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Abstract: It is difficult to control the recurrence and metastasis of malignant tumors; 
furthermore, anesthesia is considered one of the main influencing factors. There has been 
increasing clinical attention on the effects of anesthetic drugs and methods on postoperative 
tumor growth and metastasis. We reviewed the effects of anesthesia on tumor recurrence and 
metastasis; specifically, the effects of anesthetic agents, anesthesia methods, and related 
factors during the perioperative period on the tumor growth and metastasis were analyzed. 
This study can provide reference standards for rational anesthesia formulations and cancer- 
related pain analgesia protocols for surgical procedures in patients with malignant tumors. 
Moreover, it contributes toward an experimental basis for the improvement and development 
of novel anesthetic agents and methods. 
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Introduction
It remains difficult to control the recurrence and metastasis of malignant tumors, 
which could be strongly associated with multiple factors that affect prognosis, 
including anesthesia.1,2 There have been several worldwide studies on the relation-
ships between anesthetic agents and methods with cancer growth and immune 
function in patients with cancer.3,4 These studies have provided valuable references 
for selecting anesthesia and perioperative management for patients with cancer. 
Different anesthetic agents have been shown to have different effects on immunity, 
recurrence, and metastasis in patients with cancer.5,6 Further, different anesthesia 
methods, including epidural, intravenous, inhalation, and combined intravenous and 
inhalation anesthesia, as well as intercostal nerve block, could have different effects 
on cancer recurrence or metastasis.7–9 In surgery-naïve healthy individuals, epidural 
anesthesia and general anesthesia were found to induce mild transient immune 
suppression; however, surgical stress significantly increased the risk of peri-/post-
operative cancer recurrence and metastasis.1,10 Contrastingly, epidural anesthesia 
reduces the risk of cancer recurrence through surgical stress reduction. Although 
there is no report of paravertebral block reducing cancer recurrence, it is associated 
with a higher overall survival rate after lung cancer surgery.11 Therefore, anesthesia 
management of patients with cancer could significantly affect their long-term 
prognosis. Clinical studies have proposed several beneficial measures, including 
appropriate induction agent selection, minimal volatile anesthetic agent usage, and 
minimal combined use of opioids and cyclooxygenase inhibitors.12 Moreover, other 
intraoperative factors, such as blood transfusion and temperature regulation, affect 
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the long-term prognosis of patients with cancer.13,14 This 
study aimed to review the effects of anesthetic agents, 
anesthesia methods, and intraoperative factors on cancer 
recurrence and metastasis.

Effect of Anesthetic Drugs on 
Cancer Recurrence and Metastasis
Intravenous Anesthetic Agents
Intravenous general anesthetic agents act on the central 
nervous system to achieve anesthesia.14–16 They are cur-
rently the main agents for anesthesia induction and main-
tenance. Studies have shown that most intravenous general 
anesthetic agents can suppress immune system function 
and affect cancer progression (Table 1).

Propofol
Propofol is a short-acting intravenous anesthetic that is 
widely used as an intraoperative and postoperative seda-
tive and hypnotic agent.17,18 Its anesthetic effects involve 
direct GABAA receptor activation, which slows their 
channel-closing time and blocks sodium channels.19,20 Li 
et al suggested that propofol-based total intravenous 
anesthesia (TIVA) for breast cancer surgery could reduce 
the risk of recurrence within the first 5 years after modified 
radical mastectomy.17 Propofol anesthesia was associated 
with better survival in hepatectomy for hepatocellular car-
cinoma patients,21 in radical prostatectomy for prostate 
cancer patients,22 in patients who underwent surgery for 
infiltrating bladder cancer,23 in pancreatic cancer 
surgery,24 and in open intrahepatic cholangiocarcinoma 
surgery.25 However, a recent retrospective cohort study 
showed that propofol-based TIVA was not significantly 
associated with a decrease in the 1-year overall or cancer- 
related mortality after gastric cancer surgery, as compared 
with inhalation anesthesia.26,27 In addition, a randomized 
control trial involving more than 976 women who under-
went breast cancer surgery demonstrated that no signifi-
cant difference in the locoregional recurrence or overall 
5-year survival rates occurred after breast surgery using 
desflurane or propofol anesthesia.28 A retrospective study 
with 6305 patients demonstrated that propofol may have 
a survival advantage compared with sevoflurane among 
breast cancer patients.29 However, another study showed 
that paravertebral block with propofol anesthesia does not 
improve survival compared with sevoflurane anesthesia for 
breast cancer surgery.30 The inherent weaknesses of retro-
spective analyses were made apparent. With regard to its 

mechanism, propofol is considered to protect against 
immunosuppression during the perioperative period and 
has a lower inflammatory response than volatile agents.15 

Propofol can induce apoptosis by activating different sig-
naling pathways and inhibiting cancer cell growth.31,32 

Deng et al reported that propofol could inhibit in vitro 
and in vivo colorectal cancer cell (CRC) migration through 
PI3K/AKT signaling activation and induction of epithelial- 
to-mesenchymal transition (EMT).33 By downregulating 
transforming growth factor β1 (TGF-β1) expression, pro-
pofol effectively inhibits osteosarcoma cell proliferation 
and invasion, and induces their apoptosis.34 Liu et al sug-
gested that propofol inhibits pancreatic cancer cell (PANC- 
1) invasion and induces their apoptosis through microRNA 
(miR)-21/Slug signaling modulation.35 Only one study 
found a different conclusion, whereby propofol induces 
the proliferation and invasion of gallbladder cancer 
cells.36 Based on this, we found that an increasing number 
of studies have discovered that propofol plays an impor-
tant role in cancer by regulating the expression of multiple 
signaling pathways, downstream molecules, microRNAs, 
and long non-coding RNAs. Emerging evidence has indi-
cated that propofol can improve the anti-tumor effect of 
some small molecular compounds or chemotherapeutic 
drugs. Moreover, most clinical trials imply that propofol 
is related with better survival outcomes in cancer patients 
after surgery.

Ketamine
Ketamine has an immunomodulatory effect on macro-
phages, lymphocytes, and mast cells.37–39 A breast can-
cer rat model study reported that ketamine, sodium 
thiopental, and inhaled anesthetic agents could promote 
tumor metastasis and were inversely associated with NK 
cell activity.40 This effect was significantly reduced by 
pre-administering the β-blocker nadolol or through long- 
term low-dose immunostimulant administration. He et al 
reported that ketamine could induce anti-apoptotic pro-
tein Bcl-2 upregulation and promote breast cancer cell 
invasion and proliferation.41 Contrastingly, a recent study 
suggested that ketamine was an N-methyl-D-aspartate 
(NMDA) antagonist that inhibits pancreatic cancer cell 
proliferation and apoptosis.42 These indicate that keta-
mine has cancer-promoting effects mainly involving 
immune function suppression; however, its direct effect 
on cancer cells remains unclear.
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Table 1 The Recent Studies on the Effect of Intravenous Anesthetics on Cancers

Type of 
Anesthetics

Anesthetics Authors Year Type of 
Cancer (n)

Type of 
Research

Effect on Cancer Relative Pathway

Intravenous 

anesthetics

Propofol Liang 

et al114

2020 Colon cancer in vitro ↓ JAK2/STAT3

Propofol Zheng 

et al115

2020 Non-small-cell 

lung cancer 

(NSCLC)

in vivo and 

in vitro

↓ miR-21/PTEN/AKT

Propofol Wang 
et al116

2020 Pancreatic 
cancer

in vitro ↓ miR-34a-E-cadherin 
and LOC285194

Propofol Liu 
et al117

2020 Gastric cancer in vitro ↓ MicroRNA-195-5p/ 
Snail

Propofol Li et al118 2020 Papillary thyroid 
cancer

in vivo and 
in vitro

↓ miR-320a, HMGB1, 
ANRIL and Wnt/β- 

catenin and NF-κB

Propofol Yu 

et al119

2020 Pancreatic 

cancer

in vivo and 

in vitro

↓ ADAM8

Propofol Li et al120 2020 Glioma in vitro ↓ mir-410-3p/TGFBR2

Propofol Su 
et al121

2020 Cardia cancer in vitro ↓ MAPK/ERK

Propofol Zhang 
et al122

2020 Colon cancer in vivo and 
in vitro

↓ STAT3/HOTAIR, WIF- 
1 and Wnt

Propofol Zhang 
et al123

2020 Gastric cancer in vivo and 
in vitro

↓ lncRNA MALAT1/miR- 
30e/ATG5

Propofol Xu 
et al34

2016 Osteosarcoma in vitro ↓ TGF-beta1

Propofol Liu 
et al35

2016 Pancreatic 
Cancer

in vivo ↓ miR-21

Propofol Xu 
et al34

2016 Glioblastoma in vitro ↓ miR-218

Propofol, 
Etomidate, 

Dexmedetomidine

Deng 
et al33

2016 Colorectal 
cancer

in vivo and 
in vitro

Propofol: ↓ Etomidate: 
↑ Dexmedetomidine: -

(PI3K)/AKT, Epithelial- 
mesenchymal 

transition.

Etomidate Chu 

et al124

2019 Lung 

Adenocarcinoma

in vitro ↓ MMP1, MMP2, MMP7 

and MMP9

Etomidate Chen 

et al125

2018 Brain tumor in vitro ↓ PARP, cleaved PARP, 

caspase-9 and 

procaspase-3

Ketamine Hu 

et al126

2002 Colorectal 

cancer

in vivo and 

in vitro

↓ NMDA receptor- 

CaMK II-c-Myc

Ketamine Duan 

et al127

2019 Colorectal 

cancer

in vitro ↓ VEGF, NMDA 

receptor

(Continued)
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Opioids
Given their strong analgesic effects, opioids are widely used in 
perioperative analgesia and treatment of postoperative pain 
and chronic cancer pain.43,44 Opioid receptors are located in 
both neurons and immune cells; further, they can be present in 
several tumor cell types.45 Opioid promotion of tumor metas-
tasis is intricately associated with the role of μ receptors.46,47 

Opioid receptors, especially μ receptors, are expressed on 
vascular endothelial cells. Binding between opioids and μ 
receptors promotes nitric oxide production, which is involved 
in angiogenesis in endothelial cells, and VEGF-mediated 
angiogenesis.48,49 These processes are involved in tumor pro-
liferation, metastasis, and recurrence. In addition, opioids can 
activate cyclooxygenase receptors and promote prostaglandin 
E2 (PGE2) production.50,51 PGE2 has been shown to promote 
the production of endothelin 1, VEGF, and platelet-derived 
growth factors in breast cancer cells, which promotes cancer 
invasion and metastasis.52 There has been inconsistency across 
recent reports with regard to opioid effects on patients with 
cancer. For example, the antitumor morphine effects mainly 
occur as anti-proliferative and pro-apoptotic effects on 

different cancer cell types.53,54 Koodie et al found that mor-
phine could reduce leukocyte migration across the endothe-
lium and tumor angiogenesis in mice.55 They suggested that 
morphine may be beneficial in pain management of patients 
with cancer through its effects on angiogenesis. It has also 
been reported that tramadol has an antitumor effect, revealing 
that tramadol use is related to enhanced postoperative out-
comes in breast cancer patients.56 Furthermore, continuous 
administration of morphine with high doses is more likely to 
inhibit tumor metastasis and growth in rodent models. In 
contrast, intermittent injection induces withdrawal-like condi-
tions and activates the hypothalamic-pituitary-adrenal (HPA) 
axis known to facilitate cancer metastasis and progression. 
Therefore, not only is the type of opioid receptor potentially 
significant, but the method of dosing may influence whether 
opiate analgesia has a pro- or anti-tumor effect.

Non-Steroidal Anti-Inflammatory 
Drugs (NSAIDs)
NSAIDs are a class of analgesics that lack steroid 
structures.57 They can inhibit cyclooxygenase, reduce the 

Table 1 (Continued). 

Type of 
Anesthetics

Anesthetics Authors Year Type of 
Cancer (n)

Type of 
Research

Effect on Cancer Relative Pathway

Morphine Grandhi 

et al128

2017 8 cancers Meta-analysis ↑(Anti-angiogenesis 

and 
immunosuppression)

Unknown

Morphine Zhang 
et al129

2020 Esophageal 
carcinoma

in vitro ↑ AMPK, Epithelial- 
Mesenchymal 

Transition

Oxycodone Cui 

et al130

2017 Rectal cancer Clinic trials ↑(Immunosuppression) Unknown

Tramadol Gaspani 

et al131

2002 Breast cancer in vivo ↓(NK lymphocyte, 

Metastasis)

Unknown

NSAIDs Ye et al59 2020 Gynecological 

malignancies

Retrospective 

study

↓ COX-2-PGE2-EPs

Mu agonists Wang 

et al132

2015 Non-small-cell 

lung cancer 

(NSCLC)

Retrospective 

study

↑ Unknown

Ketorolac Retsky 

et al133

2012 Breast cancer Meta-analysis ↓(Anti-angiogenesis 

and -Metastasis)

Unknown

Naproxen Chen 

et al134

2020 Lung cancer, 

Ovarian cancer, 
Colon cancer

in vivo and 

in vitro

↓ DNA injury; COX-2 

and MMP-9

Notes: ↑: enhance cancer; ↓: inhibit cancer grow or metastasis.
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production of PG inflammatory mediators, and exert anti- 
inflammatory and analgesic effects.58,59 NSAIDs are con-
sidered capable of reducing the development, recurrence, 
and proliferation of various cancers, including colon, 
breast, lung, and pancreatic cancer.60,61 NSAIDs are able 
to interfere with the tumor microenvironment by increas-
ing chemo-sensitivity and apoptosis, and reducing cell 
migration. Furthermore, they can protect immune system 
function and reduce the risk for perioperative micrometas-
tasis, and therefore are used as preoperative analgesics 
widely in patients with cancer. A retrospective study 
reported that ketorolac improved the overall survival of 
patients with lung cancer (p=0.05).62,63 Forget et al 

reported an independent association of the NSAID used 
at the beginning of surgery with a lower risk of metastasis 
after lung cancer surgery.64 Furthermore, the use of ketor-
olac was independently associated with longer survival. 
Preoperative ketorolac administration resulted in a lower 
cancer recurrence rate.62,64

Inhaled Anesthetic Agents
Inhaled anesthetic agents are widely clinically used given 
their strong anesthetic effects and ease in adjusting the 
anesthesia depth.16,65,66 They are currently widely considered 
to have adverse effects on patients with cancer by suppres-
sing immunity and promoting tumor cell migration (Table 2).

Table 2 The Recent Studies on the Effect of Volatile Anesthetics on Cancers

Type of 
Anesthetics

Anesthetics Authors Year Type of 
Cancer (n)

Type of 
Research

Effect on 
Cancer

Relative Pathway

Volatile 

anesthetics

Sevoflurane Zhang 

et al135

2020 Cervical 

cancer

in vitro ↑ HDA6, PI3K/AKT- 

ERK1/2

Sevoflurane Han et al136 2020 Glioma in vitro ↓ Ca2+-dependent 

CaMKII/JNK

Sevoflurane Kang et al137 2020 Ovarian 

cancer

in vitro ↓ JNK and p38 MAPK

Sevoflurane Li et al138 2020 Lung cancer in vivo ↑ IL-6/JAK/STAT3

Sevoflurane Zhang 

et al139

2019 Ovarian 

cancer

in vivo and 

in vitro

↓ STC1

Sevoflurane Xue et al140 2019 Cervical 

cancer

in vitro ↑ Ezrin and MMP2; 

BCL-2; BAX

Sevoflurane Chen et al141 2019 Osteosarcoma in vitro ↓ miR-203/WNT2B/ 

Wnt/β-catenin

Isoflurane Hu et al142 2018 Liver cancer in vitro ↓ NF-κB and the PI3K/ 

AKT

Isoflurane Zhu et al74 2016 Glioblastoma in vitro ↑ Unknown

Desflurane Elias et al143 2015 Ovarian 
cancer

Retrospective 
study

↓ Unknown

Sevoflurane, 
Thiopental

Hurmath 
et al144

2016 Glioblastoma in vitro ↓ MMPs

Sevoflurane, 
Desflurane

Bundscherer 
et al145

2019 Colon cancer in vitro Sevoflurane↑, 
Desflurane ↓

Unknown

Desflurane, isoflurane Cata et al146 2017 Glioblastoma META analysis - Unknown

Isoflurane, 

Sevoflurane, 
Desflurane

Iwasaki 

et al78

2016 Ovarian 

carcinoma

in vitro ↑ MMP11 and VEGF-A

Notes: ↑: enhance cancer; ↓: inhibit cancer grow or metastasis.
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Sevoflurane
Sevoflurane is an inhaled anesthetic agent widely used in 
cancer surgery for maintaining intraoperative anesthesia.66,67 

Several retrospective studies have shown that compared with 
propofol anesthesia, sevoflurane anesthesia is associated 
with worse clinical outcomes in patients with breast, colon, 
rectal, and gastric cancer.68–70 Sevoflurane can suppress the 
immune response by regulating cytokine expression and 
reducing NK cell toxicity. Compared with patients under-
going radical laparoscopic hysterectomy for cervical cancer 
who received propofol, those who received sevoflurane had 
significantly lower CD3+, CD4 +, and natural killer (NK) 
cell counts, as well as a lower CD4+/CD8+ ratio. Regarding 
the mechanism of action, Shi et al demonstrated that sevo-
flurane promoted the self-renewal and proliferation of glioma 
stem cells in vitro by regulating the hypoxia-inducible factor 
(HIF) pathway.71 This suggests that sevoflurane may 
enhance tumor growth, and thus affect patient outcomes by 
inducing tumor stem cell proliferation. Sevoflurane has been 
shown to increase the expression of oncogenic protein mar-
kers, including HIF-2α and nuclear p-p38, in neck squamous 
cell carcinoma cells.72 This suggests that sevoflurane may 
play a key role in the adverse outcomes of cancer treatments, 
but does not eliminate the possibility that sevoflurane has 
different cell biological effects in various cancer types.

Isoflurane
Isoflurane is a volatile general anesthetic agent that 
induces and maintains general anesthesia to eliminate 
behavioral responses in patients undergoing tumor 
resection.66 Benzonana et al demonstrated that isoflurane 
upregulates the expression of hypoxia-inducible factors 
HIF1a and HIF2a, as well as vascular endothelial growth 
factor.73 Consequently, it promotes the growth and prolif-
eration of RCC4 renal carcinoma cells, which may con-
tribute to increased postoperative recurrence. Notably, 
propofol partially reduces the malignant capacity of cancer 
cells by inhibiting isoflurane-triggered HIF-1α activation. 
Isoflurane exposure can promote cancer cell proliferation 
and inhibit apoptosis in glioblastoma cells.74 Isoflurane 
increases non-small cell lung cancer cell proliferation via 
Akt-mTOR signaling pathway activation.75 Similarly, iso-
flurane inhibits apoptosis through caveolin-1 expression 
upregulation in human colon cancer cells.76 In summary, 
these phenomena suggest that treatment with isoflurane 
might be a factor promoting the progression of most 
types of cancers.

Desflurane
Desflurane can cause adverse outcomes in most patients 
undergoing cancer surgery; however, there is a need for 
further studies on the specific biological mechanisms.65,77 

Exposure of human ovarian cancer cells to 10.3% desflur-
ane for 2 hours promotes their migration by increasing 
metastasis-related gene expression, including VEGF-a, 
MMP-11, CXC chemokine receptor 2, and TGF-β.78 

Contrastingly, Muller-Edenborn et al reported that desflur-
ane inhibits MMP-9 release from neutrophils and inhibits 
the metastasis of colon cancer cells.79 Perioperative use of 
low-flow desflurane reduces the inhibitory effects on neu-
trophils and T cells; additionally, it protects immune 
function.80,81 As for desflurane, it played a pivotal role in 
adverse outcomes in most patients undergoing cancer sur-
gery; further exploration of its specific biological mechan-
ism is still warranted.

Local Anesthetic Agents
Local anesthetic agents exert their effects by blocking 
voltage-gated sodium channels (VGSC) on nerve cell 
membranes.82 Tumor cell membranes have VGSCs, 
which are associated with tumor cell invasion and 
metastasis.83–85 There have been recent studies carried 
out on the antitumor properties of local anesthetics 
(Table 3). Sakaguchi et al reported that clinical lidocaine 
concentration inhibited the proliferation of the human ton-
gue cancer cell line CAL27 induced by serum and epider-
mal growth factor.86 Moreover, lidocaine concentrations 
higher than those clinically applied caused direct cytotoxi-
city and anti-proliferative effects. Siekmann et al reported 
that clinical ropivacaine concentrations inhibited colon 
cancer cell proliferation in vitro in a dose-dependent 
manner.87 Lirk et al reported that a similar lidocaine con-
centration caused DNA demethylation and activated tumor 
suppressor genes, especially in estrogen receptor-positive 
breast cancer cells.88 Additionally, local anesthetic agents 
can promote tumor cell apoptosis. Lidocaine and bupiva-
caine can inhibit the MAPK signaling pathway, reduce 
ERK1/2 activity, upregulate p38 MAPK, and promote 
apoptosis in human thyroid cancer cells.89 Intravenous 
lidocaine has been shown to have anti-inflammatory 
effects. Continuous intraoperative lidocaine infusion in 
patients undergoing radical hysterectomy reduces early 
lymphocyte apoptosis and maintains the interferon-γ/IL-4 
ratio.90 This indicates the protective role of lidocaine in 
cell-mediated immunity, which contributes to tumor 
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Table 3 The Recent Studies on the Effect of Local Anesthetics on Cancers

Type of 
Anesthetics

Anesthetics Authors Year Type of 
Cancer (n)

Type of 
Research

Effect on 
Cancer

Relative Pathway

Local 

anesthetics

Lidocaine Zhu et al147 2019 Cervical cancer in vitro ↓ lncRNA-MEG3/miR- 

421/BTG1

Lidocaine Wall et al148 2019 Breast cancer in vivo 

and 

in vitro

↓ MMP2

Lidocaine Sun et al149 2019 Lung cancer in vitro ↓ miR-539/EGFR Axis

Lidocaine Dong et al150 2019 Lung cancer in vitro ↓ PI3K and Rapamycin

Lidocaine Xia et al151 2019 Retinoblastoma in vivo 

and 

in vitro

↓ miR-520a-3p/EGFR

Lidocaine Zhang et al152 2019 Gastric cancer in vitro ↓ Bcl-2; Bax; p-p38

Lidocaine Xing et al153 2017 Hepatocellular 

carcinoma

in vitro ↓ Bax; protein caspase- 

3; Bcl-2

Bupivacaine Zhu et al154 2020 _ in vitro ↓(Anti- 

angiogenesis)

Akt/mTOR and AMPK

Bupivacaine Zhang et al155 2019 Neuroblastoma in vitro ↓ miR-132

Bupivacaine Xuan et al156 2016 Ovarian cancer, 
Prostate cancer

in vitro ↓ GSK3β

Procaine Li et al157 2018 Gastric Cancer in vitro ↓ DNA methylation

Procaine Li et al158 2018 Colon Cancer in vitro ↓ ERK/MAPK/FAK; 

RhoA

Procaine Ying et al159 2017 Osteosarcoma in vitro ↓ miR-133b

Procaine Ma et al160 2016 Non-small-cell 

lung cancer 

(NSCLC)

in vivo 

and 

in vitro

↓ EGFR

Bupivacaine, 

Levobupivacaine

Li et al161 2019 Colon cancer in vitro ↓ CHOP; Grp78

Lidocaine, Ketamine, 

Metamizole

Malsy et al162 2019 Pancreatic 

carcinoma

in vitro ↓ NFATc2 and Sp1

Lidocaine, Ropivacaine Siekmann 

et al87

2019 Colon cancer in vitro High 

concentrations 
↓; Low 

concentration 

↑

Unknown

Lidocaine, Ropivacaine Wang et al163 2016 Non-small-cell 

lung cancer 
(NSCLC)

in vitro Lidocaine ↓ 
Ropivacaine ↓

MAPK

Lidocaine, Ropivacaine Piegeler 
et al164

2015 Lung 
adenocarcinoma

in vitro ↓ MMP-9, Src

(Continued)
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recurrence suppression. Lidocaine is an ideal adjuvant 
drug for cancer treatment given its major therapeutic 
advantages, strong anti-inflammatory effects, and protec-
tive effects on innate immune system surveillance.91,92 In 
addition, it improves the prognosis of patients with cancer. 
However, its use in patients with cancer warrants further 
clarifications and clinical validation.

Effect of Anesthesia Methods on 
Growth and Metastasis of Malignant 
Tumors
The anesthesia effect on tumor migration and invasion 
remains unclear. Several retrospective studies have 
reported that regional anesthesia reduces the risk of 
tumor metastasis and recurrence. This is primarily because 
regional anesthesia attenuates surgery-induced neuroendo-
crine response and reaches the central nervous system to 
inhibit harmful nerve impulses.93 Therefore, it maximally 
suppresses the perioperative immune response. Regional 
anesthesia can increase NK cell activity, maintain the Th1/ 
Th2 ratio balance, and reduce intraoperative plasma corti-
sol and catecholamine levels.1,94 Compared with only gen-
eral anesthesia, general anesthesia combined with epidural 
anesthesia improves the clinical survival rate and reduces 
tumor malignancy.95 However, other previous studies have 
reported contrasting findings. A multi-center randomized 
controlled clinical study by Short et al reported that com-
pared with general anesthesia combined with postoperative 
intravenous analgesia, general anesthesia combined with 
postoperative epidural analgesia neither reduced the risk of 
tumor recurrence nor prolonged the tumor-free survival 
period in patients who underwent abdominal cancer 
surgery.96 The reduction of cancer recurrence by epidural 
anesthesia could be associated with systemic conditions in 
the body and the biological tumor characteristics. To con-
firm this hypothesis, there is a need for a large-sample, 

multi-center, randomized controlled trial with a follow-up 
period that allows for validation.

Furthermore, a clinical study assessed patients with 
primary breast cancer who underwent general anesthesia 
and propofol combined with intraoperative paravertebral 
block anesthesia.97 The study showed that local anesthesia 
reduces stress response, protects immune function in 
patients with tumors, and reduces opioid use. In addition, 
vascular endothelial growth factor C, TGF-β1, acidic 
fibroblast growth factor, basic fibroblast growth factor, 
and placental growth factor levels are reduced in the 
veins of patients who receive propofol combined with 
paravertebral block anesthesia.97 These growth factors 
promote angiogenesis and metastatic tumor formation, 
which indicates that the employed anesthesia method 
affects plasma levels of angiogenesis-related factors in 
patients with primary breast cancer, which affects tumor 
recurrence and metastasis.

Anesthesia-Related Factors and 
Cancer Recurrence and Metastasis
During the perioperative period, many factors affect can-
cer recurrence, including the immune system, blood trans-
fusions, hypothermia, hyperglycemia, and postoperative 
pain.98–100

Intact Cell-Mediated Immunity
Intact cell-mediated immunity is crucial for developing 
resistance to tumor metastasis.101,102 The immune response 
is regulated by the hypothalamic-pituitary-adrenal axis and 
the sympathetic nervous system. Therefore, anesthesia pro-
motes tumor metastasis through activation of the aforemen-
tioned systems and certain tumor-derived factors.2,66,103 

Activation of these systems inhibits cell-mediated immunity 
(CMI) and the release of catecholamines and prostaglandin 
E2 (PGE2). Moreover, these factors increase the levels of 

Table 3 (Continued). 

Type of 
Anesthetics

Anesthetics Authors Year Type of 
Cancer (n)

Type of 
Research

Effect on 
Cancer

Relative Pathway

Lidocaine, Mepivacaine, 

Ropivacaine, 
Bupivacaine, 

Levobupivacaine, 

Chloroprocaine

Li et al165 2018 Breast cancer in vitro ↓ Unknown

Notes: ↑: enhance cancer; ↓: inhibit cancer grow or metastasis.
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immunosuppressive cytokines, soluble factors (eg IL-4, IL- 
10, TGF-β, and VEGF), and pro-inflammatory cytokines (eg 
IL-6 and IL- 8). In addition, inhaled anesthetic agents and 
opioids inhibit CMI and promote tumor cell proliferation 
and angiogenesis. On the other hand, propofol inhibits 
tumor angiogenesis but not CMI. Moreover, regional 
anesthesia does not affect CMI and reduces surgery- 
induced neuroendocrine response by weakening afferent 
nerve conduction in the HPA axis and the sympathetic 
nervous system.85,91,104 Therefore, reducing opioid usage 
and inhaled anesthetic agents may reduce the risk of tumor 
recurrence.

Intraoperative Blood Transfusion
Compared to patients who did not receive intraoperative 
blood transfusion, those who did had a significantly lower 
disease-free and overall survival rate.105–107 Therefore, 
blood transfusion is an independent risk factor for deter-
mining the prognosis of patients with cancer. 
Contrastingly, some studies have reported that blood trans-
fusion or immunosuppression caused by blood transfusion 
is not responsible for the poor postoperative prognosis.108 

Rather, they indicated that the prognosis is closely asso-
ciated with the biological tumor characteristics and the 
systemic condition of the patient. This inconsistency 
could be attributed to the complexity of the response of 
inherent growth and metastasis tumor properties to blood 
transfusion, as well as differences in the population and 
experimental groups across the studies.

Hypothermia
Hypothermia is a body temperature dysregulation that com-
monly occurs during anesthesia and surgery.109,110 

Hypothermia can have several adverse effects on the body, 
including affecting the prognosis of patients with cancer.111,112 

Compared with normal body temperature, Benzonana et al 
reported that hypothermia in Wistar rats could significantly 
inhibit NK cell activity and increase the susceptibility to lung 
metastasis.73 A study on humans by Du et al demonstrated that 
hypothermia could reduce Th1-type cytokine levels, increase 
Th2-type cytokine levels, inhibit immune cell function, and 
accelerate tumor progression.113 This demonstrates that 
hypothermia can promote tumor recurrence.

Conclusion
To date, anesthesia is considered among the major factors 
affecting the recurrence and metastasis of malignant tumors. 
Certain anesthetic agents and methods have adverse effects 

on the immunity of patients with cancer, which further 
increases the risk of tumor recurrence and metastasis. 
There have been increasing studies carried out on the differ-
ent effects of various anesthetic agents on malignant tumors.

Traditionally, anesthesiologists would perform seda-
tion, anesthesia, and postoperative analgesia unsure of 
whether the anesthetic agents affect tumor recurrence and 
metastasis. Subsequent studies have confirmed the specific 
effects of anesthetic agents on malignant tumor metastasis 
and recurrence. Future studies should determine the biolo-
gical relationship between anesthetic agents and malignant 
tumors, their interaction during anesthesia, and means of 
assessing anesthesia effects and mechanisms on tumor 
recurrence and metastasis at the cellular and molecular 
levels. This could contribute toward significantly improv-
ing the survival rate of patients with cancer. In addition, 
they could provide new standards regarding the proper use 
of anesthetic agents and experimental evidence for devel-
oping novel anesthetic agents and methods.
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