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Abstract: Antifolates are structural analogs of folates, essential one-carbon donors in the 

synthesis of DNA in mammalian cells. Antifolates are inhibitors of key enzymes in folate 

metabolism, namely dihydrofolate reductase, β-glycinamide ribonucleotide transformylase, 

5′-amino-4′-imidazolecarboxamide ribonucleotide transformylase, and thymidylate synthetase. 

Methotrexate is one of the earliest anticancer drugs and is extensively used in lymphoma, acute 

lymphoblastic leukemia, and osteosarcoma, among others. Pemetrexed has been approved in 

combination with cisplatin as first-line treatment for advanced non-squamous-cell lung cancer, as 

a single agent for relapsed non-small-cell lung cancer after platinum-containing chemotherapy, 

and in combination with cisplatin for the treatment of pleural mesothelioma. Raltitrexed is 

approved in many countries (except in the United States) for advanced colorectal cancer, but its 

utilization is mainly limited to patients intolerant to 5-fluorouracil. Pralatrexate has recently been 

approved in the United States for relapsed or refractory peripheral T-cell lymphoma. This article 

gives an overview of the cellular mechanism, pharmacology, and clinical use of classical and 

newer antifolates and discusses some of the main resistance mechanisms to antifolate drugs.

Keywords: antifolates, cancer, molecular pharmacology, pemetrexed, methotrexate, folate 

metabolism

Introduction
Folates are essential, one-carbon donors in the synthesis of purines, pyrimidines, serine, 

and methionine, all critical to de novo synthesis of DNA in mammalian cells, as they 

lack the capacity to synthesize folates and require these anionic hydrophilic molecules 

to be transported into the cells via sophisticated transport systems (reduced folate 

carrier, RFC). After folate was discovered to be vital to many cellular processes, the 

antifolates aminopterin and methotrexate (MTX) were synthesized in the early 1940s.1 

In 1948, aminopterin was the first drug to induce temporary remissions in childhood 

leukemia.1,2 Only 10 years later, MTX was part of a therapy regimen that was first 

shown to cure some selected solid tumors, namely choriocarcinoma.3 MTX is still used 

in the treatment of a variety of tumors, including acute lymphocytic leukemia,4 breast 

cancer,5 osteosarcoma,6 primary central nervous system lymphoma,7 and head and neck 

cancer.8 Above all, it is also used in certain autoimmune diseases, such as rheumatoid 

arthritis or psoriasis. Recently, the newer antifolate pemetrexed or  multitargeted anti-

folate (MTA) has been established in the first-line treatment of  mesothelioma9 and 

non-squamous, non-small-cell lung cancer (NSCLC).10 An important task for the future 

is treatment individualization, eg, by identifying genetic  variations in drug pathway-

associated genes with an important impact on clinical outcome in patients receiving 
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antifolates11–13 or the use of therapeutic drug monitoring 

(TDM), eg, with MTX, enabling adequate drug exposure in 

all patients.14,15

Cellular folate metabolism
Folates (pteroylglutamates) belong to the family of B

9
 

vitamins that are essential to mammalian cells. They form 

a family of cofactors based on the structure of folic acid 

(2-NH
2
-4-OH-pteroylglutamic acid). Folic acid undergoes 

intracellular reduction first to dihydrofolate and then to 

tetrahydrofolate (THF). Both reduction steps are mediated 

by dihydrofolate reductase (DHFR). The major dietary 

form of folates is 5′-methyl-THF (5′-MTHF). Together with 

homocysteine, MTHF is converted to methionine and THF, 

a vitamin-B
12

-dependent step that is mediated by methionine 

synthase. THF is the main substrate for folylpolyglutamate 

synthetase (FPGS), which progressively adds glutamates at 

the γ-carboxyl residues. The resulting folate polyglutamates 

are polyanionic molecules that can no longer be trans-

ported through the lipophilic cell membrane. These folate 

 polyglutamates are the biologically active form of folates, 

as they serve as one-carbon donors in de novo synthesis of 

purines, thymidylate, and polyamines. Furthermore, folates 

are required for the synthesis of S-adenosyl methionine, 

which promotes methylation of DNA, histones, lipids, and 

neurotransmitters.16

Antifolate drug metabolism
As structural analogs of folates, antifolates use the same 

transport systems to enter the cells, namely the reduced folate 

receptor (RFC), folate receptors (FR), and the recently dis-

covered proton-coupled folate transporter (PCFT) or soluble 

carrier 46A1 (SLC46A1).16 The RFC plays a dominant role in 

cellular uptake of antifolates, as it has low affinity to its main 

endogenous ligand MTHF. Its affinity to antifolates varies 

from low for MTX to high for talotrexin (PT-523).17 The RFC 

works as an anion exchanger that utilizes the gradient built 

up by an asymmetrical distribution of organic phosphates 

across cell membranes.18,19 The RFC is expressed both in 

tumor cells and normal tissue,20 limiting the tolerability of 

antifolates. On the contrary, the folate receptors FR-α and 

FR-β are overexpressed at the surface of some tumor cells, 

making these tumors vulnerable to antifolate drugs,21,22 The 

FR family consists of two cell-surface receptors (FR-α and 

FR-β) and a constitutively secreted isoform (FR-γ).23,24 FR-α 

is expressed in a number of normal epithelial cells as well 

as in a number of carcinomas, with the exception of car-

cinomas of the head and neck.21 FR-β serves as a myeloid 

differentiation marker and is overexpressed in a variety of 

nonepithelial malignancies,21,25 whereas the expression of 

FR-γ is restricted to hematopoietic tissues.24,26 In contrast to 

the high-capacity and low-affinity RFC, transport by FR-α 

and FR-β is by low-capacity and high-affinity endocytosis.27 

After antifolate transport to the endosomal compartment, 

transport to the intracellular compartment involves the 

PCFT.28,29 Accordingly, mutations in the gene encoding 

for PCFT have been shown to cause rare hereditary folate 

malabsorption.29 In addition to its role in folate endocytosis, 

PCFT also serves as a high-affinity folate-proton symporter 

that is important for the intestinal absorption in the proximal 

small intestine.30 Besides these specific folate transporters, a 

number of other transport systems have been described to be 

involved in the efflux of antifolates, including the multidrug 

resistance-associated proteins MRP1–5 and the breast cancer 

resistance protein (BCRP or ABCG2).31,32

Intracellularly, the classical antifolates undergo poly-

glutamation by FPGS, resulting in effective intracellular 

retention and increased affinity of the antifolates to their 

target enzymes.33–36 The nonclassical lipophilic antifolates 

such as talotrexin or trimetrexate (TMQ) are not substrates 

of FPGS and do not require activation by polyglutamation 

for anticancer activity.37

Cellular targets: TYMS, DHFR, GARFT, 
and AiCARFT
Antifolates are inhibitors of key enzymes in folate metabolism, 

namely DHFR, β-glycinamide ribonucleotide  transformylase 

(GARFT), 5′-amino-4′-imidazolecarboxamide ribonucleotide 

transformylase (AICARFT), and thymidylate  synthetase 

(TYMS). GARFT and AIRCARFT are two key enzymes 

of the de novo purine biosynthesis. In a first step, GARFT 

enables the formation of the purine imidazole ring of purines. 

The substrate for this reaction is 10′-formyl-THF, which 

is synthesized from THF and formate, a step mediated by 

10′-formyl-THF synthetase. In a second step, AICARFT 

generates inosine monophosphate, which serves as the pre-

cursor for purine nucleotides adenylate (AMP) and guanylate 

(GMP). DHFR catalyzes the reduction of DHF to 5′,6′,7′,8′-
THF, which is converted to 5′,10′-methyltetrahydrofolate 

(5′,10′-MTHF), the substrate for TYMS.38 TYMS catalyzes 

the initial step in DNA synthesis, in which deoxythymidine 

monophosphate (dTMP), a precursor of DNA synthesis, 

is generated from deoxyuridine monophosphate (dUMP), 

resulting in the oxidation of MTHF to DHF. This metabolic 

step is essential for de novo synthesis of thymidine nucle-

otides for DNA synthesis. DHFR was the first enzyme to be 
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identified as a cellular target for the antifolates aminopterin 

and MTX.39 The latter exhibits its anticancer effect by almost 

irreversible inhibition of DHFR, with subsequent  disruption 

of purine and pyrimidine synthesis.40 Newer antifolates have 

been designed with a higher affinity toward DHFR, eg, 

talotrexin, with a 15-fold increased affinity when compared 

with MTX.37

Mechanisms of resistance
Antifolate resistance might result from impaired  cellular 

influx or increased efflux, impaired polyglutamation, 

increased expression, or mutation of cellular targets, or intra-

cellular accumulation of THF cofactors. Various transport-

resistant phenotypes have been described in MTX-resistant 

cell line models, some of them resulting from mutations of 

the RFC gene,41–43 and others from RFC overexpression.44–46 

A genetic polymorphism within the RFC gene (80G . A) 

results in replacement of arginine in position 27 with 

histidine,47 and is associated with a worse clinical outcome 

in children with acute lymphoblastic leukemia (ALL) 

receiving MTX.48 In osteosarcoma, which is known for its 

intrinsic resistance to conventionally dosed MTX, mutations 

at the 3′-UTR and promoter methylation of the RFC were 

described.49 The role of FR is less well characterized and 

more controversial. Although overexpression of FR-α was 

found to predict resistance to platinum-based chemotherapy 

in ovarian cancer patients,50 suppression of FR expression by 

gene methylation was also found as a potential mechanism of 

resistance.51 Similarly, hypermethylation of the PCFT gene 

(SLC46A1) was found in a resistant HeLa cell line.52 Mul-

tidrug resistance-associated proteins (MRP or ABCC) 1–4 

confer the efflux of MTX and have been shown to potentially 

confer resistance to MTX in cell line models.53,54 However, 

MTX polyglutamates have low affinity toward the ABCC 

transporters, which is why this type of resistance might not 

be clinically relevant. However, breast cancer resistance pro-

tein (BCRP or ABCG2) also transports polyglutamates out 

of the cell, and mutations within the ABCG2 gene (at amino 

acid position 482) have been shown to confer resistance to 

various antifolates.55,56 Overexpression of P-glycoprotein 

(MDR1) is suggested to be important for antifolate resis-

tance in the presence of a defective RFC or in case high 

doses of MTX are administered.57 Impaired polyglutamation 

is another mechanism that is of special importance for the 

classical antifolates that undergo extensive polyglutamation 

to be active. Finally, amplification of the gene encoding for 

DHFR has been identified in ALL,58 ovarian cancer,59 and 

soft-tissue sarcoma60 as a potential mechanism of resistance 

to MTX, but the clinical relevance of such amplifications is 

unclear at present.61

Specific substances
Classical antifolates
The classical antifolates have a similar structure to MTX, 

utilize the RFC for entering human cells, and are subject to 

intracellular polyglutamation.

MTX
MTX is one of the earliest anticancer drugs and is exten-

sively used in lymphoma, acute lymphoblastic leukemia, and 

osteosarcoma. The drug competitively inhibits DHFR and, 

to a lesser extent, GARFT, AICARFT, and TYMS. Although 

thymidylate depletion is the main cytotoxic driver of MTX, 

inhibition of GARFT and AICARFT also results in impaired 

purine synthesis. As a result of their inability to synthesize 

DNA and RNA, the malignant cells are unable to proliferate 

and cause further damage, resulting in cell apoptosis.

Pharmacology
7-Hydroxymethotrexate (7-OH-MTX) is the main metabo-

lite in serum following MTX infusion,62 and it contributes 

to activity and toxicity. The concentrations of 7-OH-MTX 

exceed those of the parent compound in plasma shortly 

after the infusion.63 Both MTX and 7-OH-MTX exhibit 

first-order pharmacokinetics.62 MTX is eliminated by renal 

excretion involving passive glomerular filtration and active 

tubular reabsorption and secretion. 7-OH-MTX is also renally 

cleared but more slowly than MTX. Renal elimination is 

prolonged in patients with renal impairment or third-space 

fluid collections, due to slow redistribution of MTX from 

these extravascular compartments.62 MTX is prone to drug–

drug interactions, especially nonsteroidal antirheumatics 

(NSARs).64 The uptake of MTX into the cell is primarily 

mediated by the RFC and, to a lesser amount, by the FR-α. 

Intracellularly, MTX undergoes extensive γ-polyglutamation 

by FPGS, and these negatively charged polyglutamates are 

retained intracellularly. Polyglutamates can also undergo 

hydrolation by γ-glutamyl hydrolase (GGH, also known as 

folylpolyglutamate hydrolase or FPGH) into short-chain 

polyglutamates.65,66 The MTX pentaglutamate moiety is 

most active, with K
i
 values 100 times below K

i
 values of the 

nonglutamated compound.

High-dose MTX
MTX at doses $1 g/m2 is the backbone for treating diseases 

such as primary central nervous system lymphoma (PCNSL), 
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osteosarcoma, or ALL. Careful patient selection, adequate 

hydration and urinary alkalinization, avoidance of drug 

interactions, drainage of third-space fluids, and TDM with 

appropriate adjustment of leucovorin (LV) rescue make 

HDMTX a well-tolerated treatment option most of the time. 

LV rescue starts 24 h after the start of MTX infusion at a 

dose of 15 mg/m2 IV push every 6 h for 3 days and should 

be continued until serum MTX concentrations drop below 

0.05 µmol/L. Despite supporting measures, acute renal 

failure is seen in #2% of patients receiving HDMTX, as a 

consequence of the precipitation of MTX and 7-OH-MTX 

in the kidney tubules.67 Because of considerable interpatient 

variability, TDM is essential to identify patients at high risk 

for severe toxicity, and the need for increased hydration or 

prolonged LV rescue. Before TDM with supplemental LV 

rescue was incorporated into HDMTX regimens, toxicity 

was substantial, including a 6% fatality rate;68 80% of these 

fatalities were attributed to severe myelosuppression, which 

resulted in either sepsis or hemorrhage, and 20% were attrib-

uted to renal failure. Conventional treatment for HDMTX-

induced renal dysfunction includes prompt escalation of 

LV rescue and adequate hydration and urine alkalinization, 

provided adequate urine output can be maintained. MTX 

removal by hemodialysis is of potential value in refractory 

cases. Finally, carboxypeptidase-G2 (CPDG2), a recombi-

nant bacterial enzyme that hydrolyzes MTX to the inactive 

metabolite 2,4-diamino-N10-methylpteroic acid (DAMPA), 

is another option in refractory cases of MTX-associated 

renal dysfunction. CPDG2 lowers plasma concentrations 

of MTX within 15 min of administration by roughly 99%.69 

More recent studies suggest individual exposure to MTX to 

be an important predictor of a favorable treatment response 

in patients with PCNSL,14,15 but this awaits prospective 

validation.

Raltitrexed
Raltitrexed is a selective and direct TYMS inhibitor. As an 

analog of the THF cofactor, it cannot be incorporated into 

DNA, and cellular accumulation of dUMP does not result in 

resistance to raltitrexed.70 Its long-lasting inhibition of TYMS 

allows a convenient 3-weekly schedule of administration. 

Raltitrexed is approved in many countries (except the United 

States) for advanced colorectal cancer, but its utilization is 

mainly limited to patients who are intolerant to 5-fluorouracil 

(5-FU). Although raltitrexed proved to be equally active to 

5-FU/LV in advanced colorectal cancer, there were some 

raltitrexed-associated deaths due to combined gastrointes-

tinal and hematologic toxicity.71 Combining the phase III 

MCRC trials, raltitrexed-related mortality (1.6%–4%) was 

greater than with 5-FU (1.2%–2.8%).72 This occurred in 

spite of a significantly lower all-cause serious toxicity rate 

with raltitrexed and has been attributed to administration 

of raltitrexed after a toxic event or in the presence of renal 

impairment.73 Patient education, monitoring of renal function, 

and supportive measures are essential in the management of 

patients receiving raltitrexed.74

Pharmacology
Raltitrexed predominantly enters the cell by RFC and then 

undergoes polyglutamation, with the polyglutamated form 

again being more potent than the parent compound. With 

repeated administration at 3-weekly intervals, no clinically 

significant accumulation of raltitrexed was found in patients 

with normal renal function.75 Raltitrexed is contraindicated 

in patients with severe renal or hepatic impairment and/or 

clinically significant cardiac arrhythmias requiring drug 

therapy. The importance of dose reductions in patients with 

reduced creatinine clearance is critical in preventing subse-

quent severe toxicity. In patients after accidental overdos-

ing or those suffering from severe toxicity, LV rescue is of 

potential value.

Pralatrexate
Pralatrexate (PDX; 10′-propargyl 10′-deazaaminopterin) is a 

newer antifolate that was rationally designed to have a high 

affinity for the RFC, resulting in increased cellular internal-

ization.76 In a phase II lymphoma study, PDX demonstrated 

some activity against peripheral T-cell lymphoma (TCL).77 

Subsequently, the multicenter confirmatory phase II PROPEL 

(Pralatrexate in Relapsed or Refractory Peripheral T-cell 

Lymphoma) trial has led to the approval of PDX in the United 

States for relapsed or refractory TCL.78,79 Treatment response 

in a total of 109 evaluable patients in the PROPEL trial was 

29%, with 12 patients (11%) achieving a complete response.79 

The median duration of response was 10.1 months. Mucosal 

inflammation was seen in .70% of patients but was usually 

mild to moderate. Hematological toxicity consists of severe 

thrombocytopenia in a third of patients and severe anemia 

in 16% of patients. Febrile neutropenia was noted in 5% of 

cases. Patients should receive supplementation with B
12

 and 

folic acid to avoid severe toxicity.

PDX was rationally designed to have high affinity for 

the RFC, which leads to better cellular internalization of 

the drug and a greater antitumor effect when compared with 

MTX.80 The structural difference between PDX and MTX is 

based on the presence of a propargyl group substitution at 
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carbon 10 instead of the methyl group in MTX. The basis of 

increased efficacy of PDX in vitro is based on its increased 

affinity for the RFC, but whether this is enough to overcome 

MTX resistance is unknown. PDX effectively binds to and 

inactivates DHFR, depleting intracellular reduced folate 

stores and blocking DNA synthesis.

Lometrexol
Lometrexol (LMTX) is a potent and selective  inhibitor 

of GARFT, with broad antitumor spectrum. GARFT 

catalyzes the formation of purines from the reaction of 10′-
formyltetrahydrofolate (10′-FTHF) to THF. Its inhibition 

results in a depletion of intracellular purine levels. LMTX 

enters the cell via the RFC and undergoes extensive polyglu-

tamation, with a slow elimination of polyglutamates. Without 

folic acid supplementation, severe cumulative myelosup-

pression and mucositis are likely.81 At present, LMTX is not 

approved as an anticancer agent.

edatrexate
Edatrexate (EDX) is a classic antifolate with a more efficient 

intracellular polyglutamation compared with MTX.82 EDX 

polyglutamates are potent inhibitors of DHFR but less potent 

inhibitors of TYMS.83 EDX exhibits saturable, nonlinear 

Michaelis–Menten pharmacokinetics, with #55% of EDX 

undergoing renal excretion as unchanged parent compound.84 

As EDX was associated with severe stomatitis, toxic der-

matitis, and even fatalities,85 clinical development was  

halted.

Nonpolyglutamable classical 
antifolates
Talotrexin
Talotrexin (PT-523) is a newer antifolate and potent antago-

nist of DHFR. Talotrexin combines characteristics of both 

the classical and nonclassical antifolates. As talotrexin does 

not contain a glutamic acid side chain, it is not converted 

to intracellular polyglutamates, with a potential advantage 

for drug safety and less bone marrow toxicity.86 The drug 

binds tightly to DHFR, with an inhibitory constant (K
i
) of 

0.35 pmol/L, 15-fold lower than for MTX. Talotrexin exhib-

its linear pharmacokinetics with a rapid initial disposition 

phase.87 Patients with relapsed or refractory leukemia or MDS 

received talotrexin for five subsequent days, together with 

supplemental folic acid and vitamin B
12

.87 Dose-limiting tox-

icity was stomatitis, and talotrexin 0.6 mg/m2/day for 5 days 

every 3 weeks was recommended for phase II studies, where 

evaluation in patients with refractory ALL is ongoing.87

Nonclassical antifolates
Nonclassical antifolates do not contain glutamic acid and are 

not polyglutamable; they are more lipophilic than the classi-

cal antifolates and enter cells by passive diffusion.

TMQ
TMQ is a nonclassical, lipophilic quinazoline derivative 

with a high inhibitory potency toward DHFR.88 Because 

of its lipophilicity, TMQ can rapidly enter cells by a non-

energy-dependent process. Unlike most antifolate drugs, 

TMQ is mainly eliminated by hepatic metabolism instead 

of renal excretion, with a terminal elimination half-life of 

15–20 h.88 Cell lines resistant to MTX because of deficiencies 

in folate transport generally retain their sensitivity to TMQ. 

As TMQ lacks the glutamic acid side chain, it cannot be poly-

glutamated and is not retained within the cell for prolonged 

periods of time.89 Although TMQ has undergone broad phase 

II testing in solid tumors,90 results were disappointing and 

there is no current indication in oncology.

Piritrexim
Piritrexim (PTX) is an oral lipophilic antifolate that is not a 

substrate of the active folate transport systems but enters cells 

via an energy-independent process and is effective against 

cancer cells resistant to MTX because of transport defects.91 

PTX is not polyglutamated by FPGS, but it is a potent inhibitor 

of DHFR and TYMS. Oral absorption of PTX is rapid, with 

an overall bioavailability of 75%–95%.92 The terminal half-

life following oral administration is 4.5–5.6 h,92 with hepatic 

metabolism being the primary route of drug clearance. Despite 

the potential as an oral antifolate, PTX did not show any 

therapeutic advantage over more established antifolates.

Nolatrexed
Nolatrexed (Thymitaq, TM) is a nonclassical, lipophilic anti-

folate and a noncompetitive, high-affinity TYMS inhibitor. 

TM causes extensive dTMP depletion and dUMP accumula-

tion, causing thymineless cell death. TM is not dependent on 

the cell cycle, as high concentrations of TM failed to induce 

S-phase arrest but still resulted in apoptosis.93 Although TM 

itself is lipophilic, it can be administered via intravenous 

infusion as a water-soluble dihydrochloride salt. Due to its 

lipophilicity, TM enters cells by passive diffusion and does 

not undergo polyglutamation.94 TM was granted orphan 

drug status for the treatment of unresectable hepatocel-

lular  carcinoma by the US Food and Drug Administration 

(2001) and the European Medicines Agency (2007), based 

on a randomized phase III Asian study comparing TM with 
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doxorubicin, and two North American phase II studies.95 TM 

has never gained widespread use in oncology.

MTA
Pemetrexed
Pemetrexed has been approved in combination with cisplatin 

as a first-line treatment for advanced non-squamous-cell 

lung cancer,10 as a single agent for relapsed NSCLC after 

platinum-containing chemotherapy,96 and in combination 

with cisplatin for the treatment of pleural mesothelioma.9 

Important is histotype-selective activity of pemetrexed, with 

a significant benefit seen only in patients with non-squamous-

cell lung cancer,10 potentially as a consequence of increased 

TYMS expression in tumors of squamous histology.97 Sup-

portive treatment with oral folic acid 0.5 mg/day and intra-

muscular vitamin B
12

 1 mg every 9 weeks is routinely used, 

as it has been shown to reduce the incidence of potentially 

fatal myelosuppression.98 Pemetrexed is a cell-cycle-depen-

dent antifolate with a 6–5-fused pyrrolopyrimidine-based 

nucleus,99 and it inhibits TYMS, DHFR, GARFT, AICARFT, 

and C1-THF synthase, which catalyzes the incorporation of 

a formyl group into 10′-FTHF for purine synthesis, and the 

incorporation of a methylene group into 5′,10′-MTHF for 

thymidylate synthesis. Mechanisms of resistance include 

diminished accumulation of pemetrexed polyglutamates due 

to decreased activity of FPGS,100 increased enzymatic cleav-

age of pemetrexed poly-γ-glutamates by high intracellular 

GH activity, and TYMS amplification.101 Inhibition of TYMS 

leads to intracellular accumulation of dUMP and subsequent 

efflux of deoxyuridine (dUrd) into the circulation, which can 

be used as a pharmacodynamic marker of in vivo TYMS 

inhibition following administration of pemetrexed.102

Pharmacology
Pemetrexed is transported into cells mainly by the RFC and 

undergoes rapid intracellular transformation by FPGS to 

the more potent polyglutamate derivatives.103 Pemetrexed 

has a small steady-state volume of distribution of about 

15 L and is rapidly eliminated from plasma with a termi-

nal elimination half-life of between 2 and 5 h at doses of 

525–700 mg/m2. Pemetrexed undergoes mainly urinary 

excretion as an unchanged parent compound. Furthermore, 

pemetrexed exhibits dose-proportional increases in plasma 

concentration and no signs of accumulation in patients with 

normal renal function. Third-space accumulation seems not 

to play a clinically significant role.104 As pemetrexed is often 

combined with potentially nephrotoxic cisplatin, adequate 

monitoring of renal function is important. Recommendations 

for the management of pemetrexed toxicity in the presence 

of renal failure have not been established, but treatment 

options with LV, folate, thymidine, carboxypeptidase, or 

hemodialysis are all possible.105 Homocysteine is a marker 

for overall folate status in the body and predicted severe 

pemetrexed-associated toxicity in a clinical study.106

Summary
The approval of pemetrexed for the first-line treatment of 

non-squamous-cell lung cancer, second-line treatment of 

NSCLC, and first-line treatment of malignant pleural meso-

thelioma has substantially added to the clinical importance 

of antifolates in oncology. Treatment individualization ever 

since has played an important role in the development of 

antifolate drugs. Although LV rescue and TDM are standard 

for HDMTX regimens, and folate and B
12

 supplementation is 

standard for pemetrexed to increase MTD, new strategies will 

include pharmacogenetic markers such as tumoral TYMS 

expression for further improvement of antifolate treatment.
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