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Abstract: We prepared a series of microporous films based on poly(d,l-lactic acid) (PLA) via 

phase separation. According to scanning electron microscopy (SEM), a 3-dimensional foamy 

structure with multimicrometer scale pores on the air surface of film could be observed. As the 

morphology of PLA film could not be stabilized using solvent–nonsolvent phase separation, 

we investigated the effect of temperature, air movement, and concentration on the properties of 

microporous PLA films. The results show that when the temperature was 25°C in a vacuum, it 

was easy to prepare PLA film with micropores, and it was stable. As the relationship between 

the morphology and formation factors was clear and the morphology of the PLA film was 

controllable, we studied the PLA film’s potential use for cell culture. SEM results showed that 

NIH3T3 cell could be adhered on the surface of film well after incubation for 2 days. Meanwhile, 

in vitro culture experiments revealed the great biocompatibility of the scaffold for adsorption 

and proliferation of fibroblasts.
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Introduction
Tissue engineering is defined as the application of principles and methods of 

engineering and life sciences for the development of biological substitutes to restore, 

maintain, or improve tissue function.1 To achieve the major goal of tissue engineer-

ing, three basic elements are required: an appropriate cell source, a biodegradable 

scaffold, and optimal culture conditions.2 As a fundamental element, scaffolds are 

designed to induce autogeneic tissues regeneration or to develop biological substitutes 

for defective tissues through cell culture in vitro, and, in fact, the potential use of a 

tissue engineering scaffold depends primarily on the structure and characters of the 

material. To find the potential use of a macromolecules polymer on tissue engineering, 

many methods have been used, such as electrospinning, replica molding technique, 

and gelation.3–6 The feasibility of these methods is largely dependent on the scaffold 

properties such as biocompatibility, degradability, highly interconnected porosity, 

and mechanical integrity.7,8 As one of the most successfully used methods, phase 

separation has been widely used in the preparation of scaffold for many years.9–12 A 

variety of routes for the preparation of porous, biodegradable film or scaffolds have 

been developed in the past few years.13–16 The method of solvent–nonsolvent (SNS) 

phase separation is one of the most convenient routes to prepare multiporous scaffolds 

with micro/nanoscale pores on the air surface, and these structures have enhanced the 

hydrophilicity of the films and scaffolds; however, it is difficult to control microforms 

using poly(d,l-lactic acid) (PLA).17,18
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Many biodegradable types of polyesters, such as 

polyglycolic acid and poly(ε-caprolactone), have been 

used in clinical applications for a very long time.19 The 

bulk degradation property of PLA means that it can be 

used for cellular scaffold in vitro and in vivo in tissue engi-

neering.20 In the past years, much work had been carried 

out to prepare and evaluate PLA membranes or fibers for 

application as the scaffold for human cell growth in tissue 

engineering.12,21,22

In this study, to control the prepared results and obtain 

a novel scaffold structure for cell culture and tissue engi-

neering, we investigated the factors that could affect the 

microforming of PLA film and prepared a PLA scaffold with 

microporous structure. We found that the speed of solvent 

volatilization has a crucial effect on the formation of scaffold, 

and we also detected the cell attachment and proliferation on 

this microporous scaffold.

Materials and methods
Materials
PLA (MW = 160,000; detected by gel permeation chroma-

tography), glycerol, ethylene glycol (EG), tetrahydrofuran 

(THF), and methylene chloride (DCM) were purchased 

from Chendu KeLong Chemicals (Chengdu, China). 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-

mide (MTT; Sigma, St Louis, MO) and acridine orange  

(AO; Sigma) were used.

Preparation of microporous PLA film
PLA films at various PLA concentrations (5%, 10%, and 

15%, w/v) were prepared by phase separation. Briefly, 1 mg 

of PLA was first dissolved in 5 mL of DCM at room tem-

perature. After PLA was completely dissolved, 10 mL of 

THF was then added into the mixed solution at 55°C to ablate 

DCM by volatilization. Since PLA was uniformly dissolved 

in THF, the solution was added dropwise onto the surface of 

EG/glycerin (Glc) mixed solution. Finally, the system was 

placed in the fume hood for volatilization overnight, and the 

microporous PLA film was obtained. After washing the film 

with distilled water several times and drying by baking, the 

final product was preserved in a tower dryer before further 

application.

Morphologic observation
The morphology of these prepared PLA porous films was 

observed through SEM, which was performed using FEI 

Inspect F (Philips, Eindhoven, the Netherlands) equipment 

operated at 20 kV.

Contact angle measurements
The apparent water-in-air contact angles of the PLA 

microporous films were measured by the sessile drop 

method using a Krüss DSA 100 goniometer (Krüss, Ham-

burg, Germany) at room temperature; 3 µL of deionized 

water was dropped on the sample surfaces. At least 5 

measurements were performed at different locations and 

the results averaged.

Open porosity of microporous film
According to the description of Kuo et al, porosity of the 

PLA scaffold was evaluated using trimmed samples of 

2.8  cm2  ×  0.6  cm into ethanol.23 The porosity (P (%)) is 

calculated using the following formula:

	
P

V
V

W W
V

% % %,( ) = × = −( ) × ×c

m m

100 10024 0
ρ

	

where V
m
 is the total volume of PLA scaffold (cm3), V

c
 is the 

pore volume of the PLA scaffold (cm3), W
24

 is the weight 

of PLA scaffold (g) after incubation with ethanol for 24 h, 

W
0
 is the original weight of PLA scaffold (g), and ρ is the 

density of the ethanol (0.789 g × cm−3).

The above test was performed in triplicate for each kind 

of scaffold fabricated in this study.

Cell culture and attachment
In this part, we chose the PLA scaffold prepared at the 

concentration of 10% and used the multiporous film as 

the scaffold. The NIH3T3 cell was obtained from ATCC 

(Manassas, VA) and cultured with Dulbecco’s modified 

Eagle’s medium at 37°C and 5% CO
2
. As PLA scaffolds 

were placed in 24-well plates, the NIH3T3  cells were 

seeded on the scaffolds at a density of 400 cells/well, and 

after incubation for 12 or 72 h, the mediums were replaced 

by fresh complete medium every 2 days. The cells sticking 

were observed through SEM. The PLA film containing 

cells was removed from the wells and washed twice in 

phosphate-buffered saline (PBS) and then fixed with 2.5% 

glutaraldehyde at pH 7.4 overnight. After rinsing in 0.1 mol 

PBS, specimens were then dehydrated in increasing concen-

trations of ethanol. Dehydrated specimens were immersed 

in hexamethyldisilazane (Chendu KeLong Chemicals) for 

15 min in a desiccator. After drying, the specimens were 

mounted on aluminum stubs, sputter-coated with gold–

palladium, and viewed in a Philips XL-20 SEM (Philips) 

with an accelerating voltage of 20 kV.
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Analysis of cell cytotoxicity  
and proliferation
The cell cytotoxicity and proliferation were determined by 

MTT assay and AO stain. In this method, we also chose the 

PLA scaffold prepared at the concentration of 10% and used 

the multiporous film as the scaffold.

In MTT assay, MTT was used to assess cell cytotoxic-

ity and proliferation by measuring mitochondrial succinate 

dehydrogenase activity. First, cells were seeded in 24-well 

plates at a density of 1  ×  105 cells/well in 1  mL growth 

medium in a humidified atmosphere with 5% CO
2
, and 

the cells in wells without a scaffold served as the negative 

control. After 1, 2 and 4 days, MTT solution (200  µL) 

(5 mg/mL; Sigma) was added to corresponding wells and 

cultured at 37°C for 4 h to allow the formation of formazan 

crystals. The MTT solution was then removed, films were 

washed with PBS, and dimethylsulfoxide (750  µL) was 

added into each well. The well plate was left on a shaking 

platform for 10 min. Thereafter, the solution (150 µL) was 

collected and pipetted into a 96-well plate. The absorbance 

was recorded on a microplate reader (Bio-Rad, Hercules, 

CA), using a test wavelength of 570 nm. The cell viability 

(%) was related to the control wells and was demonstrated 

according to the OD value. All data are presented as the 

mean of the measurements (±SD).

In fluorescent staining and observation, at each time 

point, the samples were stained using 0.01% AO (Sigma) 

for 5 min, washed twice using PBS, and observed under a 

fluorescence microscope (DMI6000 B, GER; Leica, Wetzlar, 

Germany). For each time point, the test was performed in 

triplicate.

Statistical analysis
The data were analyzed statistically using a Tukey’s multiple 

range post-hoc test with SPSS for Windows (version 16.0; 

SPSS Inc., Chicago, IL). Statistical tests were performed at 

a 95% significance level (P , 0.05).

Results
Morphological analysis and roughness
Using the SNS phase separation method, we prepared a series 

of PLA films (Figure 1). It is easy to prepare multiporous film 

using SNS phase separation; however, the micromorphol-

ogy of the prepared films was not identical. We believe that 

temperature as well as air movement were the main factors 

affecting the preparation of films. These factors affected the 

speed of the phase separation and made the prepared films 

different. In order to understand this relationship clearly, we 

prepared films at various conditions and investigated the 

differences; meanwhile, the surface and cross-section of 

obtained film was observed with SEM, which is shown in 

the figures.

Preparation method
According to the previous report,17 the method of SNS phase 

separation is indeed a simple route to prepare multiporous 

film. In this study, we compared the morphology of the films 

prepared via SNS phase separation, with the films prepared 

naturally via volatilization. The morphology observation 

shown in Figure 2 indicates that the pore appearance in dif-

ferent films are conspicuously different and that the films 

prepared via SNS phase separation had a smoother surface, 

both in thin and thick films.

Temperature
The volatility of THF at different temperatures was not 

concordant, and for this reason, we obtained various PLA 

films with disparate morphology shown in Figure 3. We 

observed the scaffold prepared at 4°C, 25°C, and 50°C, 

and at 25°C, the film had unique micropores on its air 

surface. This experiment showed an ambient temperature 

is beneficial for shaping the surface of the scaffold with 

multipores, and the obtained films were more smooth at a 

low speed of phase separation. That is to say, a moderate 

rate of evaporation is beneficial for formation of droplets 

of the solvent, and after these droplets volatilized, spherical 

holes appeared and occupied the interface.

PLA/THF solution

THF volatilization

Flow

EG/GC blend solution

Figure 1 A schematic illustration of preparation of PLA scaffold with microporous 
structure.
Abbreviations: EG, ethylene glycol; GC, THF, tetrahydrofuran; PLA, poly 
(d,l-lactic acid). 
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Air movement
As many factors could affect the morphology of the scaf-

fold macroscopically and microscopically, we made many 

changes during the preparation process. The results obtained 

showed that air movement was a fundamental condition. Air 

movement could affect the volatilization of the THF and thus 

affect the speed of the phase separation. As shown in Figure 4, 

at 25°C we prepared three types of scaffold by controlling 

the air movement. In order to obtain a smooth membrane 

without shrinkage, the air movement around the separation 

interface should not be strong.

After many factors had been studied, we used SNS 

phase separation by controlling the temperature at 25°C 

and decreasing the speed of air movement to obtain a PLA 

film with multiporous air surface and porous structure 

(Figure 5).

Water contact angle
Water contact angle was used to characterize the hydrophi-

licity and water uptake of PLA. The water contact angles of 

PLA at different concentrations were 126.24 (5%), 111.38 

(10%), and 104.86 (15%) (Table 1), and it was observed that 

the water uptake of PLA scaffolds increased with the increase 

in PLA concentration.

Open porosity
The open porosity of PLA microporous scaffold at different 

concentrations is shown in Table 1. The open porosity of 

PLA microporous scaffold at 5% concentration (w/v) was 

60%, at 10% concentration (w/v) was 46%, and at 15% 

concentration (w/v) was 38%, which was much lower than 

that of PLA at 5%.

NIH3T3 attachment, spreading,  
and proliferation
All the films used in cell culture studies were prepared at 

25°C without air movement outside the beaker, and the 

concentrations were all 10% (w/v). The SEM photographs of 

NIH3T3 cells attached on the porous PLA scaffold cultured 

for 72 and 12 h are shown in Figure 6. The samples were 

dehydrated using the increasing concentration of alcohol and 

the critical point drying method. The results indicate that the 

porous PLA scaffold shows a good cell attachment.

Figure 7 shows the cell proliferation on PLA scaffolds 

and indicates the scaffold with low cytotoxicity. The OD 

Figure 2 SEM of morphology of PLA film prepared via different methods. A) 
Volatilization naturally; film prepared via SNS phase separation at the concentration 
of B) 5%, C) 10%, and D) 15%. All samples were prepared at room temperature 
without air.
Abbreviations: PLA, poly(d,l-lactic acid); SEM, scanning electron microscope; 
SNS, solvent–nonsolvent.

Figure 3 SEM micrographs of various types of PLA porous scaffold prepared 
at different temperatures. A) 4°C, B) 25°C, and C) 50°C. Inset: images of 
corresponding scaffold at higher magnification
Abbreviations: PLA, poly(d,l-lactic acid); SEM, scanning electron microscope.

Figure 4 SEM images of PLA scaffolds prepared with various types of ventilation.  
A) Hermetic environment, B) open environment without air, and C) open 
environment with ventilated pumping equipment.
Abbreviations: PLA, poly(d,l-lactic acid); SEM, scanning electron microscope.
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value indicated the number of cells in each well. Cultured 

from the first day to the fourth day, cells proliferated well 

on various scaffolds.

A scaffold with 3D structure is critical as  it promotes 

cell–cell proximity and enhances self-assembly tissue 

function. To study the growth and development traits of 

NIH3T3  cells on PLA scaffolds, cells were first stained 

by AO and observed through a fluorescence microscope. 

Figure 8 shows the cell growth and proliferation. After cul-

turing for 1, 2, and 4 days, NIH3T3 were stained with AO 

for 5 min, and then photographs were taken. As the time 

increased, the cells proliferated from 1 to 2 days and then 

4 days.

Discussion
Since PLA is a semicrystalline polymer, it can be crystallized 

during the SNS phase separation, which has been reported 

previously.18 As many factors could affect the speed of phase 

separation, several films with different microshapes were 

made on their air surface. In this study, a series of micropo-

rous PLA films were prepared using phase separation under 

different conditions, and all of them were observed by SEM. 

Figure 5 SEM images of PLA scaffolds prepared at 25°C with the concentration of 
10% (w/v). Morphology observation of PLA film included the air face and cross-section: 
1-a) air face of 10% PLA film, 1000×; 1-b) air surface of 10% PLA film, 3000×; 2-a) 
cross-section of 10% PLA film, 400×; 2-b) cross-section of 10% PLA film, 1000×.
Abbreviations: PLA, poly(d,l-lactic acid); SEM, scanning electron microscope.

Table 1 Water contact angles and open porosity of the PLA 
scaffolds in different concentrations

Sample Contact angle Open porosity

5% PLA (w/v) 126.24 ± 3.37 68.79 ± 8.64
10% PLA (w/v) 111.38 ± 4.02 46.13 ± 5.19
15% PLA (w/v) 104.86 ± 10.17 38.52 ± 1.16

Notes: All of the data are the average of 5 measurements.
Abbreviation: PLA, poly(d,l-lactic acid).

Figure 6 SEM photographs showing morphology of NIH3T3 cells cultured on PLA 
scaffold. A) Cells cultured for 3 days, 200×; B) Cells cultured for 3 days, 2000×; C) 
Cells cultured for 12 h, 200×; D) Cells cultured for 12 h, 3500×.
Abbreviations: PLA, poly(d,l-lactic acid); SEM, scanning electron microscope.

C
el

l v
ia

b
ili

ty
 (

O
.D

)

Culture time (days)

1 2 4
0.0

0.5

1.0

1.5

2.0
Blank%
5%-PLA(W/V)
10%-PLA(W/V)
15%-PLA(W/V)

Figure 7 NIH3T3s proliferation on porous PLA scaffolds. The number of cells 
was normalized to initial density of seeded cells (1  ×  105 cells/well). Mean for 
n = 3 ± SD.
Abbreviations: PLA, poly(d,l-lactic acid); SD, standard deviation.

As the morphology of the prepared film was under control, the 

potential application for tissue engineering was also studied. 

Two-dimensional or 3-dimensional (3D) ordered nano/micro-

structure porous scaffolds possess high specific surface area 

and ordered arrangement and thus have extensive applications 

in cell tissue engineering, such as bone tissue engineering 

and epidermal regeneration. In addition, the thickness and 

face structure of these films or scaffolds can be controlled 

by controlling the volume of the solution dropwise and vapor 

deposition. Thus, such 3D porous films would be good can-

didates for new cell culture scaffolds, and the scaffolds can 

be modulated based on the main controllable parameters for 

forming requirement structure, such as temperature, solution 
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concentration, and volume of the drops; these factors are 

usually correlated with each other. The preparation of scaffold 

based on such multiporous films with regular structure and 

smooth appearance, as well as separately controllable effect 

factors over a large range, is a great challenge. Solving this 

problem will be a big step toward forming scaffolds with stable 

structures and their practical application in cell culture.

In this study, we identify the main factors for forming 

porous structure, including temperature and air movement, 

and in short, it is the speed of the solution volatilization.  

In PLA solutions volatilized in fuming cupboard, the films 

had corrugated profiles, while in immovable or airtight 

environments, the films obtained were flat. In addition, flat 

films showed various face microstructures with the change 

in the speed of solution volatilization. An exceedingly slow 

volatilization of the solution makes the surface more crystal-

lized, which makes it unsuitable for forming liquid droplet 

on the air face to obtain a honeycombed structure.

With the increase in PLA concentration, the viscosity of 

PLA in THF solution increased and mobility gradually weak-

ened. Thus, in the membrane preparation process, relatively 

thick films were obtained at the high concentration, and the 

water contact angles may be affected as shown in Table 1. 

During measurement of the contact angle, we found that water 

droplets slowly progressed deeper into the membrane and the 

tension increased. The open porous rate of the membrane at 

low concentration has a higher open porous rate, which might 

also induce a decline in the membrane strength (Table 1).

Previously, Karim et al mentioned thin polymer films 

with flattened droplets, and this could be affirmed by an 

interfacial free energy minimization argument.21 PLA 

porous scaffolds prepared in this study had a honeycomb 

surface, and due to the free energy minimization in the 

interface, we obtained a microporous structure as shown by 

SEM. With regard to the application of the biodegradable 

film for cell culture substrates, it is recognized that the 

surface structures and the scaffold’s amphiphilic character 

has a significant influence on the adhesion, migration, and 

proliferation of cells. Cell adhesion and migration depend 

on the sedimentation of the serum protein, as the cells are 

connected through the serum protein. In this study, we 

investigated the pure PLA scaffold with porous structures 

and regular surface. The structures shown in Figures 2–5 

suggest that the rapid solidification of the PLA after phase 

separation is necessary to gain open pores at the membrane 

surface. In addition, although different factors caused 

various surface structures, including regularly fibrosing 

prominence and honeycombed porous intercession, the 

scaffolds were both confirmed to be biocompatible, which 

had been demonstrated by MTT assay and AO stain.

Although the thin films had regular structures and the 

thickness was easily controlled, some limitations of these 

films should also be pointed out. For example, tensile 

strength is the main limitation for application in vivo. As 

PLA is recrystallized during this preparation and the films 

obtained had porous structure, the PLA scaffolds lack rigid-

ity and can be easily fractured with little effort. In addition, 

the size of the pore in the surfface of the film is difficult 

to control, and this is related to the material used and the 

preparation method.

In summary, using the SNS method of phase separation 

to obtain porous structure scaffold is a simple route, and 

by controlling the speed of volatilization, we could obtain 

an uniform surface structure scaffold. The PLA scaffold 

is compatible with cell culture with low cytotoxicity. The 

observations presented in this study suggest a PLA structure 

and its use in cell culture. In further studies, a PLA scaffold 

blend or chemical modification with other polymers should 

be studied in vitro and in vivo to develop clinically useful 

scaffolds for cell tissue engineering.

Figure 8 Fluorescence microscopy images of NIH3T3 cells cultured on A) 1, B) 2, 
and C) 4 days. The cells were stained by acridine orange stain.
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Conclusion
In this study, we prepared a porous PLA scaffold through 

phase separation, and by controlling the environmental fac-

tors, we obtained a scaffold that had a multipore face and 

spongiform cross-structure. The cell culture studies indicated 

a significant increase in cell spreading and proliferation; the 

spongiform scaffolds reveal good cell absorbency and could 

be used as a novel structure for seeding cells. However, as 

we used simple PLA as the forming material, the scaffolds 

obtained do not have potential application in clinical tissue 

engineering because of the limitation of the tenacity.
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