).34 Briefly, human PBMC were re-suspended in 
a 10% FBS RPMI 1640 medium. Cells (1 x 106/well) 
were incubated with samples for 24 h at 37°C. 
Lipopolysaccharides (LPS, tlrl-peklps, 20 ng/mL, 
Invivogen, San Diego, CA, USA) and DPBS were the 
positive and negative controls, respectively. Following 
exposure, supernatants were collected and centrifuged at 
12,000 RPM for 15 min. Cytokines (TNF-α, IL-1β, IL-6, 
IL-8, IL-4 and IL-10) were measured with ELISA kits 
(PeproTech, Rocky Hill, NJ, USA).

Nitric Oxide (NO) Determination
This assay determines NO production based on NCL 
method ITA-7 (2015).44 Briefly, murine Raw 264.7 cells 
were plated at a confluence of 1 x 105 cells/well in 10% 
FBS RPMI medium (phenol red free) and incubated for 24 
h at 37°C. Then, medium was replaced with fresh medium 
containing samples and incubated for 48 h at 37°C. After 
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the exposure period, supernatants were collected and cen-
trifuged at 12,000 RPM for 10 min. Nitrite (NO2

−) quan-
titative determination was carried out with the Greiss 
reagent as indicated in the protocol. The absorbance was 
measured at 562 nm and a standard curve (0.12 μM to 250 
μM) prepared with sodium nitrite in complete medium was 
used for calculations. LPS (100 ng/mL) and DPBS were 
used as the positive and negative controls, respectively. 
A cell-free interference control was prepared and taken 
through all the experimental steps.

Reactive Oxygen Species (ROS) Assay
This test measures ROS production based on NCL method 
GTA-7 (2010),45 with some modifications. Briefly, murine 
Raw 264.7 cells were plated in a black 96-well plate at 
a confluence of 8.5 x 104 cells/well in 10% FBS RPMI 
medium (phenol red free) and incubated for 24 h at 37°C. 
Then, the plate was incubated with a 20 μM DCFH-DA 
probe solution for 30 min. Cells were further incubated 
with Hanks’ Balanced Salt solution (HBSS) containing the 
samples for 6 h at 37°C. The first reading was performed 
at t=0 before adding the samples, and subsequently at 0.5, 
1, 2, 3, 4, 5 and 6 h after exposure time. A microplate 
reader with Fluorescence Polarization (Polar Star Optima, 
BMG Labtech) set up at ex. 485 nm and em. 530 nm was 
used. H2O2 (500 μM) and diethyl maleate (DEM, 5 mM) 
served as positive controls and DPBS as the negative 
control. A cell-free interference control was prepared and 
taken through all the experimental steps, except for probe 
pre-incubation. The ROS percentage was calculated with:

%Fluorescence ¼
sample fluorescence
control fluorescence

X100 

Statistical Analysis
Data were analyzed with GraphPad Prism software version 
6. Figures show the standard error of the mean ± SEM. 
Statistical significance (*p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001) was assessed by One-way Anova or Two- 
way Anova with adjusted correction for multiple compar-
isons using Dunnett’s test (not matching or pairing). All 
results are from at least three independent experiments 
unless stated otherwise in the figure legend. For experi-
ments with human blood, each independent experiment 
was from a distinct healthy blood donor. When the guide-
lines did not provide an acceptable threshold for the test, 
the negative control was used as a baseline to determine 

a statistically significant difference with the tested sam-
ples, as recommended by ASTM F1903.21

Results
Characterization of Modified CH  
(DEAE12-CH-PEG-FA2)
To evaluate the effect of DEAE and PEG-FA insertion on 
the CH structure, we calculated the percentage of each 
chemical group attached on the polymer chain, and esti-
mated the MW of the new synthesized derivative. 
A diagram representing the synthesis procedure is avail-
able in supplementary figure S1. The DDA of the original 
non-modified CH was determined by 1H-NMR at 97.4%, 
with a MW of 270 kDa, as measured with GPC. The 
degree of substitution (DS) of the DEAE groups inserted 
in the CH was 12%. The percentage of PEG-FA in the CH 
structure was 2.02%, as measured with a nanophotometer 
at λ 363 nm. The theoretical value of the average molar 
mass (MM) per DEAE12-CH-PEG-FA2 residue was deter-
mined by 1H-NMR and calculated as 243.7 g/mol, using 
the DDA, degree of acetylation (DA), and DS values. 
Final MW of this derivative, according to GPC, was 259 
kDa. Figure S2 shows GPC traces for the original and 
modified CH. DEAE12-CH-PEG-FA2 polymer is partly 
soluble in water after long stirring periods. Once HCl is 
added to water in equimolar amounts to those of the amino 
groups, other solutions like DPBS pH 7.2 can be added to 
reach the desired final concentration, and the polymer 
remains soluble at neutral pH. The final pH will be the 
one used in the solution to reach the concentration to be 
tested, in our case pH 7.2. LAL assay, carried out on 
different samples of the synthesis process, revealed that 
our DEAE12-CH-PEG-FA2 was free of endotoxin contam-
ination (endotoxin levels were not detectable or inferior to 
0.1 EU/mL). A representation of the DEAE12-CH-PEG- 
FA2 chemical structure, its 1H-NMR spectrum and general 
properties are shown in Figure 1.

Characterization of DEAE12-CH-PEG-FA2 

/siRNA Nanoparticles in DPBS pH 7.2
The electrophoresis assays were carried out to determine 
the ideal N/P ratio between DEAE12-CH-PEG-FA2 and 
siRNA to form nanoparticles and complex the payload. 
Therefore, we chose a N/P ratio of 15:1, as there was no 
siRNA release during the agarose gel migration, which 
reflects good complexation (Figure 2A). Size and zeta 
potential assays (Figure 2B and C) for a N/P ratio of 
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15:1 showed nanoparticles of 208 ± 33 nm, with 
a polydispersity index (PDI) of 0.15 ± 0.04, and a charge 
of +8.9 ± 0.7 mV. Size vs time studies (Figure 2D and E) 
showed stable nanoparticles for a N/P ratio of 15:1, ran-
ging from 194 ± 10 nm (PDI 0.15 ± 0.0) at t=0 to 224 ± 6 
nm (PDI 0.18 ± 0.02) at 24 h. Overall, this 24 h kinetic 
experiment showed good particle homogeneity from N/P 
ratios of 15:1 to 40:1 for all time points, with sizes <235 
nm and PDI <0.2.

Cell Viability and Toxicity
The effect of DEAE12-CH-PEG-FA2/siRNA nanoparticles or 
free DEAE12-CH-PEG-FA2 on cell viability was tested using 
three types of cells and two assay methods. MTS determines 
cell viability and LDH release indicates a loss in membrane 
integrity, which is associated with cell death.32 Compared to 
Raw 264.7 cells and PBMC, MG-63 cells had the best 

viability and the lowest LDH release. For TPC, MG-63 cell 
viability was evaluated at 93.3 ± 2.7% (p<0.05) after 24 h of 
incubation and decreased to 76.0 ± 5.1% (p<0.01) after 48 
h (Figure 3A). The LDH level varied from 1.8 ± 0.5% to 5.4 
± 1.7% (p<0.01) for the same time periods (Figure 3B). 
Although cell viability of Raw 264.7 macrophages was 
more affected at 10x and 5x concentrations (Figure 3C), 
cell viability at TPC was still 78.3 ± 4.7% (p<0.05) and 
71.8 ± 3.0% (p<0.0001) after 24 and 48 h of incubation, 
respectively. A dose-dependent response associated with 
time points was observed. LDH release was estimated at 
45.9 ± 5.8% (p<0.0001) and 88.0 ± 7.3% (p<0.0001), follow-
ing treatment for 24 and 48 h (Figure 3D). For its part, PBMC 
cell viability at TPC remained at 81.0 ± 2.9% and 107.5 ± 
19.5% after 24 and 48 h of incubation, respectively 
(Figure 3E). LDH release reached 12.3 ± 1.4% (p<0.01) 
and 8.8 ± 3.5% after 24 and 48 h post-exposure 

Figure 1 Chemical structure and characterization of DEAE12-CH-PEG-FA2 modified CH. DEAE12-CH-PEG-FA2 chemical structure (left-top). 1H-NMR spectrum of deacetylated 
CH (right-top panel, DDA 97.4%), DEAE12-CH (middle panel) and DEAE12-CH-PEG-FA2 (right-bottom panel). DEAE12-CH-PEG-FA2 properties (right-bottom).
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(Figure 3F). The viability threshold for this test is >70% 
according to ISO 10,993–5,35 meaning that our nanoparticles 
still meet the criteria for MG-63 cells and PBMC. Even 
though the viability of Raw 264.7 macrophage cells was 
>70% when evaluated by MTS assay, LDH release results 
showed a much higher mortality rate which does not reflect 
MTS data.

Free DEAE12-CH-PEG-FA2 showed similar cell viabi-
lity for all cell types, at different incubation times and 
particle concentrations, as measured by the MTS assay 
and LDH release (Figure S3A–F).

Hemocompatibility of Nanoparticles
In order to define the hemotoxicity profile of our DEAE12- 
CH-PEG-FA2/siRNA nanoparticles and free DEAE12-CH- 
PEG-FA2, a set of experiments were performed to evaluate 
the effect of their interaction with human blood compo-
nents, namely cells, proteins and mediators. All tested 
nanoparticle and free DEAE12-CH-PEG-FA2 concentra-
tions with hemolysis assay (Figure 4A and S4A) were 
under the ASTM threshold of 5%.36 A platelet aggregation 
test (Figure 4B) has shown that all concentrations (except 
for 10x) meet the guideline threshold of <20% for platelet 

clotting. TPC and 5x induced platelet clotting at 2.9 ± 
1.1% and 15.6 ± 8.6%, respectively, with no statistically 
significant difference compared to DPBS. For free 
DEAE12-CH-PEG-FA2 (Figure S4B) aggregation was 
inferior to 20% for all concentrations, with a clot forma-
tion of 5.3 ± 1.4% for TPC. The hemagglutination assay 
showed a weak agglutination with the formation of 
a smooth mat of red blood cells on the well bottom 
(Figure 4C) for all concentrations, except for 10x which 
showed a mild aggregation. Free DEAE12-CH-PEG-FA2 

had similar outcomes as well (Figure S4C).
Plasma clotting times, measured with the APTT, PT 

and TT assays, showed that all DEAE12-CH-PEG-FA2 

/siRNA nanoparticle concentrations were within the nor-
mal clinical limits established for the test (Figure 4D). For 
TPC, the clotting times were as follows: 13.1 ± 0.2s for 
PT, 33.1 ± 1.3s for APTT and 15.6 ± 0.4s for TT; while for 
DPBS they were: 12.6 ± 0.2s for PT, 32.7 ± 1.3s for APTT 
and 15.8 ± 0.4s for TT, with no statistically significant 
difference. Free DEAE12-CH-PEG-FA2 showed similar 
responses (Figure S4D).

A Western blot analysis of the native C3α chain cleavage 
(~115 kDa) to split product C3c (~43 kDa), evaluated the 

Figure 2 Characterization of DEAE12-CH-PEG-FA2/siRNA nanoparticles in DPBS pH 7.2. Nanoparticles had DEAE12-CH-PEG-FA2/siRNA N/P ratios of 5:1, 10:1, 15:1, 20:1, 
30:1 and 40:1. (A) Nanoparticles agarose electrophoresis using 0.5 μg of siRNA/well. Lane 1: ladder (1kb pairs); lane 2 free siRNA; lane 3–8: DEAE12-CH-PEG-FA2/siRNA 
nanoparticles at the indicated N/P ratios. (B) Nanoparticle size and PDI with 0.02 mM of siRNA/optical-cell. (C) Zeta potential of nanoparticles at the indicated N/P ratios. 
(D) Nanoparticle size vs time and (E) their corresponding PDI. All values are expressed as the mean ± SEM of two independent experiments.
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activation of any of the three major pathways of the comple-
ment system (classical, alternative and lectin). Figure 4E 
shows that all nanocomplexes meet the guideline criteria, 
as none of the DEAE12-CH-PEG-FA2/siRNA nanoparticle 
concentrations led to complement system activation, as indi-
cated by the absence of C3c cleaved products, contrary to 
the positive control (CVF). Free DEAE12-CH-PEG-FA2 

showed the same effect as nanocomplexes (Figure S4E). 
Transferrin (~77 kDa) was used as a serum loading control, 
showing equal protein content between samples.

Nanoparticle Potential to Induce 
Cytokines
A key test to estimate one of the possible immune responses 
to cell-particle interactions is to quantify the production of 
pro- and anti-inflammatory cytokines. In PBMC, no statis-
tically significant differences in TNF-α (Figure 5A) and IL- 
6 (Figure 5B) secretion were observed, in any of the 

DEAE12-CH-PEG-FA2/siRNA nanoparticles or free 
DEAE12-CH-PEG-FA2 concentrations tested when com-
pared to DPBS. TNF-α expression levels at TPC were 
287.8 ± 67.0 pg/mL vs 84.5 ± 44.5 pg/mL for DPBS, 
while for LPS they were 1117 ± 185.2 pg/mL. IL-6 levels 
reached 150.2 ± 44.1 pg/mL for TPC vs 55 ± 49.2 pg/mL for 
DPBS, and 927.8 ± 117.1 pg/mL for LPS. On the other 
hand, IL-8 and IL-1β (Figure 5C and D) were both secreted 
in response to DEAE12-CH-PEG-FA2/siRNA nanoparti-
cles. The former reached 4082 ± 1313 pg/mL at TPC vs 
418.3 ± 200.0 pg/mL for DPBS and 7539 ± 2079 pg/mL for 
LPS, while the latter reached 629.8 ± 111.0 pg/mL for TPC 
vs 100.6 ± 45.6 pg/mL for DPBS (p< 0.01) and 502.8 ± 
148.3 pg/mL for LPS. Finally, IL-10 (Figure 5E) and IL-4 
(Figure 5F) expression levels were not statistically signifi-
cant compared to DPBS. Similar secretion profiles were 
observed when cells were incubated with free DEAE12- 
CH-PEG-FA2 (Figure S5A–F).

Figure 3 Cell viability and toxicity of DEAE12-CH-PEG-FA2/siRNA nanoparticles. The cytotoxic effect of nanoparticles was evaluated using the MTS (A, C, E) and LDH 
assays (B, D, F) in MG-63 cells, Raw 264.7 macrophage cells and PBMC. Cells were incubated with samples for 4, 24 and 48 h at 37°C. After the exposure time, MTS and 
LDH tests were performed. DPBS was used as the negative control. 500 μM H2O2 and 1% v/v triton X-100 were used as positive controls for MTS and LDH assays, 
respectively. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 are significantly different from the negative control. Data are expressed as the mean ± SEM of three independent 
experiments and were analyzed by Two-way ANOVA (post hoc Dunnett’s test). Blood samples for PBMC were collected from three different healthy human donors. See 
Table 1 for DEAE12-CH-PEG-FA2 and siRNA concentrations.
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NO and ROS Production
Nanoparticles have the capacity to produce ROS and 
impair the normal intracellular redox homeostasis, over-
riding the antioxidant capacity of cells.17 NO and ROS are 
effector molecules released by activated macrophages to 
defend the cell from pathogens. Therefore, the detection of 
ROS and NO can help estimate the effect of DEAE12-CH- 
PEG-FA2/siRNA nanoparticles or free DEAE12-CH-PEG- 
FA2 on cell responses.

Our results on NO production showed no statistically 
significant difference for any of the tested particle concen-
trations, when compared to the negative control DPBS 
(Figure 6A). Similar results were found with free 
DEAE12-CH-PEG-FA2 (Figure S6A).

As for ROS, Figure 6B shows no statistically signifi-
cant difference between samples and the negative control 

DPBS. Conversely, there was an increase in ROS produc-
tion for the H2O2 and DEM positive controls, from the 
start of exposure for the former, and 2 h after incubation 
for the latter. Free DEAE12-CH-PEG-FA2 had a similar 
response for all tested concentrations (Figure S6B).

Discussion
In the last decades, CH has garnered significant interest 
because of its many applications in several biomedical 
fields, as well as for its physicochemical properties and 
biocompatibility. On the nanoscale, the therapeutic poten-
tial of this polysaccharide as a drug delivery system and as 
a vector of genetic payloads, among others, has been 
acknowledged.3 We have previously reported that adding 
DEAE to the main CH chain modifies its pKa character-
istics, improving the buffering capacity of nanoparticles, 

Figure 4 Hemocompatibility of DEAE12-CH-PEG-FA2/siRNA nanoparticles. (A) Hemolysis percentage induced by nanoparticles and visual inspection of tubes after the 
centrifugation step (inset). Human blood was incubated with samples for 3 h at 37°C. DPBS and triton represent the negative and positive controls, respectively. Pink dash 
line shows the 5% threshold of ASTM from which a sample is considered to have hemolytic properties. Data are expressed as the mean ± SEM of three independent 
experiments and were analyzed by One-way ANOVA (post hoc Dunnett’s test). (B) Nanoparticle platelet aggregation profiles after platelet-rich plasma was incubated with 
samples for a 6 min run at 37°C. PBS and collagen represent the negative and positive controls, respectively. Data are expressed as the mean ± SEM of three independent 
experiments and were analyzed by One-way ANOVA (post hoc Dunnett’s test). (C) Hemagglutination activity produced by nanoparticles in an erythrocyte suspension after 
1 h of incubation at 37°C. DPBS and lectin represent the negative and positive controls, respectively. Pictures represent one of three independent experiments with similar 
results. The agglutination analysis was performed as described in the methods. (D) Effect of particles on plasma coagulation times: prothrombin time (PT), thrombin time 
(TT) and activated partial thromboplastin time (APTT). Measures were taken after a 30 min incubation of human plasma with samples at 37°C. The normal coagulation time 
limits are indicated with a colored dash line (PT 11 ≤ 15s (dark blue), TT 14 ≤ 21s (gray) and APTT 28 ≤ 40s (light green)). Non-treated plasma and DPBS were used as 
internal controls for the test. Data are expressed as the mean ± SEM of four independent experiments and were analyzed by Two-way ANOVA (post hoc Dunnett’s test). 
(E) Complement activation assay showing the expression levels of a native C3α chain (~115 kDa) and its cleavage product C3c (~43 kDa), after human plasma exposure to 
nanoparticles for 30 min at 37°C. DPBS and CVF represent the negative and positive controls, respectively. Transferrin (~77 kDa) was used as a serum loading control. Blots 
represent one of three independent experiments with similar results. For all experiments, blood samples were collected from at least three healthy human donors. 
****p<0.0001 are significantly different from the negative control. See Table 1 for DEAE12-CH-PEG-FA2 and siRNA concentrations.
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as well as their endosomal escape and the release of cargo 
in the cytoplasm, which enhances their transfection 
efficiency.19,26 As previously shown, adding FA to our 
nanovector also improves the capacity to target cells 
expressing the folate receptor (FR).28 Herein, we synthe-
sized stable DEAE12-CH-PEG-FA2/siRNA nanoparticles 
at physiological pH (7.2), as demonstrated by the unifor-
mity in size and PDI measurements over 24 h at a N/P 
ratio of 15:1. This characteristic improves their potential 
for therapeutic applications as it makes their use in biolo-
gical conditions possible. CH interacts electrostatically 
with genetic materials to form nanoparticles without the 
need for organic solvents, thanks to its positively charged 
surface. Therefore, a simple nanoparticle preparation in 
a DPBS solution (pH 7.2) was favored, according to 
ASTM and NCL recommendations, as it prevents addi-
tives/surfactants toxicity.46,47

In our study, we followed the guidelines from ISO,48 

ASTM,49 and NCL,23 which were adapted to our intended 

route of exposure, potential cellular targets and equipment/ 
reagent availability. This allowed us to estimate the biologi-
cal response to CH in two ways: complexed with siRNA and 
in free form. The protocols chosen evaluated the interaction 
between nanocomplexes and blood components, as our nano-
particles are intended to pass through the bloodstream before 
reaching their target. All the in vitro studies were performed 
with TPC as the principal concentration, derived from 
a potential therapeutic dose in an in vivo study. Moreover, 
we achieved a modified CH polymer synthesis with unde-
tectable levels of endotoxin contamination (<0.1 EU/mL), to 
avoid interference with the in vitro outcomes.

In the present study, PBMC were studied for their 
potential cell-particle interactions in the bloodstream. 
PBMC (only monocytes) and Raw 264.7 cells express 
FR over their surface,50,51 which may be recognized by 
the folate ligand grafted to the CH structure. For their part, 
MG-63 cells were of interest as they do not express 
FR,28,52 making it possible to correlate the effect of folate 

Figure 5 Nanoparticle potential to induce cytokines. (A) TNF-α, (B) IL-6, (C) IL-8, (D) IL-1β, (E) IL-10, and (F) IL-4 cytokines were detected by ELISA, after PBMC 
incubation with nanoparticles for 24 h at 37°C. DPBS and LPS (20 ng/mL) were used as negative and positive controls, respectively. Data are expressed as the mean ± SEM of 
five independent experiments, each one from a different healthy human donor, except for IL-4 where N=4. *p<0.05, **p<0.01, ****p<0.0001 are significantly different from 
the negative control. Data were analyzed by One-way ANOVA (post hoc Dunnett’s test). See Table 1 for DEAE12-CH-PEG-FA2 and siRNA concentrations.

Dovepress                                                                                                                                                         Rondon et al

International Journal of Nanomedicine 2020:15                                                                          submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
6193

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


targeting to the overall cell viability results. Cytotoxicity 
studies revealed that cell viability and LDH release were 
dose, time and cell-type dependent. As expected, both 
MG-63 and PBMC cell viability were not significantly 
affected at the three lowest concentration levels (TPC, 1/ 
5x and 1/25x) and for all incubation times (4, 24 and 48 h). 
This suggests a low toxicity profile for our nanoparticles, 
which could be explained by the limited presence of FR on 
their surface. On the other hand, cell viability of Raw 
264.7 macrophages decreased significantly in a dose and 
time-dependent manner. We hypothesize that the phagocy-
tic role of these cells increases through the interaction 
between FR on the cell’s surface and folic ligands con-
jugated to the CH structure, which may explain their 
reduced viability. This hypothesis is supported by Yang 
et al,51 who report that folic acid on CH nanoparticles 
enhanced specific internalization and gene silencing in 
activated Raw 264.7 macrophages. Finally, the increasing 
level of LDH release from Raw 264.7 cells incubated with 
both DEAE12-CH-PEG-FA2/siRNA nanoparticles and free 
DEAE12-CH-PEG-FA2 could be the result of a cell death 
process or a change in cell surface permeability.53 The 
discrepancy between MTS and LDH results in these cells 
could be explained by the transient formation of nanoscale 
holes on the cellular membrane during particle 
internalization,54,55 leading to LDH release56 in the culture 
medium. This could occur without it being correlated to 
cell death activation. Therefore, cell mitochondria could 
still process the MTS substrate and give acceptable 

viability results, as those obtained for Raw 264.7 cells, 
despite the high levels of LDH release observed. Different 
CH-based nanoparticles have been tested in Raw 264.7 
macrophages and PBMC. Overall, cell viability is fre-
quently above 70% when evaluated by MTS assay or its 
derivatives (MTT, XTT, etc.).57–61 For instance, Raw 
264.7 cells treated with a mannosylated CH-graft- 
polyethylenimine copolymer showed ~95% viability after 
a 24 h exposure at concentrations around our TPC.57 In 
PBMC, CH gold nanoparticles showed low cytotoxicity 
for concentrations up to 75 μM.60 However, most of the 
studies do not evaluate LDH release, making toxicity 
comparisons difficult, since the methodology used to eval-
uate cytotoxicity differs between research groups. Finally, 
it is clear that the CH nanoformulation, its physicochem-
ical characteristics, tested concentrations, and percentage 
of cellular uptake, all contribute to the variations in cell 
viability results.

In the next step, hemocompatibility screening gave 
promising results for DEAE12-CH-PEG-FA2/siRNA nano-
particles when it came to blood-contact purposes. The 
interaction between erythrocyte and DEAE12-CH-PEG- 
FA2/siRNA nanoparticles or free DEAE12-CH-PEG-FA2 

meet the ASTM threshold of <5% for hemolytic proper-
ties. This weak hemolytic response can be attributed, in 
part, to the attachment of PEG molecules to the CH 
structure, which enhanced their hemocompatible 
properties.62 Thereafter, we assessed plasma coagulation 
times and platelet aggregation properties, as data from the 

Figure 6 Nitric oxide (NO) and reactive oxygen species (ROS) production in response to nanoparticles. (A) NO concentration produced by Raw 264.7 macrophage cells in 
response to nanoparticles. Cells were incubated with samples for 48 h at 37°C. NO2

− concentration was measured in cell supernatants using the Greiss reagent. DPBS and 
LPS (100 ng/mL) were used as negative and positive controls, respectively. Data were analyzed by One-way ANOVA (post hoc Dunnett’s test). (B) ROS induction by 
nanoparticles in Raw 264.7 cells. Cells were exposed to samples for 6 h, after pre-incubation with 20 μM of DCFH-DA probe. Fluorescence readings (ex. 485 nm and em. 
530 nm) were performed at the indicated time points. 500 μM H2O2 and 5 mM DEM were used as positive controls. DPBS in blue represents the negative control. Data 
were analyzed by Two-way ANOVA (post hoc Dunnett’s test). Data from NO and ROS are expressed as the mean ± SEM of three independent experiments. *p<0.05, 
**p<0.01, ****p<0.0001 are significantly different from the negative control. See Table 1 for DEAE12-CH-PEG-FA2 and siRNA concentrations.
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literature indicates that nanoparticles may trigger platelet 
adhesion or deplete coagulation factors, leading to throm-
bogenicity and bleeding.30,63 Our results showed that 
DEAE12-CH-PEG-FA2/siRNA nanoparticles and free 
DEAE12-CH-PEG-FA2 meet the established clinical limits 
for the test, as they did not influence any of the main 
coagulation pathways (intrinsic (APTT), extrinsic (PT) 
and common (TT)). Moreover, platelet aggregation satis-
fied the <20% aggregation threshold for the four lowest 
nanocomplex concentrations (5x, TPC, 1/5x and 1/25x), 
establishing their low platelet clotting properties. Finally, 
the results from the complement activation test also fulfill 
the guideline requirements as nanoparticles were unable to 
cleave the C3α chain molecule. This is an important char-
acteristic to avoid allergic and anaphylactic reactions63 

when aiming for systemic administration.
However, the hemagglutination assay showed a slight 

aggregation of red blood cells at all concentrations of 
DEAE12-CH-PEG-FA2/siRNA nanoparticles or free 
DEAE12-CH-PEG-FA2. This weak cell adhesion occurred 
without loss of membrane integrity, as the low hemoglobin 
release in the hemolysis test showed. Lima et al,38 found that 
the contact between CH nanoparticles and erythrocytes cre-
ates a net that could trigger hemagglutination. The polymer’s 
positive charge could explain this, as it may allow an electro-
static interaction with the negative surface of red blood cells, 
and activate the agglutination process.38 This hypothesis is 
supported by the findings of Fan et al,64 who confirmed that 
CH nanoparticles can easily attach to erythrocyte mem-
branes. Our nanoparticles showed a zeta potential of +8.9 ± 
0.7mV (N/P ratio of 15:1), which is considered a neutral 
surface charge according to NCL Method PCC-2.65 

However, it should be noted that the erythrocytes were resus-
pended in a NaCl solution (pH 5.5), as recommended in the 
hemagglutination protocol. Thus, we assume that a decrease 
in pH may have protonated the CH amine groups and raised 
the density of the positive charge, increasing its interaction 
with red blood cells. Hence, the characterization of nano-
complexes with the same medium used for in vitro assays is 
appropriate. Unfortunately, it was not possible to exactly 
reproduce the testing conditions for a DLS measure, as 
interference made it impossible to detect an acceptable read-
ing. Interestingly, current hemagglutination assays still lack 
a validated quantitative and predictive technique. However, 
the search for alternative methods is beyond the framework 
of this study.

We also analyzed the ability of nanoparticles to modulate 
cytokine expression, namely TNF-α, IL-1β, IL-6, IL-8, IL-4 

and IL-10, as they play a key role in the inflammatory 
regulation processes.66 Overall, most of the cytokine expres-
sion levels were not affected by our nanoparticles, although 
IL-8 and IL-1β were induced at some concentrations. 
Cytokines, such as TNF-α, IL-1β and IL-6, have 
a significant function in the acute inflammatory process, 
causing swelling and redness.67 This response is increased 
when neutrophils are enrolled and activated, led by IL-8 
chemokine.67 It is interesting to see that only the IL-1β and 
IL-8 levels were significantly released in our study, whereas 
TNF-α and IL-6 remained unaltered. It is also important to 
note that IL-8 induction was only statistically significant for 
the highest concentration tested, which was intended to 
achieve some toxicological response. TNF-α and IL-1β are 
the primary cytokines that trigger and maintain inflammatory 
responses.68 The fact that IL-1β was induced but TNF-α was 
not seems to reflect an incomplete activation of the inflam-
matory pathway by DEAE12-CH-PEG-FA2/siRNA nanopar-
ticles. This hypothesis is supported by the normal levels of 
IL-10 induced by our nanocomplexes, as this cytokine is 
substantially secreted during an inflammatory response to 
counterbalance the effects of pro-inflammatory mediators.69 

Similarly to IL-10, IL-4 secretion was comparable to base-
line. As IL-4 is a mediator involved in IgE induction68 

throughout an allergic reaction, its normal levels let us sur-
mise that our CH is safe (as a derivative of shrimps’ exoske-
leton) from a hypersensitivity response.

IL-1β and IL-6 are known to cause fever and are therefore 
useful as pyrogenic markers when testing pharmaceutical 
preparations.30 The fact that the LAL assay had a negative 
outcome, and IL-6 expression levels were low, allowed us to 
confirm that our CH nanoformulation is free of endotoxin 
contamination. High expression levels of IL-1β have been 
associated to CH’s capacity to activate the NLRP3 inflam-
masome pathway in human PBMC, mouse peritoneal macro-
phages and mouse bone marrow–derived macrophages 
(BMMΦ).70 BMMΦ cells released a significant level of IL- 
1β in response to CH without secretion of other pro- 
inflammatory cytokines, such as TNF-α and IL-6, supporting 
our results.70 Similarly, Feng et al71 have reported an IL-1β 
production by Raw 264.7 macrophage cells, after stimulation 
with oligochitosans, which may be related to the recognition 
of this molecule by mannose receptors on the cell’s surface. 
There are three main theories regarding the activation of the 
inflammasome pathway: the production of ROS, the desta-
bilization of lysosomes during particle escapement, and the 
K+efflux.70 According to our results, neither DEAE12-CH- 
PEG-FA2/siRNA nanoparticles nor free DEAE12-CH-PEG- 
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FA2 produced ROS, which suggests that inflammasome 
activation is not caused by ROS in this study. With regard 
to the lysosome translocation theory, we speculate that during 
nanoparticle escape from these organelles the inflammasome 
system could be activated, which may explain the production 
of IL-1β. In turn, IL-1β, as a mediator of the acute response, 
may have an effect on immune cells to produce IL-8. CH has 
been recognized as an immunostimulatory agent,72 as an 
adjuvant in vaccines,73 and as a polymer with anti- 
inflammatory properties.74 This last characteristic could set 
it apart from other polymers with a history of more consistent 
inflammatory reactions, such as PEI,67 where intracellular 
stress and apoptotic cell death processes are involved.75 In 
any case, deeper mechanistic studies about the inflamma-
some pathways and other CH signaling pathways are needed, 
to improve our understanding of the processes involved in 
the cellular response to CH.

Finally, oxidative stress studies showed that neither 
DEAE12-CH-PEG-FA2/siRNA nanoparticles nor free 
DEAE12-CH-PEG-FA2 induced ROS or NO production by 
Raw 264.7 macrophage cells. These outcomes are interesting 
as nanoparticle-induced oxidative stress is involved in 
inflammatory response, cytotoxicity and genotoxicity.76 CH 
has been associated with antioxidant activity thanks to its 
ROS scavenging ability.77 For instance, CH has shown anti- 
oxidative properties in a LPS-injected mouse model via the 
restoration of glutathione levels and catalase activity.78 Other 
CH modifications, such as gallic acid grafted onto 
O-carboxymethyl CH (GA-g-CMCS), showed a protective 
action against hydrogen peroxide treated cells, reducing ROS 
production and restoring superoxide dismutase, catalase and 
glutathione peroxidase activity.79 Also noteworthy is the 
literature data showing the capacity of CH to produce ROS 
and consequently oxidative stress. Jesus et al80 found that 
ROS production in Raw 264.7 macrophage cells was asso-
ciated with the %DDA of their CH polymer. Thus an 80% 
DDA in CH nanoparticles and polymer were able to induce 
ROS in a concentration-dependent manner, while a 93% 
DDA did not. Moreover, Sarangapani et al81 found that 
with a particular size of positively charged CH nanoparticles, 
the oxidative stress mechanism can be triggered through 
ROS generation and the depletion of glutathione, becoming 
selectively cytotoxic for leukemia cells. Similarly, 
Martinez et al60 proposed CH gold nanoparticles (CH- 
AuNPs) to induce ROS production as a possible treatment 
for cancer cells. Reactive nitrogen species (RNS) production 
by phagocytes, especially NO, are key molecules to measure 
nanoparticle-induced injury,76 and results reported in the 

literature are contradictory as for ROS. Thus, some CH 
formulations have the ability to induce NO production as 
part of the oxidative stress response,59 while others have no 
effect.80 It was also reported that CH possesses the ability to 
reduce the LPS-induced NO levels by Raw 264.7 
macrophages.80,82 This conflicting data can be explained by 
the preparation procedures of the CH samples and their 
physicochemical characteristics, such as composition, size, 
charge and surface reactivity.76

Taking into consideration the general results from all 
assays, and the fact that DPBS outcomes are comparable 
to those of non-treated cells, we concluded that this parti-
cle suspension medium did not influence the data. 
Therefore, as DEAE12-CH-PEG-FA2/siRNA nanoparticles 
and free DEAE12-CH-PEG-FA2 had similar biological 
responses, we deduced that CH is the component with 
the strongest effect in the nanoformulation. This study 
allowed us to evaluate in vitro, the potential biological 
response to an in vivo dose of 30 μg siRNA-SSB/mouse 
(1.5 mg/kg) complexed with 320 μg of DEAE12-CH-PEG- 
FA2/dose. As in vitro assays may predict the toxicity of 
in vivo studies,30 a dose ranging between TPC and 1/5x 
concentration will be considered for the animal model.

This basic toxicological screening provides a strong 
starting point to evaluate the safety profile of nanomater-
ials (see Table 2). New complementary standard guidelines 
addressing nanotoxicology are available in several 
FDA83,84 and ISO85 reports. Guideline implementation 
makes it possible to compare outcomes from different 
studies across laboratories, as the experimental conditions 
are already established by the different organizations. 
Finally, relevant aspects, such as endotoxin contamination 
and nanoparticle characterization, have to be addressed 
early on, at the preclinical development stage, to avoid 
inconsistencies with in vitro results, to improve our inter-
pretation and to correlate biological responses.

Conclusion
This study supports the application of endotoxin-free DEAE12 

-CH-PEG-FA2/siRNA nanoparticles for potential blood- 
contact purposes, thanks to their low hemotoxicity. This is 
illustrated by their weak hemolytic and platelet aggregation 
properties, and the absence of effect on complement system 
and coagulation times. Their size, siRNA complexation and 
stability over time are suitable for various applications. We 
observed that cytotoxicity is related to dose, cell type and 
exposure times. Moreover, their low oxidative stress response 
and cytokine production make them a promising candidate for 
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gene therapy applications, especially in inflammatory condi-
tions, warranting further investigation. Complementary stu-
dies will be carried out to clarify the mechanisms involved in 
LDH release and the IL-1β levels observed in our study. 
Based on its toxicological profile reported herein, we con-
clude that this DEAE12-CH-PEG-FA2/siRNA platform is safe 
for potential biomedical applications administered intrave-
nously, orally or topically. Future trials of our nanoparticles 
will address the biodistribution and toxicity of particles in 
a mouse model, using an in vivo imaging system as well as 
monitoring of the biomarkers for organ function.
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macrophages; CH, chitosan; CVF, cobra venom factor; 
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