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Introduction: Physical, chemical, thermal injuries along with infectious diseases lead to
acute pain with associated inflammation, being the primary cause of hospital visits.
Moreover, neuropathic pain associated with diabetes is a serious chronic disease leading to
high morbidity and poor quality of life.

Objective: Earlier multiple sulphonamides have been reported to have an antinociceptive
and antiallodynic profile. 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide (4-FBS),
a synthetic sulfonamide with reported carbonic anhydrase inhibitory activity, was investi-
gated for its potential effects in mice model of acute and diabetic neuropathic pain.
Methods and Results: 4-FBS was given orally (p.o.) one hour before the test and then
mice were screened for antinociceptive activity by using the tail immersion test, which
showed significant antinociceptive effect at both 20 and 40 mg/kg doses. To explore the
possible mechanisms, thermal analgesia of 4-FBS was reversed by the SHT; antagonist
ondansetron 1mg/kg intraperitoneally (i.p.) and by the p receptor antagonist naloxone (1 mg/
kg i.p.), implying possible involvement of serotonergic and opioidergic pathways in the
analgesic effect of 4-FBS. Diabetes was induced in mice by a single dose of streptozotocin
(STZ) 200 mg/kg i.p. After two weeks, animals first became hyperalgesic and progressively
allodynic in the fourth week, which was evaluated through behavioral parameters like
thermal and mechanical tests. 4-FBS at 20 and 40 mg/kg p.o. significantly reversed diabetes-
induced hyperalgesia and allodynia at 30, 60, 90, and 120 minutes.

Conclusion: These findings are significant and promising while further studies are war-
ranted to explore the exact molecular mechanism and the potential of 4-FBS in diabetic
neuropathic pain.

Keywords: sulfonamides, streptozotocin; STZ, antinociception, diabetes mellitus; DM,
neuropathic pain, von Frey filaments

Introduction

Physical, thermal, and chemical noxious stimuli, and infectious diseases, are the
leading cause of pain and associated inflammation.'” Acute pain is a protective
mechanism of homeostasis but has considerable distress that leads to poor quality
of life. Tissue and nerve damage translates into intensified pain states, which are
driven by afferent traffic caused by otherwise harmless or slightly aversive mechan-
ical and thermal stimuli evoking a behavioral response consistent with a more
pronounced stimulus.>* Non-steroidal anti-inflammatory drugs (NSAIDs) are

usually used for the treatment of mild to moderate painful states, but these drugs
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are associated with lasting side effects including gastric
ulceration and subsequent bleeding.” Opiates have also
been used as narcotic analgesics but are coupled with
serious adverse effects, primarily tolerance, and continued
use is translated in the form of addiction and dependence.®

Diabetic peripheral neuropathy (DPN) is one of the
leading causes of morbidity, affecting 30-50% individuals
presented with diabetes mellitus (DM) and also contributes
a greater cost to the health care systems of both developed
and developing countries.”® The structural deformity of
the peripheral nervous system and abnormal functioning of
nerves that supply to organs develops a complex and
unique pattern of symptoms and signs that are character-
istic of diabetic neuropathy. These involve stocking-glove
pattern of pain, burning pain especially at nights, lancinat-
ing or sharp pain, heightened pain response to touch, and
pain from non-noxious stimuli or allodynia. All of these
symptoms are called positive symptoms of DPN, while
negative symptoms include numbness, cold, and loss of
sensory sensation.”'® Despite the prevalence of DPN and
its contribution to disease burden on societies, several
treatment options only relate to glucose control and weight
loss. The currently available centrally acting drugs for
DPN, like antidepressants, anticonvulsants, and opioids,
produce the serious risk of use dependence and
addiction."!

Research over recent decades has been conducted to look
for non-opioid analgesics that can act via a central
mechanism.'? Many studies indicate that the serotonergic
pathway, primarily the 5-HT; 5 receptor activation, leads to
a novel mechanism mimicking central neuroadaptive analge-
sic action upon receiving nociceptive stimulation.'

Sulfonamide derivatives have been documented to have
diuretic,'* antiepileptic,'> analgesic and antiallodynic,'®
anti-cancer,'” hepatoprotective, and GABA, modulatory
activities.'® Additionally, sulfonamides have been docu-
mented to inhibit neuropathic pain, reverse mechanical
hyperalgesia, and allodynia in a dose-dependent manner."’
Additionally, the carbonic anhydrase inhibitory effects of
sulphonamides have been reported to reverse oxaliplatin-
induced allodynia through reversing oxaliplatin-induced
decrement in intracellular pH in mouse dorsal root ganglion
(DRG) neurons.”” 4-FBS has been reported to have a dual
inhibitory effect on alkaline phosphatase and carbonic
anhydrase,”' and recent data suggest carbonic anhydrase
inhibitors as a potential newer drug target for the manage-
ment of neuropathic pain.'® Keeping in view this diverse
pharmacological profile of 4-FBS (alkaline phosphatase

and carbonic anhydrase inhibitory effect), this study was
designed to explore the potential of 4-FBS in a murine
model of acute pain and diabetes-induced neuropathic pain.

Materials and Methods

Animals

Male BALB/c (n=6/group) mice 8- to 12-weeks-old
(24-30 g), obtained from the National Institute of Health,
Pakistan were randomly housed six (6) per cage and main-
tained at temperature 24 = 1°C with 12 h dark/light cycle
in the animal house facility of COMSATS University
Islamabad, Abbottabad Campus. Standard rodent chow
diet and water were provided ad [libitum. All the beha-
vioral experiments were performed during the light cycle
from 8:00 am to 2:00 pm, to avoid disturbance in the
diurnal rhythm. The experimentation on animals was per-
formed in compliance with the UK Animals (Scientific
Procedures) Act 1986 and accordance with the rules and
ethics set by the Ethical Committee of COMSATS
University Islamabad, Abbottabad campus under the
approval Letter number PHM.Eth/cs-M04/11-34.

Treatment Schedule

Mice (n=6/group) were divided into five groups. All
groups received streptozotocin (STZ) as a single high
dose of 200 mg/kg i.p. once except the vehicle control
group.”>?* Group, I served as a positive control (STZ
group). Group II dimethyl sulfoxide (DMSO 5%) p.o.
remained as a vehicle control group. Group III received
gabapentin 75 mg/kg i.p. as the standard, while group IV
and V received 4-FBS suspension 20 and 40 mg/kg p.o.
via oral gavage dissolved in DMSO 5% to diabetic neuro-
pathic mice and pain behavioral parameters like allodynia
and hyperalgesia were evaluated at different time interval
30, 60, 90 and 120 minutes (min).

Drugs and Chemicals

Sulfonamide compound, i.e., 4-FBS was provided by
Mariya Al Rashida,®’ STZ was purchased from Sigma
(St. Louis, MO, USA), naloxone 0.3 mg/mL (Brand
name NALOX by Haji Medicines Co), ondansetron
8 mg/4mL (ONSET by Pharmedic Pvt Ltd) were pur-
chased from the model retail pharmacy established in
Ayub Teaching Hospital Abbottabad, Pakistan. One-touch
basic blood glucose monitoring system by a Life scan was
used for measuring blood glucose levels.
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Tail Immersion Test

In the tail immersion test, a noxious pain stimulus was
used to quantify thermal pain in naive male BALB/c mice
treated with 4-FBS 20 and 40 mg/kg against the normal
saline group. About 1/3rd of the mouse tail was immersed
into hot water which was maintained at 54+ 0.5°C (nox-
ious pain stimulus for mice) and test recording (tail flick)
was noted at 30, 60, 90, and 120 min. The time between
the application of thermal stimulus and response, i.¢., tail-
flick latency was noted via digital stopwatch. A 15 seconds

(s) cut-off time was set to avoid tissue injury.?>-*¢

Reversal of Analgesia by Naloxone and

Ondansetron
To explore the possible involvement of serotonergic?’ and

2 selected groups of mice (n=6/

opioidergic pathways,
group) were given 4-FBS 20 mg/kg p.o. separately. After
one hour, the same mice received naloxone 1mg/kg i.p,
while other 4-FBS treated group received ondansetron
Img/kg i.p. and tail-flick latency was quantified against

. . . 252
normal saline as described earlier.?>2°

Induction and Assessment of Diabetic

Neuropathic Pain

Mice were food-deprived overnight for 16 h before admin-
istration of a single dose of STZ 200 mg/kg to induce B-cell
necrosis.”*** Mice were immediately provided food and
10% sucrose solution to avoid severe hypoglycemia. After
72 h, mice having random blood glucose levels >250 mg/dl
were included in the study.** Blood glucose and body
weight were measured at a different time interval during
the experimentation. To avoid infection due to polyuria,
mice sawdust bedding was changed on alternate days.
After 4 weeks, on the 29th-day post STZ treatment, animals
were transferred to a wire mesh cage, given an acclimatiza-
tion period of 15-45 min, and then evaluated for thermal

hyperalgesia and allodynia.>**°

Assessment of Static Allodynia (Paw
Withdrawal Threshold (g))

Static allodynia was assessed using von Frey filaments
ranging from 0.008 to 4 g. For this purpose, mice right
hind paw was exposed through a mesh floor having a pore
size of 10x10 cm and an opaque cup was used to avoid
visual contact. An acclimatization period of 15-45 min
was given for initial exploration and grooming.?*~°

Filaments were applied for 6-8 seconds on the plantar

surface of the hind paw perpendicularly until it distorted.
The careful observation was carried not to touch the less
sensitive tori (footpads) of mice with filaments. The von
Frey filament was applied 05 times to the hind paw at
intervals of several seconds to determine the mean score
which also served as the pain related score. After this, the
next filament was introduced in a descending pattern using
up and down technique.*’

Statistics

Data were expressed as means £ S.E.M. Parameters were
examined for normality with the Shapiro—Wilk normality
test and all data was found normal. One-way ANOVA was
followed by Dunnett’s post hoc test. GraphPad Prism
v.8.3.1 was used for the analysis of data. The statistical
significance level was set as p< 0.05.

Results
Effects of 4-FBS 20 and 40 mg/kg on

Acute Thermal Antinociception Activity
As shown in Figures 1 and 2, 4-FBS at 20 and 40 mg/kg p.
o. significantly *p<0.05, **p<0.01, ***p<0.001 elevated

El N.Saline
E3 4-FBS (20 mg/kg)

| "
2+ . %
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Saline 30 60 90

Tail Flick Latency Time (sec)

Time (minutes)

Figure | Effect of 4-FBS 20 mg/kg on tail flick latency time at different time-points.
BALB/c mice (n=6/group) were used. The graph shows antinociceptive activity of
4-FBS 20 mg/kg p.o. in the tail-flick latency time. One way ANOVA followed by
Dunnett’s test shows significance difference between at 30, 60, 90 and 120 min
between 4-FBS vs. saline vehicle control, *p<0.05, **p<0.01, ***p<0.001.
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Figure 2 Effect of 4-FBS 20 mg/kg on tail flick latency time at different time-points.
BALB/c mice (n=6/group) were used. The graph shows the antinociceptive activity
of 4-FBS 40 mg/kg p.o. in tail-flick latency time. One way ANOVA followed by
Dunnett’s test shows significance difference at 30, 60 and 90 except 120 min
between 4-FBS vs. saline vehicle control, *p<0.05, **p<0.01, ***p<0.001.

tail-flick latency time at 30, 60, 90, and 120 min, when
compared with saline group except for 4-FBS 40 mg/kg at
120 min. One way ANOVA followed by Dunnett’s test
was used as statistical analysis.

Effects of Ondansetron (I mg/kg) and
Naloxone (I mg/kg) on 4-FBS 20 mg/kg
Acute Thermal Antinociception Activity

As shown in Figures 3 and 4, two mice groups (n=6)
received 4-FBS 20 mg/kg p.o. After one hour, they were
administered ondansetron and naloxone 1 mg/kg i.p. sepa-
rately, which abolished the anti-nociceptive effect of
4-FBS 20 mg/kg in the tail-flick latency time although
statistically (unpaired ¢-test) non-

the result was

significant when compared with normal saline.

Effects of 4-FBS 20 and 40 mg/kg on STZ

Induced Diabetic Thermal Hyperalgesia

As shown in Figure 5, 4-FBS at 20 and 40 mg/kg p.o.
significantly **p<0.01, ***p<0.001 increased tail-flick
latency time in STZ-induced diabetic thermal hyperalgesia
at different time points of 30, 60 90, and 120 min except
for 4-FBS 20 mg/kg at 120 min. It is pertinent to mention

El N.Saline
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Figure 3 Shows partial reversal by ondansetron, Img/kg in tail flick latency proto-
col. Pain threshold was observed in 4-FBS 20mg/kg treated mice but it was
statistically non-significant when compared with the saline vehicle control group.

B N.Saline
Ea 4-FBS (20 mg/kg) + Naloxone (1 mg/kg)

w
1

N
1

N
1

Tail flick latency time (sec)

o
L

Time 30min

Figure 4 Shows that naloxone, Img/kg shows partial reversal of analgesia in tail
flick latency protocol. Pain threshold was observed in 4-FBS at 20mg/kg treated
mice, which was statistically non-significant when compared with the saline vehicle
control group.

that using one-way ANOVA followed by Dunnett’s test,
the 4-FBS 20 mg/kg result was comparable to the standard
drug gabapentin 75 mg/kg at 30, 60, and 90 min, while
40mg/kg was comparable at time points of 30, 60, 90, and
120 min.

Effects of 4-FBS 20 and 40 mg/kg on STZ
Induced Diabetic Static Allodynia

As shown in Figures 6 and 7, oral administration of 4-FBS
20 mg/kg to diabetic mice resulted in a significant **p<0.01,
**%p<0.001 reversal of static allodynia by increasing paw
withdrawal threshold at 30, 60, 90 min, while 4-FBS at
40 mg/kg increased paw withdrawal at 60, 90, 120 min.
Application of one-way ANOVA followed by Dunnett’s
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Figure 5 Effect of 4-FBS 20 and 40mg/kg on tail flick latency time at different time-
points. BALB/c mice (n=6/group) were used. 4-FBS at 20 and 40mg/kg shows
significant antihyperalgesic activity in the mouse tail-flick latency time. One way
ANOVA followed by Dunnett’s test shows significance difference between STZ
control and 4-FBS 20mg +STZ group at all-time intervals except for 120 min while
4-FBS 40mg +STZ group at all-time. *p<0.05, **p<0.01, ***p<0.001.
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Figure 7 Effect of 4-FBS 40 mg/kg on paw withdrawal threshold time at different
time-points. BALB/c mice (n=6/group) were used. 4-FBS at 40 mg/kg shows sig-
nificant antiallodynic activity in the paw withdrawal threshold (n=6). One way
ANOVA followed by Dunnett’s test shows significance difference between STZ
control and 4-FBS 20mg +STZ group at all-time intervals except for 30 min.
*p<0.05, **p<0.01, ***p<0.001.

test showed the response at 4-FBS 20 mg/kg 120 min and
4-FBS 40 mg/kg 30 min only as non-significant, although
considerable paw withdrawal latency can be observed.

o
L
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Figure 6 Effect of 4-FBS 20 mg/kg on paw withdrawal threshold time at different
time-points. BALB/c mice (n=6/group) were used. 4-FBS at 20 mg/kg shows sig-
nificant antiallodynic activity in the paw withdrawal threshold. One way ANOVA
followed by Dunnett’s test shows significance difference between STZ control and
4-FBS 20mg +STZ group at all-time intervals except for 120 min. ¥p<0.05, **p<0.01,
*#*%p<0.001.

Discussion

Our findings showed that 4-FBS has significant antihyper-
algesic, and antiallodynic effects in the murine model of
diabetic neuropathic pain Figures 5-7. The compound also
showed an analgesic effect in the acute thermal pain mice
model at 30, 60, 90, and 120 minutes, which is a significant
effect in terms of both potency and longevity (Figures 1 and
2). To ascertain the mechanism and involvement of seroto-
nergic pathways, we tried to reverse the effect with ondanse-
tron. Serotonergic receptors agonists specifically have been
documented to reverse both hyperalgesia and allodynia in
neuropathic pain models.*'** The thermal pain effect was
reversed with ondansetron dose, implying the role of seroto-
nergic pathways primarily SHT; receptors in Figure 3.
Serotonin plays a diverse role in pain modulation and control;
primarily SHT g antagonists are used clinically in pain, for
instance, tramadol, which partially imparts its analgesia by
blocking 5HT,.** Tramadol along with other opiates are
extensively used for the management of acute, chronic, and
neuropathic pain.**>° Additionally, tramadol has a serotonin
reuptake inhibitor (SRI) effect that contributes to its analge-
sic effect.*® Studies have also documented that, tramadol

Drug Design, Development and Therapy 2020:14
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analgesia quality and duration were reversed by
ondansetron.?”*” More detailed receptor-specific studies are
warranted using specified receptor antagonists for broader
mechanistic studies. The acute thermal effect was also
reversed by naloxone, implying some interactions with opioi-
dergic pathways in Figure 4. It is pertinent to mention that
reversal was made with 1 mg/kg naloxone and more studies
are warranted to ascertain the involvement of specific opioid
receptors.

Earlier studies have reported that some sulfonamides
have analgesic, antihyperalgesic and antiallodynic effects,
as well as a carbonic anhydrase inhibitory effect.'”'® In
modulation of pain and hyperalgesia, dopamine plays
a major role in different areas of the brain including basal

* and it is one of the main sensitive pathways

ganglia,
implicated in pain management.** Dopamine D1 receptor
antagonist SCH-23,390 attenuate prostaglandin E2 (PGE,)
induced hyperalgesia and neuropathic allodynia.*
Computationally, 4-FBS is a D1 receptor antagonist (sup-
port file 1) and it may be suggested that its anti-nociceptive,
anti-allodynic activity is due to its antagonistic activity on
the D1 receptor. Further studies are warranted to validate
both the behavioral and in-silico studies on receptor level
using D1 receptor antagonist.

Diabetic neuropathic pain (DPN) is manifested via distal
symmetrical polyneuropathy, which is characterized by
numbness, stabbing sensations, tingling pain, and weakness
of nerves in a stocking-and-glove pattern, beginning in the
distal extremities. DPN leads to substantial pain, hyperalge-
sia, and allodynia which leads to poor quality of life and has
been reported to have involvement of the peripheral nervous
system and alter central pain processing.*' The polymorphic
nature of this disease deleteriously affects different areas in
the central nervous system compromising the performance of
other body systems. Overexpression of cyclooxygenases
seen in diabetes significantly contributes to the severity of
pain, hyperalgesia, and discomfort.*** Its comorbidities
including depression, anxiety, and insomnia make the treat-
ment regimen problematic and challenging.®** At present,
more than 415 million people suffer from diabetes worldwide
and 30-50% have chronic diabetic neuropathy, and approxi-
mately 15% with allodynia.***> 4-FBS significantly amelio-
rated thermal hyperalgesia at all doses in the animal model of
DPN Figure 5 except at 120 min for 4-FBS 20 mg/kg. The
compounds also showed a significant antiallodynic effect in
diabetic neuropathic pain by reversing mechanical allodynia
(Figures 6 and 7) except at 120 min for 4-FBS 20 mg/kg and

30 min for 4-FBS 40 mg/kg. Very few compounds have such

a profile of reversing diverse types of pain and the compound
effects resembling that of opiates.

4-FBS is a Carbonic anhydrase inhibitor’' and has been
documented for a diverse role in neuropathic pain.'® Diabetic
neuropathy leads to hyperalgesia and progressively results in
allodynia. DPN is characterized by peripheral nerve injury,
which negatively modulates spinal y-aminobutyric (GABA)-
ergic neuronal networks and causes a significant decrease in
(K+-Cl-)  co-
transporter (KCC2), that translates in hyperalgesia and
allodynia.'® Carbonic anhydrase inhibitors (CAls) have
been documented to decrease the bicarbonate-dependent

depolarization of y-aminobutyric (GABA) GABA, recep-
18,19

the neuron-specific potassium-chloride

tors, producing antiallodynic effects in neuropathic pain.

Acetazolamide along with many other carbonic anhy-
drase inhibitors has been reported for a role in the manage-
ment of neuropathic pain through various pathways.'®
4-FBS has been reported to have a carbonic anhydrase
inhibitory effect’’ and this effect might be contributing
partially to the analgesic properties of 4-FBS in the acute
pain model as well as in diabetic neuropathic pain includ-
ing both hyperalgesia and allodynia.

Limitations

These are purely behavioral studies and require more
specific studies at the molecular level to explore the invol-
vement of any specific opioid receptor, serotonergic recep-
tor, or carbonic anhydrase inhibitory effects for its
analgesic, antihyperalgesic and anti-allodynic, role in neu-
ropathic pain models.
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