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Introduction: Clinical studies have indicated a relationship between diabetic nephropathy 
(DN) and the incidence and prevalence of renal cell carcinoma (RCC). However, the 
mechanism linking diabetic nephropathy and renal cell carcinoma has not yet to be identified.
Methods: In this study, a total of 42 male Sprague Dawley (SD) rats were randomly 
assigned to a DN group (n=35) and a control group (n=7). All animals in the DN group 
were unilaterally nephrectomized and treated with streptozotocin with the development of 
blood glucose levels >16.7mmol/L and dominant proteinuria and were compared to controls 
without such changes. Histopathologic alterations in the kidneys were examined by HE 
staining and Ki-67 immunohistochemistry. Differentially expressed genes were identified and 
validated by RNA-seq and PCR.
Results: As the results, except for two rats that failed to develop the DN model and were 
excluded from the analysis, 33 rats in the DN group with overt signs of DN demonstrated 
significantly higher food and water intake, urine production, and urine protein and 
urinary protein/creatinine ratio than controls. Overall, 15.2% (n=5/33) of DN animals 
developed RCC while none tumors were observed in the control group (n=0/7). RNA-seq 
analysis in these animals indicated different TRPV5 gene expression and calcium path-
way expression in DN animals with developing tumors, when compared with animals 
with no obvious tumors. In addition, DN animals diagnosed with RCC showed increased 
expression of GLUT2 and c-met, when compared to controls and DN animals without 
tumors.
Discussion: In conclusion, the disordered calcium metabolism, especially disturbed TRPV5 
mediated Ca2+ signal, may have been related to the development of RCC in DN rats. Further 
studies related to the detailed mechanism are still needed.
Keywords: diabetic nephropathy, renal cell carcinoma, calcium homeostasis, calcium 
pathway, RNA-Seq

Introduction
Diabetes mellitus (DM) is one of the most serious public health challenges. In 2017, 
DM was estimated to be present in 8.8% of the worldwide population, with an 
expected increase to 9.9% by 2045.1 In general, hyperglycemia may lead to multi-
ple complications including diabetic nephropathy (DN), which is a leading cause of 
chronic kidney diseases in humans.2 DN increases the incidence and prevalence of 
end-stage renal disease (ESRD) and is the most common cause of increased 
morbidity and mortality of patients with diabetes.3,4
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Clinical studies have shown a positive correlation 
between diabetes and several types of cancer, including 
bladder, breast, colorectal, kidney, endometrial, pancrea-
tic, and hepatocellular carcinomas,5 and an increase in 
total cancer-related mortality. Several mechanisms 
caused in the development of renal cell carcinoma 
(RCC) in diabetes have included increased growth fac-
tors and/or their receptors, hyperinsulinemia and glucose 
availability.6,7 For example, in kidney cancer, the rela-
tive risk in diabetes patients is 1.38-fold higher8 and 
total cancer mortality is 1.21-fold higher9 than in non- 
diabetic patients. In addition, an association between 
hyperglycemia and cancer incidence and mortality has 
been reported, and the incidence increases linearly with 
increasing glycemia.7,10 Several pathophysiological 
mechanisms linking diabetes to an increased risk of 
cancer have been postulated, including insulin resistance 
and hyperinsulinemia, enhanced inflammatory processes, 
dysregulated sex hormone production and hyperglyce-
mia. Several common risk factors have also been shown 
to play a role, especially obesity.6,7

Hyperglycemia is a major contributing factor in the 
deterioration of kidney function and the development of 
diabetic nephropathy (DN), the most common cause of the 
increased morbidity and mortality of patients with 
diabetes.3 DN patients have significantly higher serum 
squamous cell carcinoma antigen, cytokeratin 19 fragment 
and carcinoembryonic antigen levels than both patients 
with normal albuminuria and healthy controls,11 which 
may underlie a relationship between DN and the incidence 
and prevalence of RCC. However, although DN patients 
are at higher risk of cancer, a mechanism linking diabetic 
kidney disease and RCC has not yet to be identified.

Here we described that kidneys in a model of strepto-
zotocin-rendered diabetic rats with signs of diabetic 
nephropathy over the long-term developed RCC. 
Therefore, persistent hyperglycemia could influence the 
activation of molecular pathways that need to be further 
elucidated. Our results indicate upregulated renal GLUT2 
expression and deregulated Ca2+ homeostasis to be 
involved in the tubular cell damage occurring during dia-
betes and putatively supporting renal cell carcinogenesis.

Materials and Methods
Animals and Reagents
For this study, 42 12-week-old male Sprague-Dawley (SD) 
rats were purchased from the Animal Center of Southern 

Medical Hospital (Guangzhou, China). The rats were 
housed in our animal facility under pathogen-free condi-
tions and fed a standard laboratory diet, with free access to 
water. This study was approved by the institutional ethics 
review board of Guangdong Provincial Hospital of 
Chinese Medicine (NO.2017016). The welfare of the 
laboratory animals was followed by the guidelines, 
Laboratory animal-Guideline for ethical review of animal 
welfare in Guangdong Provincial Hospital of Chinese 
Medicine.

Streptozotocin (STZ) was purchased from Sigma 
Aldrich (St. Louis, MO, USA). The blood glucose meter 
and blood glucose test strip were purchased from Abbott 
Laboratories (Chicago, IL, USA).

Establishing the Diabetic Nephropathy 
Rat Model
An accelerated DN model was obtained by subjecting the 
rats to unilateral nephrectomy and STZ treatment. The 42 
SD rats were randomly divided into control (n = 7) and 
diabetic nephropathy (n = 35) groups. Nephrectomy was 
performed in rats anesthetized via an intraperitoneal injec-
tion of 2.0% pentobarbital sodium (30 mg/kg). The left 
kidney was removed after ligation of the renal artery, vein 
and ureter. In control rats, the renal capsule was separated 
but a nephrectomy was not performed.

One week after unilateral nephrectomy, STZ, dissolved 
in 0.1 M citrate buffer (pH 4.5), was administered to the 
rats via intraperitoneal injection at a dose of 65 mg/kg. 
Control rats were injected with 0.1 M citrate buffer 
solution.

Blood samples were taken from the tail vein at 72 h 
after STZ injection to measure blood glucose levels. Only 
rats with fasting blood glucose levels >16.7 mmol/L and 
obvious proteinuria were considered diabetic and studied 
further. Two rats were failed to developed DN model due 
to they have not sustained high blood glucose levels 
throughout the experimental period. Hence, the DN 
group consisted of 33 rats. The rats were monitored for 
up to 20 weeks post-STZ injection.

Blood Glucose and Urinary Protein 
Testing
Blood glucose and urinary protein were measured every 
4 weeks. Blood glucose levels were determined from 
extracted tail blood using an Abbott blood glucose 
meter. Urinary protein was measured in rats kept in 
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individual metabolic cages for 24-h urine collection. 
The urine was centrifuged at 800 g for 10 min at 4°C. 
Urinary protein concentrations were measured using a 
Pierce™ BCA protein assay kit (Thermo Fisher 
Scientific, Waltham, MA, USA) according to the manu-
facturer’s instructions.

Hematoxylin and Eosin (HE) Staining
After 20 weeks of long-term hyperglycemia, the rats were 
euthanized and their kidneys prepared for pathological 
examination. Fixed kidney tissues were paraffin-embedded 
and 2.5-µm serial paraffin sections were cut using a micro-
tome. Pathological changes were examined by HE staining. 
Briefly, the sections were deparaffinized in xylene (25 min) 
and rehydrated with successive 1-min washes in 100%, 
90%, 80%, and 70% ethanol. They were then stained with 
hematoxylin (2 min), rinsed with distilled water, rinsed with 
0.1% hydrochloric acid in 50% ethanol, rinsed with tap 
water for 15 min, stained with eosin for 1 min, and rinsed 
again with distilled water. The sections were then succes-
sively dehydrated with 95% and 100% ethanol followed by 
xylene (25 min) and mounted with coverslips.

Immunohistochemical Examination
Indirect immunoperoxidase staining with a HistostainTM- 
Plus kit was performed to assess the expression of Ki-67. 
Herein we use Ki-67 because it is regarded as one of the 
classical markers associated with tumour proliferation on 
RCC.12 Tissue sections (2.5-μm thick) were mounted on 
poly-L-lysine-coated slides, deparaffinized with xylene 
and rehydrated. The sections were microwaved in 
10 mmol/L citrate buffer (pH 6.0) at 100°C for 5 min to 
unmask the antigen. After endogenous peroxidase had 
been blocked, the sections were incubated with primary 
antibody (1:50 diluted for Ki-67) at 4°C overnight. The 
reactions on the sections were detected with peroxidase 
substrate containing DAB. All sections were counter-
stained with hematoxylin. The degree of Ki-67 expression 
was evaluated with image analysis software.

BGISEQ 500 RNA-Sequencing
Renal carcinoma tissue (from DN-carcinoma) and renal 
tissue (from DN-no carcinoma group) were prepared for 
RNA-sequencing. Samples were sent to The Beijing 
Genomics Institute (BGI, Shenzhen, China). The products 
were purified and then enriched by polymerase chain reac-
tion (PCR) amplification. The PCR yield was quantified 
using Qubit and the samples pooled to obtain a single- 

stranded DNA circle (ssDNA circle), the form of the final 
library. DNA nanoballs (DNBs) were generated using the 
ssDNA circles by rolling-circle replication to enlarge the 
fluorescence signals during the sequencing process. The 
DNBs were loaded into the patterned nanoarrays and sin-
gle-end reads of 50 bp were generated using the BGISEQ- 
500 platform for the following data analysis.

The sequencing data were filtered with SOAPnuke 
(v1.5.2) by (1) Removing reads containing sequencing 
adapter; (2) Removing reads whose low-quality base 
ratio (base quality less than or equal to 5) is more than 
20%; (3) Removing reads whose unknown base (“N” base) 
ratio is more than 5%, afterwards clean reads were 
obtained and stored in FASTQ format. The clean reads 
were mapped to the reference genome using HISAT2 
(v2.0.4). After that, Ericscript (v0.5.5) and rMATS 
(V3.2.5) were used to fusion genes and differential spli-
cing genes (DSGs), respectively. Bowtie2 (v2.2.5) was 
applied to align the clean reads to the gene set, a database 
for this organism built by BGI (Beijing Genomic Institute 
in ShenZhen), which are known and novel, coding tran-
scripts were included, then expression level of gene was 
calculated by RSEM (v1.2.12). The heatmap was drawn 
by pheatmap (v1.0.8) according to the gene expression in 
different samples. Essentially, differential expression ana-
lysis was performed using the DESeq2 (v1.4.5) with Q 
value ≤ 0.05. To take insight into the change of phenotype, 
GO (http://www.geneontology.org/) and KEGG (https:// 
www.kegg.jp/) enrichment analysis of annotated different 
expression gene was performed by Phyper (https://en.wiki 
pedia.org/wiki/Hypergeometric_distribution) based on 
Hypergeometric test.

Kidney RNA Extraction and Quantitative 
RT-PCR
Quantitative RT-PCR was used for the validation of DEGs. 
Kidney RNA was isolated from renal carcinoma tissue 
(from DN-carcinoma) and renal tissue (from control and 
DN-no carcinoma group) using TRIZOL reagent. RNA 
quantity and quality were determined at a wavelength of 
260/280 nm. cDNA was generated from 5 µg of total RNA 
using reverse transcriptase. The 10-µL amplification reac-
tion included TB Green Premix Ex Taq (Takara, Dalian, 
China). All reactions were performed on a CFX384 Real- 
time PCR System (ViiA7, USA). The thermal cycling 
conditions were 30s at 50°C, followed by 40 repeats at 
95°C for 5s, 60°C for 34s.To control for variations in the 
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reactions, the amount of target mRNA was normalized to 
invariable control gene GLUT1, GLUT2, c-met, c-myc, 
p53, Ras expression. The comparative threshold cycle 
(Ct) method was used to determine the amount of target 
gene normalized to tuba4a and relative to a calibrator 2 
−ΔΔCt. The purity of PCR products was verified by melt-
ing curves and gel electrophoresis (Table 1).

Statistical Analysis
All data are presented as the mean ±SE with normal 
distribution. The significance of differences in data 
between the groups was determined by one-way 
ANOVA followed by Turkey’s test for equality of var-
iances. All analyses were performed using the Predictive 
Analytics Software (PASW) Statistics 18.0 software 
package (SPSS Inc. IBM Corporation, Armonk, New 
York, USA). Differences were considered statistically 
significant at p < 0.05.

Results
Functional Characteristics in Animals 
with Diabetic Nephropathy
Two rats were excluded due to they have not sustained 
high blood glucose levels (16.7–27.8 mmol/L) throughout 
the experimental period. In the endpoint, rats in diabetic 
nephropathy group (n=33) exhibited significant weight 
loss, higher levels of food and water intake, and a higher 
volume of urine output, presumably as a result of the 
catabolic effects of insulin deficiency and severe hypergly-
cemia as well as the volume depletion associated with 
osmotic dieresis (Figure S1). In addition, 24-h urine pro-
tein levels at 8 weeks post-STZ injection were signifi-
cantly increased in the DN group (446.08±193.12 mg/ 
day) than in the control group (163.32 ± 19.7 mg/day) 
and the difference remained significant (P <0.05) during 
the study (Figure 1).

Table 1 Primers Used in qPCR

Gene Forward Primer(5ʹ->3ʹ) Reverse Primer(5ʹ->3ʹ)

GLUT1 CAATGGCGGCGGTCCTATAA GACCCTGCAACCTAAACCGA
GLUT2 TCAGCAACTGGGTCTGCAAT GAAGAACACGTAAGGCCCGA

c-met CCAACCACGAGCACTGTTTC GCGCTGTGGTAAACTCCGTC

c-myc CAGCTCGCCCAAATCCTGTA GCCTCTTGATGGGGATGACC
p53 AGCGACTACAGTTAGGGGGT ACAGTTATCCAGTCTTCAGGGG

Ras ACGAAACAGGCTCAGGAGTTAG GCATCGTCAACACCCTGTCT

GAPDH ATCCGTTGTGGATCTGACATG CAAAGGTGGAAGAATGGGAGT

Figure 1 Comparison of urinary protein excretion in animals with diabetic nephropathy (DN) and non-diabetic controls (control). Data was calculated as mean± SE in 
mg/24h. *p < 0.05.
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Development of RCC in Animals with 
Diabetic Nephropathy
None of the animals with DN showed clear signs of 
macroscopic RCC development at the end of the observa-
tion period of 20 weeks. However, HE staining of five out 
of a total of 33 DN cases confirmed the infiltration of 
RCC. Nodular lesions with clear boundaries were seen 
microscopically, and necrotic manifestations were seen in 
some lesions. The lesions consisted of hyperplastic epithe-
lial cells with a nest-like distribution and were rich in thin- 
walled blood sinuses. The nuclei of the tumor cells were 
significantly larger and hyperchromatic than those of nor-
mal renal tubular epithelial cells. Eosinophilic nucleoli and 
numerous mitoses were also observed in the tumor areas. 
The cytoplasm of atypic cells in tumor cell nests was 
abundant and contained eosinophilic granules (Figure 2). 
The classical markers of tumor proliferation, Ki-67 posi-
tivity rate in the tumor tissue were ~18%, indicating that 
the tumor has a certain proliferation ability (Figure 3).

Comparison Between Kidneys with 
Diabetic Nephropathy from Animals with 
and without RCC
For further comparison, we investigated the 5 animals with 
RCC (RCC group) and another subgroup of DN rats 

without carcinoma development (no-carcinoma group). 
We found that from the mode of formation, after 8, 12, 
16 and 20 weeks of ongoing diabetic nephropathy, there 
was no statistical difference in 24hrs proteinuria results 
between the RCC group and the no-carcinoma animals 
(Figure 4).

Comparative Transcriptomic Analysis 
Between Kidneys with RCC and Without 
Carcinoma
To investigate the genes differentially expressed in RCC 
tissue, a BGI-SEQ 500 based RNA-sequencing strategy 
was applied to compare the kidney mRNA expression 
levels between RCC and no-carcinoma bearing kidneys. 
A library was constructed from five pooled mRNA sam-
ples from each group and then analyzed by RNA-seq 
(BioProject accession: PRJNA597461). The total clean 
reads obtained in each sample comprised sequences of ≥ 
101 Mb, and > 93% of the clean reads could be aligned 
against a mouse genome database.

Genes identified in a comparison of the two groups 
using the DEseq2 tool and with a fold change ≥ ±2.00 and 
an adjusted P value ≤ 0.05 were identified as DEGs. A 
total of 524 genes demonstrated a significantly higher 
expression level, while 523 genes were down-regulated 

Figure 2 Pathological of renal cell carcinoma (HE staining, 100×). HE staining results demonstrate the infiltration of minute renal cell carcinoma. The nodular lesions with 
clear boundaries were seen, and necrotic manifestations were seen in some lesions. (A) Normal glomerulus and tubulointerstitium. (B–D) Nodular lesions with clear 
boundaries were seen in B-D. The lesions consisted of hyperplastic epithelial cells with a nest-like distribution and were rich in thin-walled blood sinuses. The nuclei of the 
tumor cells were significantly larger and hyperchromatic. Eosinophilic nucleoli and numerous mitoses were also observed. The cytoplasm of atypic cells in tumor cell nests 
was abundant and contained eosinophilic granules.
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in kidneys with carcinomas compared with no-carcinomas 
(Figure 5A).

To identify the biological processes and molecular 
functions relevant to the DEGs, a GO annotation was 

applied. In the biological processes category, the results 
implicated a high glucose level as a transcriptional reg-
ulator in the rat diabetic kidney. The DEG-associated 
pathways were explored using KEGG pathway 

Figure 3 Ki-67 immunohistochemical staining (40× and 100×). Localization of Ki-67 in Kidney tissue paraffin section was determined by immunohistochemical staining 
(IHC). The positive rate of ki-67 in the tumor tissue is about 18%.

Figure 4 Comparison of urinary protein excretion in animals with diabetic nephropathy (DN) and renal cell tumors versus no tumors and non-diabetic controls (control 
group). Data was calculated as mean± SE in mg/24h. *p < 0.05 VS control group.
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enrichment, which showed that the DEGs were mainly 
enriched in signal transduction pathways, including the 
calcium-signaling pathway and the regulation of calcium 
reabsorption (Figure 5B–D).

Gene Expression of Cellular Glucose 
Transporters and Cancer Genes Related 
to Hyperglycemia
The expression of cellular glucose transporters and cancer 
genes related to hyperglycemia was elevated, including 
c-myc, c-met, GLUT1, GLUT2, p53 and RAS (Figure 6). 
The expression of GLUT2 and c-met expression was sig-
nificantly increased in tumors of DN animals when com-
pared to controls without DN and those without tumors but 
with DN (P < 0.05).

Discussion
In our study, RCC could be found in DN rats established 
by unilateral nephrectomy and streptozotocin (STZ) intra-
peritoneal injection. HE staining and Ki-67 immunohisto-
chemistry staining revealed typical renal carcinoma 
pathological changes. And oncogenic c-met expression 
was linearly increased in kidney tumors of animals with 
diabetic nephropathy. According to the new finding, we 
constructed a renal transcriptomic strategy to investigate 

the susceptibility mechanisms between the DN and RCC. 
Enriched DEGs between DN-carcinoma group and DN-no 
carcinoma group revealed the susceptibility mechanism of 
RCC in DN rats may be due to the calcium pathways 
disorder.

RCC has an incidence of approximately 65,000 cases 
annually in the USA, with approximately 15,000 related 
deaths each year.13 It was found to be more aggressive in 
patients with diabetes. A meta-analysis of 24 studies found 
a positive association between diabetes and RCC (relative 
risk [RR] 1.18; 95% CI 1.04–1.34).8 Another meta-analy-
sis of Asian patients with a mean follow-up of 12.7 years 
and documenting 37,343 cancer deaths showed that dia-
betes was associated with an 84% increased risk of death 
from kidney cancer, implying that diabetes is associated 
with an increased risk of RCC and a higher related 
mortality.

There are many pathways which can contribute to the 
development of RCC in diabetes. The most frequently 
mentioned carcinogenic factors include hyperglycemia, 
hyperactivation of the protein kinase B (Akt)/mammalian 
target of rapamycin (mTOR) pathway,14 and hyperinsuli-
nemia and the insulin-like growth factor (IGF) family.15,16 

Among these factors, hyperinsulinemia and hyperglycemia 
are considered as independent carcinogenic factors, as they 

Figure 5 Transcriptomic study of renal carcinoma tissue (from DN-carcinoma) and renal tissue (from DN-no carcinoma group). (A) Identification of 524 differentially 
expressed genes (DEGs) in the kidney with significantly higher expression and 523 DEGs with significantly lower expression in the DN-carcinoma group than in the DN 
group. (B) A KEGG pathways analysis assigned these DEGs to calcium signaling, endocrine and other factor-regulated calcium reabsorption pathways. (C) Most of the DEGs 
enriched in the calcium pathway were up-regulated in the DN-carcinoma group vs the DN group, (D) as were most of the DEGs enriched in the endocrine pathway and 
other factor-regulated calcium reabsorption pathways.
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can increase the inflammatory response,17 oxidative stress 
reaction18 and lipid peroxidation.

However, besides most studies that focused on the 
carcinogenesis of associated metabolic alterations in dia-
betes, there is less basic research that investigated the 
underlying mechanism between diabetic nephropathy and 
renal cell carcinogenesis.

This study demonstrated for the first time the evidence 
that RCC development could be found in a rat model of 
animals suffering from diabetic nephropathy over time.

According to the described new findings in this study, 
we constructed a renal transcriptomic strategy to investi-
gate the underlying molecular mechanisms of RCC in DN 
animals. The analysis of enriched differentially expressed 
genes between animals with diabetic nephropathy and 
developing tumors or no tumors showed different 
TRPV5 gene expression and calcium pathway expression 
in diabetic animals with nephropathy and developing 
tumors, when compared with animals with diabetic 
nephropathy but no obvious tumors, indicating higher 
calcium reabsorption in rats with RCC.

The kidneys regulate calcium homeostasis by filtration 
and reabsorption, with ~99% of calcium reabsorbed by the 
kidney tubules, which is the most common origin of RCC. 
Alteration of Ca2+ signaling has been implicated either 
directly or indirectly in tumorigenesis and tumor 
progression,19 including RCC.20 Most recent evidence sug-
gests that high glucose levels could result in a marked rise 
of [Ca2+] levels due to an increased calcium entry into the 

cell.3 High glucose levels induce the release of intracellular 
stores of calcium from the endoplasmic reticulum.3 As the 
major Ca2+ influx mechanism, transient receptor potential 
(TRP) channels form a superfamily of non-selective cation 
channels with varying degrees of Ca2+ permeability that 
respond to a variety of distinct stimuli, including chemicals, 
temperature and mechanical stress.21 The de-regulation of 
TRP channels can stimulate RCC development and 
progression,22 such as TRPM3,23,24 TRPC625 and TRPC1. 
Among TRP family channels, TRPV5 is remarkably cal-
cium-selective channels which serve as calcium entry 
mechanisms in kidney. TRPV5 expression is most promi-
nent in the renal tubules and it is responsible for ~15% of 
the calcium reabsorbed in the urine to flow along a concen-
tration gradient through the channel pore into the cell.26 

TRPV5 is a highly calcium selective ion channel that acts as 
the rate-limiting step of calcium reabsorption in the kidney. 
In vivo study, the TRPV5 knockout mice present with 
severe hyper-calciuria and bone abnormalities. Results of 
the study by YY Wu et al, which was consistent with our 
findings, demonstrated that overexpression of vitamin D 
receptor (VDR) decreased TRPV5 expression, significantly 
inhibited RCC cells proliferation, migration and invasion in 
vitro. Increased TRPV5 expression may induce increases in 
[Ca2+] and mitochondrial [Ca2+], thus activating mitochon-
drial membrane permeabilization and, potentially, differen-
tiation, apoptosis or necrosis.27,28 And previous clinical 
research found that calcium levels affect the prognosis of 
RCC patients and the calcium-sensing genes on the plasma 

Figure 6 qPCR (Glut1, Glut2, p53, Ras, c-met, and c-myc, x-axis: fold changes, kidneys from animals with diabetic nephropathy with renal cell carcinoma (DN carcinoma) or 
no tumors (DN no carcinoma) versus controls (normal)). Differentially expressed genes for relevant glucose transporters, oncogenes, suppressor genes, and nuclear 
transcription regulators were observed. Data was calculated as mean± SE. *p < 0.05 VS DN-no carcinoma group.
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membrane could be used as biomarkers to predict the prog-
nosis of RCC patients.

Besides, this study also found significant increased 
expression of GLUT2 in tumors of DN animals when 
compared to controls without DN and those without 
tumors but with DN. GLUT2 is the major glucose trans-
porter on the proximal tubule basolateral membrane of 
intestinal and kidney epithelial cells.29 It is responsible 
for glucose reabsorption from the tubular lumen in the 
early proximal (S1 and S2 segments) and distal (S3) 
tubules of the kidney. Recent evidence implies that glu-
cose transport via the facilitative transporter GLUT2 is 
increased in both humans with diabetes and diabetic 
animals.3,30,31 The deregulated expression of GLUTs 
with different hexose affinities may allow tumor cells to 
optimize their energy supply and thus gain a fundamental 
advantage for growth,29 as over-expressed GLUTs contri-
bute to an increase in glucose utilization.32 Recent studies 
pointed to the finding that GLUT2 expression was indeed 
upregulated in several cancers.33–37 In agreement with 
previous studies, we found a profoundly increased expres-
sion of GLUT2 in animals with diabetic nephropathy and 
tumors within their damaged kidneys. This suggests that 
upregulated GLUT2 expression may consequently amplify 
the tubular cell damage and upon this facilitate tubular 
carcinogenesis occurring during diabetes.

Moreover, oncogenes, suppressor genes and central 
growth regulators such as c-met, c-myc, p53 and Ras 
could be activated directly and indirectly and linked to 
renal cell carcinogenesis.38,39 Our data showed that c-met 
have a significant higher expression in RCC.

Increasing evidence shows that oncogenic mutations cul-
minate in the up-regulation of glucose transporters. This facil-
itates increased glucose consumption by tumor cells, which in 
turn increases the rate of glucose metabolism necessary for 
uncontrolled tumor cell reduplication.40 Diabetes may provide 
in this context a suitable hyperglycemic microenvironment 
during the initiation and progression of cancer.41 Previous 
studies have shown that oncogenes and tumor suppressor 
genes can regulate altered energy metabolism. Our research 
supported this observation, as c-met expression was demon-
strated to be upregulated in tumor-bearing kidneys from ani-
mals with diabetic nephropathy.

In conclusion, the disordered calcium metabolism, 
especially disturbed TRPV5 mediated Ca2+ signal, identi-
fied in our study may have been related to the development 
of RCC in DN rats. However, the detailed mechanism 

between calcium metabolism and RCC in DN needs to 
be explored in further studies.
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