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Abstract: Islet transplantation is regarded as the most promising treatment for type 1 
diabetes (T1D). However, the function of grafted islet could be damaged on account of 
transplant rejection and/or hypoxia several years later after transplantation. We proposed 
a hypothetical functionalized hydrogel model, which encapsulates sufficient A20 high- 
expressing islets and supporting cells, and performs as a drug release system releasing 
immunosuppressants and growth factors, to improve the outcome of pancreatic islet trans-
plantation. Once injected in vivo, the hydrogel can gel and offer a robust mechanical 
structure for the A20 high-expressing islets and supporting cells. The natural biomaterials 
(eg, heparin) added into the hydrogel provide adhesive sites for islets to promote islets’ 
survival. Furthermore, the hydrogel encapsulates various supporting cells, which can facil-
itate the vascularization and/or prevent the immune system attacking the islet graft. Based on 
the previous studies that generally applied one or two combined strategies to protect the 
function of islet graft, we designed this hypothetical multifunctional encapsulation hydrogel 
model with various functions. We hypothesized that the islet graft could survive and maintain 
its function for a longer time in vivo compared with naked islets. This hypothetical model 
has a limitation in terms of clinical application. Future development work will focus on 
verifying the function and safety of this hypothetical islet transplantation hydrogel model 
in vitro and in vivo. 
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Introduction
Type 1 diabetes (T1D) is characterized by the destruction of insulin-secreting β 
cells by autoimmunity, which increases blood sugar (glucose) levels and results in 
a high incidence of life-long diabetes-related complications.1,2 T1D mostly affects 
young people and is an increasing health issue with an estimated prevalence ranged 
between 5% and 15% of the total cases of diabetes mellitus worldwide.3 Currently, 
life-long administration of exogenous insulin on daily is the primary treatment for 
T1D to maintain blood glucose close to the normal range and to reduce complica-
tions associated with the disease.4 However, insulin replacement therapy for 
patients with T1D cannot restore normal glucose homeostasis and leads to a high 
risk of secondary complications. It has been confirmed that the transplantation of 
pancreas or islets could reach the best therapeutic outcome.5 The first case of 
clinical pancreas transplantation was performed by Kelly et al at the University 
of Minnesota in the late 1960s.6 Since the “Edmonton protocol” with glucocorti-
coid-free immunosuppressive regimen was made, islet transplantation has become 
available for clinical treatment strategy.7 However, less than 20% of the transplant 
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recipients remain the independence of insulin 3–5 years 
later after this clinical procedure.8 The main reason for 
loss of β cells after transplantation is the immune-mediated 
inflammatory reaction and the scarcity of oxygen. After 
islet transplantation, the rejection and recurrence of auto-
immunity impair islet’s function and eventually result in 
graft loss.9 To overcome the limitation of clinical islet 
transplantation, various strategies have been studied 
recently. It was confirmed that the hydrogel made from 
various biomaterials for encapsulating islets could facil-
itate the functionality and stability of islets.10

The hydrogel used for encapsulating islets consists of 
natural biomaterials and synthetic biomaterials. The nat-
ural hydrogels are biocompatible. Polymers occurring 
crosslinked naturally include fibrin, collagen, fibronectin, 
alginate, heparan sulfate, chitosan, or hyaluronic acid. 
Among the natural materials, alginate is widely used in 
islet encapsulation; it shows a degree of biocompatibility 
and can be crosslinked in divalent cations solution.11,12 

Typical synthetic hydrogels include PEG (polyethylene 
glycol), PEG-PLA (polyethylene glycol-polylactic acid), 
PEGDA (polyethylene glycol diacrylate) and PVA (poly-
vinyl alcohol), PHEMA-MMA (polyhydroxyethylmetha-
crylate-methyl methacrylate) and so on.13 In tissue 
engineering applications, synthetic hydrogels have advan-
tages over natural polymer hydrogels due to their adjusta-
ble properties (eg, porosity, stability, mechanical strength, 
and biocompatibility).14 Among the synthetic hydrogels, 
PEG and its derivatives are the most widely used in islet 
encapsulation.15,16 The matrix pore size of PEG nanofilm 
on the surface of islet is tunable. The concentration and 
molecular weight of precursor PEG diacrylate can adjust 
the optimal pore size before gelation.17 The pore size can 
be adjusted to exclude large immune antibodies, while 
permitting glucose and insulin to pass through. Herein, 
PEG was introduced into the hypothetical islet encapsulat-
ing model.

Based on the size of pores in the hydrogel, the islet 
encapsulating models can be classified into cell penetra-
tion restrictive devices and cell-permissive devices.10 Cell 
penetration restrictive devices limit the migration of 
immune cells to pass through the pores of immune- 
isolating nanofilm. Through that way, the doses of immu-
nosuppressive can be reduced or avoided when islet graft 
is encapsulated in cell penetration restrictive devices. Lou 
et al18 developed an ultrathin nanofilm of star-PEG with 
incorporated heparin; it protected implanted cells from 
host immune rejections and modified the cellular 

landscape for better post-transplantation graft function 
and survival. Haque et al19 designed a novel method 
camouflaging porcine islets with PEG and its derivatives; 
this method could prevent islets dissociation and the inva-
sion of various immune cells after transplantation. The 
camouflaged xenograft survived and sustained its function 
in mice for average 13.0 days. Cell-permissive devices are 
not equipped with the function of immune-isolating but are 
open to the bloodstream. Compared with cell penetration 
restrictive devices, the cell-permissive device can provide 
more oxygen and nutrition to the transplant. Different 
strategies for improving in situ vascularization can be 
applied to the cell-permissive devices, such as embedding 
vascular endothelial growth factor (VEGF) into the hydro-
gel to promote the rebuild of blood vessels.16

The hydrogel of encapsulating islet graft has emerged as 
an encouraging platform to eliminate the need for immuno-
suppressive and improve oxygen supplement, thereby allow-
ing the wilder application of islet transplant. Although 
encapsulated islets with various polymeric hydrogels have 
shown tremendous promise in many studies, some deficien-
cies of this technology remain unsolved.

The Deficiencies of Current Islet 
Encapsulation
The main obstacles of islet encapsulation are poverty of 
vascularization around islet graft and host immune attack 
activated by the transplant. The two main obstacles cause 
the loss of a large percentage of islets after transplantation. 
Islets of Langerhans are vulnerable to hypoxia. Physically, 
the blood supply for islets is quite abundant. Islets are 
around 2% of the weight of the pancreas. However, they 
are rendered over 5 fold higher blood flow than the exo-
crine pancreas.20 Apart from providing nutrients and oxy-
gen to islet, abundant blood supply enhances insulin 
sensitivity.21 The islets used for transplantation have lost 
its extracellular matrix (ECM) during the procedure of 
isolation; new blood vessels need to be established timely 
to maintain the survival of islets after transplanted into 
recipients. Cell-permissive devices are designed to max-
imize vascularization for islet graft encapsulated, but can-
not prevent islet graft from contacting with immune cells 
which incurs antigen recognition by the immune system of 
the host.

Early islet loss after transplantation mainly results from 
immune rejection. The mechanism of immune rejection 
includes instant blood-mediated inflammatory reaction 
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(IBMIR).22 It is reported that 50% of islet xenografts are 
rejected within 9 days after transplantation without immu-
nosuppressants in animal models.23 Cell penetration 
restrictive devices can prevent infiltration and recognition 
of immune cells by selective permeability established by 
nano-sized pores on the surface of the devices. However, 
Brauker et al24 demonstrated that 5 μm pores, compared to 
20 nm pores, were 80 folds more effective in promoting 
the growth of vessels.

Design of the Hypothetical 
Hydrogel Model
We proposed a hypothetical islet transplantation hydrogel 
model, which serves as not only a supporting culture 
matrix for islets but also a drug delivery system for releas-
ing immunosuppressants and growth factors (Figure 1). 
The islets encapsulated in the model are genetically mod-
ified to increase the expression of A20, which can induce 
immune tolerance to survive longer.

Ubiquitin editing protein A20 encoded by TNFAIP3 is 
a negative regulator of immunostimulatory factors.25 A20 
is an ideal cytoprotective gene therapy candidate for islet 
transplantation. Grey et al found that genetic engineering 
of a suboptimal islet graft with A20 preserves β cell mass 
and function.26 Reducing expression of A20 in immune 
cells (eg, B cells) results in hyperactivation of the immune 
system.27 Zammit et al28 developed an islet cell line that 
can overexpress A20 via an adenoviral vector encoding 
human A20, and transplanted it beneath the kidney capsule 
in diabetic C57BL/6 mice. Their findings indicated that the 
forced expression of A20 reduced inflammation and 
allowed permanent islet allograft survival without the 
necessity of immunosuppression. A20 protects cells from 
apoptosis by stabilizing the linear (M1) ubiquitin network, 
which is associated with TNFR1 signaling complex when 
TNF binds to TNFR1.29 Hypoxia and inflammatory cause 
β cell destruction in the early post-transplantation period. 
Genetic engineering of islets with A20 will relieve the 
severe poverty of islet for clinical transplantation and 
improve their function in the early post-transplantation 
period.26 Benefited with the protection of A20,26 

a relatively reduced islet transplant mass could be avail-
able in the hypothetical model. In this model, we proposed 
to transfer A20 gene (TNFAIP3) into islets by a novel 
safer and tissue-specific recombinant adenovirus vector 
(rAd.).28 However, the toxicity of adenoviruses may 
impede them to be used widely.

This novel model is based on injectable hydrogel, 
which consists of natural biomaterials and synthetic bio-
materials. As the synthetic biomaterial, PEG can provide 
a robust mechanical structure to the model by covalent 
crosslinking. Before being crosslinked, several natural 
biomaterials (eg, collagen, hyaluronate, and heparin) will 
be added into the solution of PEG to gain better biocom-
patibility. Once injected, hydrogel formation occurs 
through chemical cross-linking. Collagen, hyaluronate, 
and heparin are all ECM proteins, which can compensate 
for the loss of matrix around islets during the procedure of 
isolation, and mimic the physiological microenvironment 
of islets. Furthermore, islets can be anchored in the hydro-
gel through the adhesion sites on the ECM proteins, which 
makes the islets stable.30 Among various ECM proteins, 
heparin is an excellent choice for the hydrogel model. 
Heparin can help reduce the inflammatory mediated by 
anticoagulation, and the thiolated heparin can combine 
various growth factors (eg, VEGF, bFGF, PDGF, IGF-2, 
and KGF) by ionic bond; the growth factors can slowly 
release from the hydrogel model for several weeks.31,32

As a drug delivery system, the model can encapsulate 
various growth factors. There are tremendous advantages 
that growth factors can bring to islets. The functionality of 
islets can be improved by the bond of IGF-2 and IGF-2 
membrane receptors on the surface of islets. IGF-2 is 
a growth factor favorable for islet survival; the combina-
tion of IGF-2 and its receptor prevents islet aggregation 
during islet transplantation.33 Additionally, using growth 
factors embedded in hydrogels can stimulate blood vessels 
ingrowth. Basic fibroblast growth factor (bFGF) is identi-
fied to promote angiogenesis, which is beneficial to recon-
struct new capillaries around islets when transplanted into 
recipients. Adding bFGF into recombinant human collagen 
could accelerate revascularization, and reduce the 
hypoxia-induced damage to islets.34 Various functional 
cells can be co-encapsulated with islets into this hypothe-
tical model, and be co-transplanted in vivo. Mesenchymal 
stem cells (MSCs) are widely used to be co-transplanted 
with islets.35–39 When co-transplanted with islets in reci-
pients, MSCs can promote angiogenesis in situ to prevent 
hypoxia and to attenuate immune rejection. MSCs can 
suppress various immune cells such as NK cells, macro-
phages, neutrophils, and T cells.35,40–43 Moreover, it was 
identified that MSCs could accelerate the maturation of 
neonatal porcine islets, which benefits the development of 
islets xenograft.39 The establishment of immune tolerance 
to islet grafts, is a significant strategy for inducing 
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acceptance of histocompatibility complex (MHC)- 
mismatched allografts without compromising the host’s 
immune system. T regulatory cells (Tregs) play a central 
role in maintaining immune homeostasis and peripheral 
tolerance to foreign antigens.44 Herein, Tregs can also be 
added into the model as an immuno-modulatory strategy to 
improve islet grafts’ function. Multipotent adult progenitor 

cells can also be a candidate for co-transplantation with 
islets due to its similarities to MSCs in immunosuppres-
sive and angiogenic advantages.45 When transplanted with 
islets, endothelial progenitor cells were confirmed to pro-
mote neovascularization around the islets graft.46

The drugs used in the immunosuppressive regimen for 
islets transplantation, such as sirolimus (mTOR inhibitor), 

Figure 1 (A) Illustration of the hypothetical islet transplantation hydrogel model fabrication protocol. (B) Schematic illustrating the components of the hypothetical islet 
transplantation hydrogel model.
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can also be encapsulated in this hydrogel. Monoclonal 
antibodies can also be involved. For example, the anti- 
CD154 blockade possesses the potency of achieving trans-
plantation tolerance, which results in the withdraw of 
chemical immunosuppressants.47 IL-2R antibody can also 
be added to the drug candidate list.

With the above-proposed strategies, the islet transplanta-
tion model provides a delivery vehicle for co-transplantation 
of A20 high-expressing islets and other supporting cells and 
the controlled release of immunosuppressants and growth 
factors. The injectable PEG hydrogel for islet encapsulation 
has been characterized in vitro and in vivo, illustrated the 
feasibility of using injectable PEG hydrogels for islet 
encapsulation.48 Herein, this multifunctional hydrogel 
model is a covalently cross-linked injectable hydrogel. 
Moreover, it is flowable before gelation. Hydrogel gelation 
was induced by the PEG crosslinker. The PEG crosslinker 
must be added before injection, and gels were left for 
a certain time to allow for complete gelation.

Conclusion
Islet transplantation is regarded as the most promising treat-
ment for type 1 diabetes. Unfortunately, the clinical applica-
tion of islet transplantation is limited mainly due to hypoxia 
and the immune-mediated destruction by the host. To over-
come the obstacles, we design an islet encapsulated hydrogel 
model with the function of the controlled release of immu-
nosuppressants and growth factors. Sufficient A20 high- 
expressing islets are encapsulated in this model to reverse 
the condition of hyperglycemia. However, as a macro- 
transplantation model, it could lack oxygen in its core. 
Therefore, we combined several strategies to reconstruct 
the vascularization. Co-transplantation with supporting cells 
and incorporation of various growth factors are identified to 
be beneficial to the revascularization around transplanted 
islets. Also, supporting cells (MSCs) can serve as an anti- 
immune factor to protect islets from immune attack by host. 
Given to the digestion of the extracellular matrix proteins 
around islets during isolation, the naked islets tend to aggre-
gate together, resulting in the increasing risk of hypoxia in 
the core of the islet mass and leading to the loss of islet 
function. To address this issue, we add various ECM proteins 
to the hydrogel mimicking the natural microenvironment 
around islets, and the islet graft will be immobilized. The 
hydrogel can also serve as a materials platform to immobilize 
growth factors. However, as a cell-permissive device, the 
hydrogel model permits the islet to contact blood to get 
sufficient oxygen, which results in IBMIR. When IBMIR 

happens, the platelet will aggregate, and coagulation will 
occur, which are detrimental to the viability of islets.49 The 
particular gene-editing islets encapsulated in the model can 
express a high level of A20, and the threshold for the activa-
tion of immune response will be upregulated by the activa-
tion of NF-κB.28 The application of A20 high-expressing 
islets can achieve long-term survival in vivo.

In summary, based on the previous studies that generally 
applied one or two combined strategies to protect the func-
tion of islet graft, we proposed the multifunctional encapsu-
lation hydrogel model with various functions to achieve 
a better outcome of islet transplantation. This hypothetical 
hydrogel model was designed with cocktail therapy; the 
combination of various factors might promote the function 
of the islet graft, compensate deficiency for each other. This 
hypothetical model might be injected into several suitable 
sites in vivo, such as the beneath of kidney capsule, the 
peritoneal cavity, and a subcutaneous site on the back.48,50 

In the model, the hydrogel will be injected into body before 
gelation, then capillaries will creep into the hydrogel. With 
the release of immunosuppressants embedded in the model, 
the local immune isolation will be established. This hypothe-
tical multifunctional hydrogel model has a limitation in 
terms of clinical application. Future development work will 
focus on verifying the function and safety of this hypothe-
tical islet transplantation hydrogel model in vitro and in vivo.
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