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Background: Gold nanoparticles with high biocompatibility and immunomodulatory prop
erties have potential applications in the development of new diagnostic and therapeutic 
strategies for nanomedicine. Nanoparticles targeting macrophages can manipulate or control 
immunological diseases. This study assessed the activity of dendrimer-encapsulated gold 
nanodots (AuNDs) with three surface modifications [ie, outfacing groups with primary amine 
(AuNDs-NH2), hydroxyl (AuNDs-OH), and quaternary ammonium ions (AuNDs-CH3)] 
regulated macrophage function and antioxidant response through Nrf2-dependent pathway.
Methods: AuNDs were prepared and characterized. Intracellular distribution of AuNDs in 
human macrophages was observed through confocal microscopy. The activity of AuNDs was 
evaluated using macrophage functions and antioxidant response in the human macrophage 
cell line THP-1.
Results: AuNDs-NH2 and AuNDs-CH3, but not AuNDs-OH, drove the obvious Nrf2- 
antioxidant response element pathway in THP-1 cells. Of the three, AuNDs-NH2 consider
ably increased mRNA levels and antioxidant activities of heme oxygenase 1 and NAD(P)H 
quinone dehydrogenase 1 in THP-1 cells. IL-6 mRNA and protein expression was mediated 
through Nrf2 activation in AuNDs-NH2-treated macrophages. Furthermore, Nrf2 activation 
by AuNDs-NH2 increased the phagocytic ability of THP-1 macrophages.
Conclusion: AuNDs-NH2 had immunomodulatory activities in macrophages. The findings 
of the present work suggested that AuNDs have potential effects against chronic inflamma
tory diseases via the Nrf2 pathway.
Keywords: gold nanodots, macrophage, antioxidant, inflammation

Introduction
Engineering nanoparticles for application in the immune system is an exciting, 
emerging field in the development of nanotechnology.1 Nanoparticles targeting 
immune cells (eg, macrophages) can help in manipulating or controlling immuno
logical diseases, such as infectious diseases or tumors. Macrophages play many key 
roles in the host defense system. They not only phagocytose dead cells and 
pathogens but also shape the inflammatory response and modulate adaptive immu
nity. However, macrophages act as major effector cells in chronic inflammatory 
development. Redox signals affect the process of macrophage polarization and 
reprogramming.2 A key master redox regulator is the nuclear factor erythroid 
2-related factor 2 (Nrf2) signaling pathway, responsible for oxidative and xenobio
tic stress.3 Moreover, Nrf2 is a vital target for anti-inflammation and antioxidant 
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cytoprotective pathways.4,5 Nrf2 activators exhibit protec
tive effects in animal models of neurodegenerative 
diseases6–8 and chronic obstructive pulmonary disease.9 

Accordingly, natural or synthetically derived Nrf2 modu
lators have been attracting attention as a promising ther
apeutic strategy for chronic inflammatory diseases.10

The extent of biocompatibility of a nanoparticle depends 
on its various surface properties. Owing to the inert and 
nontoxic core, gold nanoparticles usually exhibit relatively 
low toxicity and high biocompatibility compared with other 
metal-based nanoparticles, such as silver, zinc oxide, and 
iron oxide.11,12 Our previous study demonstrated that sur
face modification of gold nanodots (AuNDs) changed the 
lipopolysaccharide (LPS) assembly behavior to modulate 
immunological effects in human macrophages.13 Liu et al14 

also demonstrated that surface modifications of AuNDs 
with amine outfacing group (AuNDs-NH2) demonstrated 
reduced peroxidase-like activity while still retaining cata
lase-like activity. The methylation of AuNDs-NH2 to form 
quaternary ammonium ions (AuNDs-CH3) restored the 
intrinsic peroxidase-like activity.

In the present study, AuNDs with three types of out
facing groups—namely primary amine (AuNDs-NH2), 
hydroxyl (AuNDs-OH), and quaternary ammonium ions 
(AuNDs-CH3)—had different effects antioxidant response 
and macrophage functions via the Nrf2 activation pathway. 
Of the three, only AuNDs-NH2 triggered transient reactive 
oxygen species (ROS) disturbance within 10 min and then 
decreased intracellular ROS in a time-dependent manner. 
AuNDs-NH2 induced Nrf2 ser40 phosphorylation and 
subsequently triggered Nrf2 target gene transcriptional 
activation, and AuNDs-CH3 activated Nrf2 through the 
noncanonical Nrf2-P62 pathway. However, AuNDs-OH 
did not trigger Nrf2- antioxidant response element (ARE) 
activation. AuNDs-NH2 considerably increased hemeoxy
genase 1 (HO-1) and NAD(P)H quinone dehydrogenase 1 
(NQO1) mRNA levels in THP-1 cells after 24 h of treat
ment. In addition, the antioxidant enzyme activities were 
elevated in AuNDs-NH2-treated cells at 48 h, including 
NQO1, glutathione peroxidase (GPx), glutathione 
S-transferase (GST), and catalase. Only NQO1 and cata
lase enzyme activities were increased after AuNDs-CH3 
treatment. Moreover, mRNA and protein expression of IL- 
6 was mediated through Nrf2 activation in AuNDs-NH2- 
treated macrophages. Furthermore, Nrf2 activation by 
AuNDs-NH2 increased the phagocytic ability of THP-1 
macrophages. Therefore, our findings provide rationale 

strategies for the development of nanomaterials targeting 
the Nrf2 pathway against chronic diseases.

Materials and Methods
Materials
G4NH2 and G4OH dendrimers, HAuCl4, methyl iodide, 
LPS, and ML385 were purchased from Sigma-Aldrich 
(St. Louis, MO, USA). 2ʹ,7ʹ dichlorodihydrofluorescein 
diacetate (DCFH-DA) was obtained from Thermo Fisher 
Scientific (Grand Island, NY, USA). The AuNDs were 
synthesized according to a previous study.15 In brief, 
G4NH2 and HAuCl4 were mixed, and the solution was 
incubated at 4 °C overnight and then irradiated with 
microwave at 120 °C for 30 min (CEM; Discover 
LabMate System). The precipitations and AuNDs were 
filtered through an MWCO membrane filter (3 KDa) 
from Millipore (PES membrane, MA, USA). The extra 
AuCl4− was removed using anionic exchange chromato
graphy (Fractogel EMD TMAE Hicap; Rockland, Merck, 
MA, USA). The internal tertiary amine groups and the 
surface amine groups of dendrimer-encapsulated AuNDs 
were treated with methyl iodide in 1 mL of 1:1 (v/v) N,N′- 
dimethylformamide/H2O at room temperature overnight to 
form AuNDs-CH3. The reaction mixture was extracted, 
dried under a vacuum, and dissolved in water.14

Physicochemical Properties of AuNDs
Zeta potential was measured on the Zetasizer Nano system 
(Zetasizer Nano ZS; Malvern Instruments, Worcestershire, 
UK). All measurements were performed with three indepen
dent experiments at room temperature. The gold content of 
AuNDs and percentages of cell uptake were quantified 
through inductively coupled plasma mass spectrometry (ICP- 
MS). Polarities of AuNDs were measured using pyrene, a type 
polarity probe.16–18 The I1:I3 ratio is an index of the polarity of 
its environment; I1 and I3 are intensities at 372 and 383 nm, 
respectively. AuND sizes were determined on a dynamic light 
scattering instrument (Malvern Zetasizer, Nano ZS) with an 
argon laser wavelength (λ = 633 nm; detector angle = 173°; 
typical sample volume = 100 μL). Endotoxin levels of AuNDs 
were measured using the kinetic turbidimetric assay. The spike 
recoveries of AuNDs-NH2, AuNDs-CH3, and AuNDs-OH 
were 86%, 85%, and 93%, respectively.

Intracellular Distribution of AuNDs
THP-1 cells were purchased from Bioresource Collection 
and Research Centre in Food Industry Research and 
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Development Institute, Taiwan. The cells were seeded in 
a 3.5-cm μ-dish (ibidi GmbH, Martinsried, Germany) and 
treated for 3 days with 100 nM PMA. After replacement 
with fresh serum-free medium for 1 day, the cells were 
treated with 1 mg/mL AuNDs for 6 and 24 h. MitoTracker 
(Invitrogen, Molecular Probe, OR, USA) and LysoTracker 
(Invitrogen) were used for intracellular biodistribution of 
AuNDs. MitoTracker is a cell-permanent probe that con
tains a mildly thiol-reactive chloromethyl moiety for label
ing mitochondria. LysoTracker is a fluorescent acidotropic 
probe for labeling and tracking acidic organelles in live 
cells and can be used to investigate intracellular lyso
somes. The red MitoTracker and LysoTracker were 
detected with confocal microscopy upon excitation using 
a 577-nm diode laser, and the emission was measured at 
590 nm. The intracellular distributions of the AuNDs were 
detected with confocal microscopy on excitation using 
a 405-nm diode laser, and the emissions were measured 
at 420–460 nm. To examine whether AuNDs are excreted 
through exocytosis or destroyed in cells, PMA-activated 
THP-1 cells were treated with 1 mg/mL AuNDs for 24 
h. Then, AuNDs were removed by replacement with a new 
culture medium for another 48 h. The cells were stained 
with LysoTracker (red) and then examined using confocal 
microscopy.

Measurement of Intracellular ROS
ROS generation was determined using DCFH-DA. PMA- 
activated THP-1 cells were plated with an appropriate 
number in 6-well plates or 96-well black microtiter plates 
and treated for 10 and 30 min with or without AuNDs or 
LPS, diluted directly into the culture media. Treatment 
with 1 μg/mL LPS for 30 min was used as a positive 
control. An appropriate number of cells were incubated 
with 5 μM DCFH-DA at 37 °C for 30 min and then 
immediately measured using a microplate reader or 
through flow cytometry with a 485-nm excitation wave
length and 520-nm emission wavelength.

Adenovirus-Based ARE Luciferase 
Reporter Assay
The use of adenovirus-based luciferase reporter assay has 
been established.19,20 In brief, the PMA-activated cells 
(1.5 × 104 cells/well) were seeded on 96-well white plates 
(cat. no. 136101; Nalge Nunc, Roskilde, Denmark). After 
infection with the recombinant adenovirus containing ARE 
constructs at a multiplicity of infection of 1 in serum-free 

medium for 16 h, the infected THP−1 cells were treated 
with AuNDs for 24 h. Luciferase activity was determined 
in triplicate on the Luciferase Assay System (Promega, 
Madison, WI, USA) by using a programmed microplate 
luminometer21 (MicroLumatPlus LB96V, EG&G 
Berthold, Germany).

Quantitative Real-Time Reverse 
Transcription-Polymerase Chain Reaction 
Assays
THP−1 cells were seeded in 6-well plates and then treated for 
3 days with 100 nM PMA. After replacement with fresh sera- 
free medium for 1 day, the cells were treated with 1 mg/mL 
AuNDs for 24 or 48 h. Next, RNA was extracted using an 
RNAzol RT kit (Life Technologies, Rockville, MD, USA). 
The purified RNAs were stored at −80 °C, and cDNA was 
synthesized with total RNA (3 μg). Quantitative real-time 
reverse transcription-polymerase chain reaction (quantitative 
PCR) was used to measure NQO1, HO−1, IL−1β, and IL−6 
expression, and the assays were performed using the Assay- 
on-Demand Gene Expression Assay Mix (Applied 
Biosystems, Foster City, CA, USA). The assay ID for 
NQO1 was Hs00168547_m1, of HO−1 was 
Hs00157965_m1, for IL−1β was Hs01555410_m1, for IL 
−6 was Hs00174131_m1, and for glyceraldehyde−3-phos
phate dehydrogenase (GAPDH) was Mm99999915_g1. 
Quantitative PCR to measure NQO1, HO−1, IL−1β, IL−6, 
and GAPDH expression were performed using TaqMan 
Universal PCR Master Mix (Applied Biosystems). The reac
tion mixtures were prepared by mixing aliquots of cDNA, 0.5 
μL of Assay-on-Demand Gene Expression Assay Mix, and 5 
μL of TaqMan Universal PCR Master Mix (Applied 
Biosystems) in a final volume of 10 μL. The reaction mix
tures were analyzed on an ABI PRISM 7900 Sequence 
Detector System (Applied Biosystems) with the following 
PCR program: 95 °C for 10 min, followed by 40 cycles of 60 
°C for 1 min, and 95 °C for 15 s. Quantitative values were 
obtained from the threshold cycle (Ct) number. The relative 
mRNA levels of the target genes were derived using the eq 2 
−ΔCt, where ΔCt = Cttarget gene − CtGAPDH. Data were pre
sented as the fold relative to the control value.22

IL-1β and IL-6 ELISA
THP-1 cells were seeded in 6-well plates and then treated 
for 3 days with 100 nM PMA. After replacement with 
fresh sera-free medium for 1 day, the cells were treated 
with 1 mg/mL AuNDs for 48 h. Human IL-1β and IL-6 
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proteins were measured using ELISA (Affymetrix 
eBioscience), according to manufacturer instructions.

Antioxidant Enzyme Activity Assays
Antioxidant enzyme activities were determined in AuNDs- 
treated cell at 48 h. The measured enzymes included 
NAD(P)H dehydrogenase [quinone] 1 (NQO1), glu
tathione peroxidase (GPx), catalase, and glutathione- 
S-transferase (GST). The enzyme activities of NQO1, 
GPx, catalase, and GST were determined using enzyme 
activity assays (Abcam, Cambridge, MA, USA), according 
to the instruction manuals.

Phagocytosis Assay
The phagocytosis assay was performed with pHrodo 
Escherichia coli BioParticles conjugates (Thermo Fisher 
Scientific). THP-1 cells were activated by PMA for 3 days 
and cultured with sera-free medium 24 h after PMA 
removal. THP-1 cells were treated with AuNDs for 24 or 
48 h and then harvested from the culture plates for the 
following assay. The cells were incubated with pHrodo 
E. coli (1 mg/mL) at 37 °C for 2 h. The pHrodo dye 
conjugates were nonfluorescent outside the cell but 
brightly red fluorescent in phagosomes. The percentage 
of phagocytosis was detected through flow cytometry 
with the wavelength of excitation at 560 nm and emission 
at 585 nm.

Nrf2 and P62 Phosphorylations Through 
Flow Cytometry
Nrf2 ser40 and P62 ser349 phosphorylations were deter
mined through flow cytometry. THP-1 cells were activated 
using PMA for 3 days and cultured with sera-free medium 
for another 24 h after PMA removal. THP-1 cells were 
treated with AuNDs at various time points. The cells were 
fixed with a paraformaldehyde buffer followed through 
methanol permeabilization. Anti-Nrf2 (phospho S40) and 
anti-SQSTM1/p62 (phospho S349) antibodies were pur
chased from Abcam. Anti-rabbit IgG conjugated with 
Alexa Fluor 488 (Invitrogen) was used as the secondary 
antibody. The percentage of Nrf2 and P62 phosphorylation 
was detected through flow cytometry with excitation wave
length of 495 nm and emission wavelength of 519 nm.

Statistical Analysis
All statistical analyses were conducted on Prism 4.0 
(GraphPad Software, San Diego, CA, USA). Significant 

differences between treatment groups were determined 
through using an unpaired t-test. The results of experimen
tally treated groups and their corresponding controls were 
compared using one-way analysis of variance. Differences 
were considered statistically significant at *P values of 
<0.05, **P <0.01, and ***P <0.001.

Results
Physiochemical Properties and 
Intracellular Distribution of AuNDs in 
THP-1 Macrophages
Our previous study indicated that dendrimer-encapsulated 
AuNDs are highly biocompatible with macrophages.13 The 
preparations of AuNDs are described in the previous 
report,15 in which the detailed physicochemical properties 
are examined. In brief, the dimensions of AuNDs are 
uniformly smaller than the parent dendrimers (ie, G4NH2 
and G4OH). Both AuNDs-NH2 and AuNDs-CH3 dimin
ish the intrinsic cytotoxicity of G4NH2 through an irre
versible backfolding of outfacing 1°-amines. Such 
a significant deactivation of the external 1°-amines can 
minimize the interaction between G4NH2 and cell mem
branes during internalization. Because of the absence of 
1°-amines within the G4OH structure, AuNDs-OH are also 
highly biocompatible.15 Our previous reports examined the 
morphology and photoluminescence of AuNDs.23–25 The 
photoluminescence of AuNDs peaks at approximately 460 
nm in an aqueous solution.26 The size of a single AuND is 
theoretically <1 nm, making it difficult to observe particle 
size using high-resolution transmission electron micro
scopy. Yeh et al23 found that AuNDs form a layer-by- 
layer film on the transmission electron microscopy copper 
grid. The proximity distance range of the gold atoms was 
speculated to be nearly 0.2884 nm.27 Other physicochem
ical properties, endotoxin levels, and uptake percentage of 
the three AuNDs are summarized in Table 1.

In summary, all three AuNDs exhibited positive zeta 
potential. The gold content of AuNDs-NH2 and AuNDs- 
CH3 was higher than that of AuNDs-OH. Polarity assays 
were performed using a well-known polarity probe (ie, 
pyrene)28 to measure the hydrophobicity of AuNDs. The 
polarity change from the microenvironment was indicated 
by two vibrational peaks of pyrene appearing at approxi
mately 370 nm (I1) and 380 nm (I3). Our results revealed 
that AuNDs-OH is more hydrophobic than AuNDs-NH2 
and AuNDs-CH3. Because our cell model is 
a macrophage, we also quantified the endotoxin levels of 
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the three AuNDs to ensure that our experiments were free 
of LPS contaminants. The endotoxin levels were <0.005 
(EU/mL) in AuNDs-NH2, 0.00825 (EU/mL) in AuNDs- 
CH3, and 0.01826 (EU/mL) in AuNDs-OH. The endotoxin 
levels of all three AuNDs were lower than the clinically 
acceptable concentration (0.25 EU/mL). Furthermore, the 
percentages of cellular uptake after AuND treatments were 
determined through ICP-MS. After 24 h of treatment, the 
cellular uptake percentage of AuNDs-OH was the lowest 
among the three AuNDs.

Next, we investigated the intracellular distributions in 
THP-1 macrophages after 24 h of treatment. All three 
AuNDs accumulated in the intracellular lysosome (Figure 
1A) after entering macrophages and did not obviously 
affect or accumulate in the mitochondria (Figure 1B). No 
AuNDs influenced mitochondrial ATP production after 24 
h of treatment (data not shown). We assessed whether 
AuNDs are retained in the cells or excreted through exo
cytosis. THP-1 cells were treated with AuNDs for 24 h, 
and then AuNDs were removed by replacement with 
a new culture medium for another 48 h. The results 
revealed that all AuNDs were retained in lysosomes after 
72 h of treatment (Figure 1C).

AuNDs-NH2 Reduce Intracellular ROS 
Levels in Macrophages
The cellular redox system is involved in various physiolo
gical homeostatic mechanisms, such as cell differentiation, 
activation, death, and survival.29,30 Major endogenous 
ROS generation occurs in various organelles, such as the 
mitochondrial electron transport chain, endoplasmic reti
culum system, and NADPH oxidase complex.30 Excessive 
ROS production triggers oxidative stress, which may result 
in lipid peroxidation, DNA damage, and protein dysfunc
tion, leading to various disorders.31 Several studies have 
reported that nanoparticles can increase intracellular ROS 

levels and induce oxidative stress.32 We determined the 
intercellular ROS levels after AuNDs’ entry into macro
phages. Our results revealed that ROS levels decreased in 
cells treated by AuNDs-NH2, but not AuNDs-CH3 or 
AuNDs-OH, after 24 h of treatment (Figure 2A) and in 
a time-dependent manner (Figure 2B). Furthermore, we 
examined the change in ROS levels in THP-1 cells within 
30 min of treatment with AuNDs-NH2 and found that 
intracellular ROS levels transiently increased at 10 min 
but returned to those of the control group at 30 min 
(Figure 2C). LPS treatment was a positive control for 
ROS production within 30 min in macrophages. These 
results indicate that AuNDs-NH2 cause short-term ROS 
disturbance and then significantly reduce the intracellular 
ROS content. Therefore, we speculate that AuNDs-NH2 
may regulate antioxidant mechanisms in macrophages.

Nrf2 Activation and Phosphorylation 
Occur in AuNDs-NH2-Treated Cells
Nrf2 is a master regulator of antioxidant responses. Nrf2 
localizes within the cytoplasm and interacts with Kelch-like 
ECH-associating protein 1 (Keap1), which subsequently is 
ubiquitinated and degraded in the proteasome under normal 
conditions. In the canonical Keap1/Nrf2 pathway, oxidative 
stress or electrophile compounds modify Keap1 cysteine resi
dues, leading to Keap1 conformation changes. Next, Nrf2 
translocates to the nucleus and binds to the ARE or electro
phile responsive element (EpRE), leading to target gene 
expression.3,30 In the noncanonical Nrf2-ARE activation path
way, a regulator of autophagy/xenophagy, p62/SQSTM1, 
facilitates Keap1 degradation and subsequently stabilizes and 
translocates Nrf2 into the nucleus.28 Nrf2 expression can be 
upregulated through Keap1-independent mechanisms, which 
include other transcriptional (eg, AHr-ARNT and NF-κB),33,34 

posttranscriptional (microRNAs),35–38 and posttranslational 
(eg, phosphorylation and acetylation) modifications.39,40 We 

Table 1 Physicochemical Properties, Endotoxin Levels, and Uptake Percentage of AuNDs

AuNDs-NH2 AuNDs-CH3 AuNDs-OH

Zeta potential (mV) +2.8 +12.6 +2.4
Au (μg/μg) 0.078±0.005 0.074±0.003 0.002±0.000

Polarity (I1/I3)* 0.77 0.72 0.52

Size (nm) <1 <1 <1
Endotoxin (EU/mL)# <0.005 0.00825 0.01826

Cell uptake (%) 3.03 ± 0.24 2.62 ± 0.22 1.76 ± 0.22

Notes: *I1:I3 ratio of pyrene fluorescence is an index of polarity of its environment. The ratios of the fluorescence intensity of I1:I3 considerably decay to far lower than 1, 
indicating that the microenvironment is more hydrophobic; #Endotoxin levels of AuNDs were measured using a kinetic turbidimetric assay. The spike recoveries of AuNDs- 
NH2, AuNDs-CH3, and AuNDs-OH were 86%, 85%, and 93%, respectively.
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used the ARE reporter system to evaluate whether AuNDs 
activate the Nrf2 pathway in THP-1 cells and found that both 
AuNDs-NH2 and AuNDs-CH3 can activate Nrf2 (Figure 3A). 
Because none of the three types of AuNDs caused oxidative 
stress in cells and AuNDs-NH2 only transiently triggered ROS 
disturbance at 10 min, we speculated that AuNDs may activate 

Nrf2 through Keap1-independent mechanisms by activating 
intracellular kinases or other noncanonical pathways, such as 
the autophagic pathway–associated protein P62. Our results 
revealed that AuNDs-NH2 caused Nrf2 Ser40 phosphoryla
tion, and Nrf2 translocated to the nucleus (Figure 3B and C) 
through the canonical pathway.

Figure 1 Intracellular distribution and Exocytosis or destruction of AuNDs in THP-1. The PMA-activated THP-1 cells were treated with 1 mg/mL AuNDs (blue), followed 
by staining with LysoTracker ((A), red) and MitoTracker ((B), red); (C) After 24 h treatment, AuNDs were removed through replacement with a new culture medium for 
another 48 h. The cells were stained with LysoTracker (red) and examined using confocal microscopy (magnification 1200×).
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Ser349 phosphorylation of P62 binds to Keap1, separating 
Nrf2 from Keap1, and Nrf2 can then enter the nucleus to 
activate downstream genes through noncanonical pathways. 
Blockage of autophagosome maturation and accumulation of 
P62 result in prolonged Nrf2 activation in a P62-concentration 
-dependent manner.41 We found that AuNDs-CH3 induced 
P62 Ser349 phosphorylation (Figure 3D), suggesting that 
AuNDs-CH3 activate Nrf2 through the P62–Keap1–Nrf2 non
canonical pathway. P62 is an autophagy adaptor protein, 
which mediates the formation of protein aggregates intended 
for autophagy turnover. This means that P62 facilitates selec
tive degradation of protein cargo through activating 
autophagy.41 The direct interaction between P62 and Keap1 
allows Keap1 sequestration into the autophagosomes, leading 
to impairment of Nrf2 ubiquitylation and activation of the 

Nrf2 signaling pathway.41 Our result indicated that AuNDs- 
NH2 and AuNDs-CH3 may activate Nrf2 through different 
pathways. However, the role of Nrf2 activation by AuNDs- 
CH3 through the P62-dependent pathway needs further study. 
Moreover, we found that AuNDs-NH2 and AuNDs-CH3 can 
induce mRNA levels of HO-1 and NQO1 in THP-1 cells, but 
the increase in the levels of HO-1 and NQO1 in AuNDs-NH2- 
treated cells was significantly greater than that in AuNDs-CH3 
-treated cells (Figure 3E and F).

AuNDs-NH2 Activate Antioxidant 
Enzyme Activities
We further examined the activities of several Nrf2- 
mediated antioxidant enzymes in AuNDs-treated cells. 
Our results revealed that the activities of NQO1, GPx, 

Figure 2 ROS levels after AuNDs treatment in THP-1 cells. THP-1 cells were activated using PMA for 3 days, and cells were cultured with sera-free medium for 24 h after 
PMA removal. The intracellular ROS were determined at (A) 24 h; (B) 1, 3, 5, and 24 h through flow cytometry; and (C) 10 and 30 minutes using a fluorescent microplate 
reader. **P < 0.01 and ***P < 0.001 compared with the cell control group.
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catalase, and GST increased after 48 h of AuNDs-NH2 
treatment (Figure 4). Similarly, AuNDs-CH3 increased 
activities of NQO1 and catalase (Figure 4A and D). 
Next, we used a Nrf2 inhibitor, ML385, to investigate 
whether the Nrf2 activations can be restored in AuNDs- 
NH2-treated cells. ML385 is mainly bound with the 
Neh1 domain of Nrf2, which interferes with the binding 
of Nrf2 and thus affects the combination of Nrf2 and the 

ARE element.42 Our results revealed that mRNA levels 
of HO-1 and NQO1 were reduced through pretreatment 
with the ML385 inhibitor (Figure 5B and C). tBHQ was 
a positive control for Nrf2 activation (Figure 5A). 
However, ML385 did not inhibit HO-1 mRNA expres
sion in AuNDs-CH3-treated cells (Figure 5B). This indi
cates that AuNDs-CH3 may also affect other pathways 
involved in the regulation of HO-1. In addition to Nrf2, 

Figure 3 Nrf2 activation and phosphorylation of AuNDs-treated THP-1 cells. THP-1 cells were activated using PMA for 3 days, and cells were cultured with sera-free 
medium 24 h after PMA removal. (A) Nrf2 activation was determined after 24 h treatment using the ARE-driven reporter system in THP-1 cells. DL-Sulforaphane (DL-SFN), 
an Nrf2 activator, was used as the positive control. (B) Flow cytometry measurement of nuclear Nrf2 phosphorylation was conducted at 3, 6, and 24 h of AuNDs treatment. 
(C) Nrf2 phosphorylation of AuNDs-NH2-treated cells was examined using confocal microscopy. (D) Flow cytometry measurement of p62 phosphorylation was conducted 
at 24 h after AuNDs treatment. (E and F) The HO-1 and NQO1 mRNA levels determined after 24 h treatment using quantitative PCR. *P< 0.05, **P < 0.01, and ***P < 0.001 
compared with the cell control group.
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several transcription factors such as activator protein-1, 
nuclear factor-κB, and some upstream kinases have been 
identified as regulators of HO-1 gene induction.43

Nrf2 Modulated Expression of 
Proinflammatory Cytokines in 
AuNDs-Treated Macrophages
Many studies have suggested that Nrf2 is essential for the 
control of inflammation.4,5,44,45 Kobayashi et al5 reported 
that Nrf2 binds to the upstream regions of the IL6 and IL1b 
genes leading to interferes with LPS-induced transcriptional 
upregulation of proinflammatory cytokines. Therefore, we 
investigated the expression levels of these proinflammatory 

genes in AuNDs-treated cells. We found that AuNDs-NH2 
upregulated IL-1β and IL-6 mRNA and protein expression 
(Figure 6). The Nrf2 inhibitor ML385 significantly reduced 
the AuNDs-NH2-induced increase in IL-6 expression in 
macrophages (Figure 6B and D). However, ML385 pretreat
ment did not affect IL-1β expression in AuNDs-NH2-treated 
cells (Figure 6A and C). ML385 blocked Nrf2 transcriptional 
activity by binding to the DNA-binding domain of Nrf2. 
AuNDs-NH2 increased the expression of IL-1β from 50 to 
150 pg/mL and of IL-6 from 10 to 25 pg/mL. Nrf2 is required 
for the assembly of NLRP3 inflammasome activators, 
including the apoptosis-associated speck-like protein con
taining a caspase recruitment domain (ASC) adaptor, which 
may promote IL-1β production.46,47 Our data indicated that 

Figure 4 Antioxidant enzymes in AuNDs-treated cells. THP-1 cells were activated using PMA for 3 days, and cells were cultured with sera-free medium 24 h after PMA 
removal. (A) NQO1, (B) GPx, (C) GST, and (D) catalase enzyme activities were measured after 48 h in AuNDs-treated THP-1 cells. *P < 0.05 and **P < 0.01 compared with 
the cell control group.
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AuNDs-NH2-induced increased IL-1β productions may be 
irrelevant to the transcriptional control of Nrf2. It was 
reported that the ARE element sequence is found in the 
promoter region of IL-6, so Nrf2 can regulate IL-6 
expression.48 Our result indicated that AuNDs-NH2 directly 
regulates IL-6 expression via a Nrf2-dependent pathway.

AuNDs-NH2 Increase Phagocytic Ability 
in Macrophages
In addition to the regulation of antioxidant and inflamma
tory responses, Nrf2 was found to regulate the phagocytic 
capacity of immune cells.49 Our result indicated that 
AuNDs-NH2 increased the phagocytic ability of human 
macrophages after 24 and 48 h of treatment. AuNDs-CH3 
and AuNDs-OH also slightly affected phagocytosis at 24 

h, but their effect was lower even than that of the control 
group at 48 h after treatment (Figure 7). ML385 reduced 
the effect of AuNDs-NH2 on phagocytosis, suggesting that 
Nrf2 participates in macrophage phagocytosis.

Discussion
Our results (Figure 8) revealed that AuNDs mainly accu
mulate in lysosomes. Nanoparticle-induced oxidative 
stress responses are torchbearers for further pathophysio
logical effects, including genotoxicity, inflammation, and 
fibrosis, through activation of associated cell signaling 
pathways.50 None of the three AuNDs induced significant 
oxidative stress in macrophages. Only AuNDs-NH2 tran
siently increased ROS levels at 10 min after treatment and 
then decreased intracellular ROS levels in a time- 

Figure 5 The mRNA levels of HO-1 and NQO1 in AuNDs-treated cells with ML385 pretreatment. THP-1 cells were activated using PMA for 3 days, and cells were cultured 
with sera-free medium for 24 h after PMA removal. (A) tBHQ was a positive control for activation of Nrf2 and the inhibitory effect of ML385 pretreatment. The mRNA 
levels of (B) HO-1 and (C) NQO1 were determined after AuNDs treatment at 48 h using quantitative PCR. *p < 0.05, **p < 0.01, and ***p < 0.001 compared with the cell 
control group. #p < 0.05, ##p < 0.01, and ###p < 0.001 compared with the AuNDs-treated group without ML385 pretreatment.
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dependent manner. We speculated that this transient ROS 
perturbation may activate intracellular kinases to promote 
phosphorylation of Nrf2 Ser40, followed by the activation 
of Nrf2 downstream genes and the increase in antioxidant 
and phagocytic abilities.

Nrf2 plays a vital role in regulating cellular antioxidant 
and other cytoprotective responses, including purine, pen
tose, and lipid metabolisms, inflammation, and 
proteostasis,51 as well as cytoprotective mechanisms against 
various environmental stresses.52 Nrf2 is sequestered in the 
cytosol by Keap1 and constantly degraded by the ubiquitin– 
proteasome system under normal physiological conditions.53 

Oxidative stress and chronic inflammation may be as primary 
etiologic factors in many chronic diseases.54 Nrf2 modulators 

have been attracting attention as a promising therapeutic 
strategy for chronic diseases dominated by oxidative stress 
and inflammation, such as neurodegenerative,55 cardiovas
cular, and metabolic diseases.10,51,56 Activation of endogen
ous antioxidant gene expression, modulated via the Nrf2 
pathway, has a better neuroprotective effect than that 
afforded by conventional antioxidant therapy.57–59 In experi
mental models of asthma and chronic obstructive pulmonary 
disease (COPD), Nrf2 targeting also suppresses airway 
inflammation and oxidative stress.60,61

In macrophage, Nrf2 acts as the upstream regulator of 
inflammatory cytokine production in a ROS-independent 
manner.5 Moreover, Nrf2 directly regulates the expression 
of several other macrophage-specific genes that are 

Figure 6 Nrf2 target cytokines were determined in AuNDs-treated cells. IL-1b and IL-6 mRNA (A and B) and cytokine proteins (C and D) levels of AuNDs in THP-1 cells. 
THP-1 cells were activated through PMA for 3 days, and cells were cultured with sera-free medium 24 h after PMA removal. Cytokine mRNA and protein levels determined 
after 48 h treatment through quantitative PCR and ELISA. *P < 0.05, **P < 0.01, and ***P < 0.001 compared with the cell control group. #P < 0.05, ##P < 0.01, and ###P < 
0.001 compared with the AuNDs-treated group without ML385 pretreatment.
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associated with phagocytosis and scavenger receptor for 
oxidized low-density lipoprotein.49,62 Our results indicated 
that AuNDs-NH2 upregulated IL-1β and IL-6 mRNA and 
protein expression. Because the ARE element sequence is 
found in the promoter region of IL-6, Nrf2 may regulate IL- 
6 expression.51 ML385, an inhibitor of Nrf2 transcriptional 
activity, significantly reduced AuNDs-NH2-mediated Nrf2 
activation and expression of NQO1, HO-1, and IL-6 
mRNA, as well as the phagocytic ability in macrophages. 
AuNDs-NH2-induced increased IL-1β production may not 
occur through Nrf2 transcriptional regulation. However, 
further research is needed to determine whether AuNDs- 
NH2 activate Nrf2 to prevent LPS-induced proinflamma
tory cytokines. In addition, only AuNDs-NH2 increase 
phagocytic ability in macrophages via a Nrf2-mediated 

pathway. Targeting Nrf2 signaling improves infection clear
ance by enhancing phagocytosis activity, which might be 
a therapeutic target. Harvey et al demonstrated that sulfor
aphane, which targets Nrf2 signaling, improves bacterial 
clearance by alveolar macrophages in patients with COPD 
and in a mouse model.49 Furthermore, in a mouse model of 
papain-induced rhinosinusitis, disruption of the epithelial- 
specific Nrf2 pathway increased the severity of eosinophilic 
sinonasal inflammation.63 In myeloid cell–specific Keap1- 
deficient mice model, activation of Nrf2 signaling in macro
phages and neutrophils improves host survival by increas
ing antibacterial and anti-inflammatory defenses during 
sepsis.64 Therefore, Nrf2 activators have pivotal immuno
modulating effects on leukocytes to control bacterial infec
tion and protect against sepsis.

Figure 7 AuNDs-NH2 increased macrophage phagocytosis in an Nrf2-mediated manner. THP-1 cells were activated using PMA for 3 days, and cells were cultured with 
sera-free medium 24 h after PMA removal. Phagocytosis levels were determined after AuNDs treatment for (A) 24 and (B) 48 h with or without ML385 pretreatment. *P < 
0.05, **P < 0.01, and ***P < 0.001 compared with the cell control group. #P < 0.05, ##P < 0.01, and ###P < 0.001 compared with the AuNDs-treated group without ML385 
pretreatment.
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The pharmacologic activators of Nrf2 can be classified 
as electrophiles, protein–protein interaction inhibitors, and 
multitarget drugs.56 The most common Nrf2 activators are 
electrophilic molecules that covalently oxidated or alky
lated cysteine residues present in the thiol-rich Keap1 
protein.65–67 Protein–protein interaction inhibitors activate 
Nrf2 by interrupting the docking of Nrf2 to the Kelch 
propeller of Keap1, which exhibits better selectivity than 
electrophilic compounds.68 Moreover, Nrf2 can be upre
gulated through Keap1-independent posttranslational mod
ifications (eg, phosphorylation and acetylation). Several 
kinases have been linked to ARE activation, including 
extracellular signal-regulated kinase (ERK1/2),69,70 p38 
mitogen-activated protein (MAP) kinase,71 glycogen 
synthase kinase 3 (GSK-3),40 phosphatidylinositol 
3-kinase and its downstream target Akt/protein kinase 
B (PKB), and protein kinase C (PKC).72 Future studies 
should clarify which mechanisms regulate Nrf2 activation 
in AuNDs-NH2-treated cells. AuNDs-CH3 did not affect 
intracellular ROS levels, but it may phosphorylate P62 
Ser349 to activate the noncanonical P62–Keap1–Nrf2 
pathway. The deficiency in autophagy upregulated P62, 
thereby inhibiting the Keap1-Cul3-E3 ubiquitin ligase 
complex and stabilizing Nrf2.73 AuNDs-CH3 affected 
Nrf2 activation and downstream genes but did not have 

the obvious phagocytosis ability of AuNDs-NH2. 
Additional experiments are warranted to determine 
whether AuNDs-CH3 blocks autophagosome maturation 
and P62 accumulation, resulting in prolonged Nrf2 activa
tion in a P62-concentration-dependent manner in macro
phage. AuNDs-OH also did not affect intracellular ROS 
levels or activate the Nrf2 pathway, probably due to its 
surface modifications or insufficient amount entered the 
cells. Our result indicated that nanozymes not only exhib
ited intrinsic enzyme-like activity but also triggered intra
cellular signaling pathways in macrophages through 
modifications of superficial atoms of nanomaterials. 
However, future studies should investigate how outfacing 
groups of primary amine and quaternary ammonium ions 
in AuNDs phosphorylate different intracellular regulators 
(such as Nrf2 and P62), leading to different consequences 
including the expression of cytokine and phagocytic abil
ity in macrophages.

Conclusions
Nrf2 can be a therapeutic target for chronic diseases, such 
as inflammation and cardiovascular diseases. Preclinical 
studies have reported that Nrf2 activation has potent anti- 
inflammatory effects in myeloid leukocytes and macro
phages. To the best of our knowledge, this is the first 

Figure 8 Pictorial description of how the AuNDs mediated Nrf2, antioxidant enzyme activities, and phagocytosis abilities in macrophages.
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study demonstrating that Nrf2 and its downstream targets 
are induced in macrophages by AuNDs-NH2 treatment 
without triggering excess oxidative stress. This finding 
may provide a rationale strategy for nanomaterials target
ing the Nrf2 pathway against certain chronic inflammatory 
diseases.
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