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Background: The new therapeutic strategy of managing cardiac diseases is based on cell 
therapy; it highly suggests the use of multipotent mesenchymal stem/stromal cells (MSCs). 
MSCs widely used in researches are known to be isolated from bone marrow. However, this 
research seeks to use a human umbilical cord (HUC) as an alternative source of MSCs. Since 
HUC Wharton’s jelly (WJ)-isolated MSCs originate as fetal tissue they are highly preferable 
for their potential advantages over other adult tissues.
Methods: The researchers used enzymatic digestion to establish a primary HUC-WJ- 
isolated MSC line. Then, flow cytometry was used to characterize MSCs and hematopoietic 
stem cells (HSCs) markers’ expression. In addition, the cardiac differentiation capacity of 
HUC-WJ-isolated MSCs in vitro was investigated by two protocols. Protocol-1 necessitates 
the dependence on merely 5-azacytidine (5-Aza), whereas in protocol-2, 5-Aza was sup-
ported by basic fibroblast growth factor (BFGF). The comparative study between the two 
protocols was applied by inspecting the ultrastructure of differentiated cells, measuring RT- 
PCR mRNA cardiac markers and the quantitative detection of cardiac proteins.
Results: HUC-WJ isolated MSCs were expressed by CD90+ve, CD105+ve, CD106+ve, 
CD45−ve, and CD146−ve. Remarkable TNNT1, NKX2.5, and Desmin mRNA expression 
and higher quantitative LDH and cTnI were detected by applying protocol-2. This same 
protocol-2 induced cardiac morphological features that were revealed by identifying cardi-
omyocyte-like cells and typical sarcomeres.
Conclusion: HUC-WJ is proved to be an ethical and effective source of MSCs induced cardiac 
differentiation, whereas BFGF supports 5-Aza in MSCs-cardiomyocytes differentiation.
Keywords: mesenchymal stem/stromal cells, human umbilical cord, Wharton’s jelly, 
cardiomyocytes, 5-azacytidine, fibroblast growth factor

Plain Language Summary
Stem cell therapy has the ability to improve the traditional treatment of cardiac diseases by inducing 
stem cell differentiation into cardiomyocytes to repair damaged cardiac tissues. Many previous 
studies depended on the easy way that isolates stem cells from adult tissues like bone marrow and 
adipose tissue; however, the limited potentiality of such isolated stem cells delayed the progress of 
those studies. However, improving the potentiality of stem cells requires the development of 
applied protocols. So, this study was based on the human umbilical cord (HUC) Wharton’s jelly 
(WJ) as a suitable source of mesenchymal stem/stromal cells (MSCs). HUC-WJ isolated MSCs 
have a differentiation potentiality into multiple cell types without any ethical concerns. The study 
also developed a new protocol by using 5-Azacytidine (5-Aza) and basic fibroblast growth factor 
(BFGF) to differentiate MSCs into cardiomyocytes. This protocol encourages cardiac diseases. The 
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resulting HUC-WJ isolated MSCs showed significant cardiac differ-
entiation by acquiring special microscopic cardiac features, and by 
the high expression of cardiac markers. Accordingly, HUC-WJ iso-
lated MSCs proved to be a promising strategy of applying stem cell- 
based therapy on cardiac diseases.

Introduction
Cardiac diseases have remained the leading cause of death 
all over the world. Over the past decades, the traditional 
treatment of cardiac diseases has resulted in a tragic rise in 
mortality rate as it just managed to temporarily delay the 
progress of the disease.1 Although remarkable evolution is 
noticed in the treatment of cardiac diseases, still there is 
a social and economic burden on health institutions.2 

Therefore, the conventional treatment of cardiac diseases 
cannot provide an authentic cure.

The recent trend in regenerative medicine nowadays is 
using stem cells as recovering-cell therapy for cardiac 
diseases. Mesenchymal stem/stromal cells (MSCs) are 
the pioneer example of adult stem cells that can lead to 
the new regenerative strategy.3 MSCs are non- 
hematopoietic stem cells (HSCs), multipotent-adult stem 
cells as they can differentiate into all stromal connective 
linages like fat, cartilage, and bone cells. MSCs cannot be 
considered pluripotent-embryonic stem cells just as inner 
cell mass in blastula because they cannot differentiate into 
all human cell types.4 MSCs are characterized by specific 
markers called cluster of differentiation (CD), especially 
as CD90, CD105, and CD106.5 These markers trigger 
MSCs’ unique stemness, growth, and differentiation 
properties.5 Also, MSCs lack markers of HSCs such as 
CD146 and CD45.5 MSCs have typical fibroblastic- 
morphology and adherent property to plastic surfaces dur-
ing in vitro culture. All of these properties support the 
position of MSCs on applying regenerative therapy to 
solve the clashes in the treatment of cardiac diseases.2

MSCs are able to act as a repair-cellular therapy that is 
stimulated by as many pathological causes as the cardiac 
diseases.2 In the treatment of the cardiac diseases, there are 
many roles of MSCs in the mechanism of action, whereas 
they act as immune-regulators, anti-apoptotic, and allo-
geneic utilizers. Particularly MSCs play an integral role 
in dealing with cardiac diseases since they regenerate 
damaged cardiac tissue by being differentiated into 
cardiomyocytes.6 MSCs-cardiomyocytes differentiation is 
stimulated through the alteration in the cellular pattern of 
genes expression mediated by early transcriptional regula-
tors such as NKX2.5 and GATA4.7 The early 

transcriptional factors regulate differentiation-specific 
gene expression which program various aspects of cardiac 
cell; this is especially done by inducing the expression of 
the late myocardial markers such as lactate dehydrogenize 
(LDH) and cardiac troponin I (cTnI).7,8

The tissue source can determine the differentiation 
potential of MSCs that control their efficiency as cellular 
therapy of cardiac diseases.9 In the 1960s, MSCs were 
being isolated from bone marrow,10 that has now become 
the most common MSCs’ source, depended upon in clin-
ical trials. Also, adipose tissue is a well-known source of 
MSCs; its easy isolation by liposuction has greatly 
attracted the attention of researchers and clinical trials.1 

Although bone marrow and adipose tissue are accessible 
and enriched sources of MSCs, the capacity of their iso-
lated MSCs to differentiate into cardiomyocytes is not 
satisfying11 since other tissues can be proved to introduce 
a higher differentiation potential of MSCs.

Despite the pluripotency of embryonic stem cells, the 
ethical concerns limit its use in cell therapy.12 Human 
umbilical cord (HUC) is a fetal tissue arising from the 
extra-embryonic mesoderm at day-13 of embryogenesis. 
So its isolated MSCs could possess higher differentiation 
and stemness properties than other traditional adult 
sources. The stromal part of the HUC is known as 
Wharton’s jelly (WJ) that is the least studied source of 
MSCs. HUC-WJ is a medical waste discarded after the 
birth of a baby, so it is free from any ethical issues.13 

Beside their ethical isolation availability from HUC-WJ, 
MSCs can show a high cardiac differentiation potentiality.

Previously, studied protocols could neither introduce 
a sufficient way of isolating pure MSCs from HUM-WJ 
nor an effective way of in vitro MSCs differentiation into 
cardiomyocytes.14 Those studies depended on treating 
MSCs with specific growth factors through inhibiting 
DNA methyltransferase. 5-azacytidine (5-Aza) is a DNA 
methyltransferase inhibitor that has an important role in 
the epigenetic regulation of genome expression.15 

Sufficient differentiation of MSCs requires a high dose 
of 5-Aza, but it becomes cytotoxic.16 Thus, we recom-
mend a new protocol by supporting 5-Aza in the differ-
entiation of MSCs without being toxic.

Consequently, the current study established an effec-
tive strategy for the isolation of pure MSCs from HUM- 
WJ as a perfect source of stem cells. It also suggested 
a new protocol for the expansion and differentiation of 
HUM-WJ isolated MSCs into cardiomyocyte-like cells 
in vitro.
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Materials and Methods
Chemicals
Culture media including DMEM, FBS, l-glutamine, peni-
cillin-streptomycin, and 0.05% trypsin-EDTA were used in 
culturing MSCs. Cell culture medium and collagenase-A 
were obtained from Miltenyi Biotec, Bergisch Gladbach, 
Germany. Basic fibroblast growth factor (BFGF) and 
5-Aza was purchased from Sigma-Aldrich, St. Louis, 
MO, USA. Deionized water was used throughout the 
experiments.

Sample Collection
A tissue sample isolated from a HUC was acquired from 
the Department of Gynecology and Obstetrics, Mansoura 
University, Egypt, from one pregnant female (30 years 
old), immediately after delivery. This is done under IRB 
approved protocol (MZ16001), which was following the 
Declaration of Helsinki. Accordingly, an informed written 
consent was obtained from the patient. HUC was collected 
in a sterile conical vial containing DMEM supported by 
5% penicillin-streptomycin. The sample delivery to the 
laboratory as well as all manipulation were carried out 
under sterile conditions. The sample was delivered to the 
culture laboratory and stored at 4 °C for 2 hr before tissue 
processing.

Isolation and Establishment of the 
Primary HUC-WJ Isolated MSC Line
The whole HUC was washed in sterile phosphate buffer saline 
(PBS) triplicate to remove any red blood cells. A small piece 
about 2–3 cm from the HUC was placed in a petri dish, 
following by removing blood vessels then the WJ was care-
fully separated from the HUC membrane. WJ was cut into 
small fragments with sharp scissor scalpels. After WJ has been 
minced into 1–2 mm3 fragments, the fragments were treated 
with collagenase-A (3 mg/mL) in a 50 mL falcon tube for 3 hr 
at 37 °C in a shaking water bath (125 rpm). Then the slurry was 
centrifuged for 15 min at 1500 xg at 4 °C. The supernatant was 
subsequently discarded and the remaining slurry was collected 
to be treated with trypsin-EDTA for 30 minutes at 37 °C in 5% 
CO2 with a humidified atmosphere. The cells were filtered with 
sterile 70 µL sieve and were consequently re-suspended in 
DMEM, centrifuged at 1500 × g for 10 minutes. DMEM was 
aspirated, and the cell pellet was collected.

Cell Culture
The primary HUM-WJ isolated cell line was cultured 
by DMEM supplemented with 10% FBS, 1% penicil-
lin-streptomycin, and 1% l-glutamine; stored at 4 °C 
and warmed to 37 °C before using. This is followed by 
incubation in a 37 °C, 5% CO2 incubator. The cells 
were fed with fresh medium every 2–3 days after 
aspirating the old medium. A few days later, colonies 
of fibroblast cells were seen. After reaching 80% con-
fluence, cells were trypsinized and sub-cultured in 
fresh supplemented DMEM into two new culture flasks 
to allow more space for further proliferation. Detached 
cells before each new passage were counted and tested 
for viability with trypan blue dye exclusion assay.

Characterization of MSCs
The mesenchymal characteristic of the cultured cells 
was analyzed by flow cytometry. At the 3rd and 4th 
passages, cells were detached and washed twice with 
PBS. Then, cells were mixed with fluorescein isothio-
cyanate (FITC) monoclonal-antibodies against human 
CD90, CD105, CD106, CD45, and CD146. All antibo-
dies were purchased from BD Biosciences, San Jose, 
CA, USA. Mixed cells were incubated on ice in the 
dark for 15 minutes, washed with PBS, and suspended 
(5 × 105 cells) in 1 mL PBS. Expressions of these 
markers was measured with a flow cytometer (FACS 
Aria Cell Sorter; BD Biosciences, Billerica, MA, 
USA). An appropriate isotype-matched control was 
used in all analysis, and unstained MSCs were used 
as control.

Cardiac Induction
In the 5th passage, the 80% confluent cultured MSCs were 
divided into three cell groups. G1 (undifferentiated MSCs) 
was fed with complete medium and refreshed every 72 hr. 
This cell line was used as a control for the differentiated 
cells. G2 was fed with culture media supported only by 15 
µM 5-Aza, while G3 was fed with culture media supported 
by 15 µM 5-Aza and 10 ng/mL BFGF. The differentiated 
cells (G2 and G3) were incubated with their differentiation 
media for 24 hr and were then washed by PBS twice. 
Then, the cardiac induction media was replaced with 
a complete medium that replaced every 72 hr during the 
differentiation period (three weeks).
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Characterization of Cardiac 
Differentiation Efficiency
Ultra-Structural Analysis
After the period of cardiac differentiation induction, ultra- 
structural analysis with transmission electron microscopy 
(TEM) was performed on the tested cell groups. The 
collecting cell pellet was centrifuged at 1200 rpm for 10 
min and was then washed in 2% sodium phosphate buffer 
osmium tetroxide (pH = 7.4) triplicate for 30 min. The 
initial fixation was done in sodium phosphate buffer con-
taining glutaraldehyde and 2% paraformaldehyde. The 
dehydration was done with 50% ethanol for 9 min. This 
is followed by washing the cells with distilled water twice 
for 15 min. The cells were later embedded in epoxy resin. 
Ultrathin sections were cut and observed at 80 kV using 
a JEOL 2100 TEM (JEOL GmbH, Eching, Germany).

Quantification Assays for Cardiac Markers
After the period of cardiac differentiation, the cell culture 
supernatant was collected from differentiated and undiffer-
entiated cells. Any debris was removed from the super-
natant media by centrifuging for 10 min at 2000 xg. The 
clear supernatant was used to analyze two cardiac markers: 
LDH and cTnI, triplicate for each cell group. According to 
the manufacturer’s instructions, LDH and cTnI were mea-
sured with a commercial kit (Elitech, France) and 
spectrophotometer.

Gene Expression Analysis
The traditional PCR and the real-time qPCR (RT-qPCR) 
analysis were applied to RNA that was isolated from the 
differentiated and undifferentiated cells by using the TRIzol 
reagent and purified with GeneJET™ RNA Purification Kit 
(Fermentas Thermo Fisher Scientific). The RNA sample was 
diluted in DEPC water before it was quantified by spectro-
photometry at 260 nm. RNA (2 μg) from each cell group 
was applied for reverse transcription using the Maxima® 

First Strand cDNA Synthesis Kit (Fermentas Thermo 
Fisher Scientific). RT-qPCR was applied with the 
Maxima® SYBR Green qPCR Master Mix (Fermentas 
Thermo Fisher Scientific). Reactions were done in a 20μL 
volume. The primers for the TNNT1, NKX2.5, and DES 
genes are shown in the Supplementary material S1, with 
GAPDH as a control. qPCR was performed in triplicate for 
each sample with a RT-PCR detection system (Agilent 
Technologies) with an initial denaturation at 95ᵒC for 10 
min, followed by 40 cycles for 15 s at 95ᵒC, the 30 s at 
melting temperature, 5ᵒC, and 30 s at 72ᵒC. Specificity was 

detected with melting curve analysis. RT-qPCR products 
were electrophoresed on (1–2)% agarose gels (according to 
the size of the amplification products). The gene expression 
levels of differentiated and undifferentiated cells were inves-
tigated with the comparative CT method. The observations 
were performed with the Real-Time PCR System (Applied 
Biosystems).

Statistical Analysis
All data were expressed as means ± S.E. statistical sig-
nificance and were evaluated by one-way analysis of var-
iance (ANOVA) using SPSS, 18.0 software, 2011, the 
individual comparisons were obtained by Duncan’s multi-
ple range test (DMRT). Values were considered statisti-
cally significant when P ≤ 0.05.

Results
Morphological Characteristics of 
HUM-WJ Isolated MSCs
Freshly isolated HUM-WJ isolated MSCs appeared as 
heterogeneous sphere-shaped cells in suspended media 
under an inverted microscope (Figure 1A). After 72 hr in 
primary culture, MSCs adhered to the plastic surface 
forming small clusters of swirl-like cells and spreading 
on the plate (Figure 1B). During early culture, MSCs 
proliferated gradually and rapidly until they covered the 
culture plate, and their morphology changed to be atypical 
aggregated fibroblasts. In the 3rd passage, MSCs had 
a clear slender, elongated, spindle shape with extended 
processes (Figure 1C).

Flow Cytometry Analysis
Flow cytometric analysis was performed on HUM-WJ iso-
lated MSCs using antibodies against CD106, CD105, CD90, 
CD45, and CD146 cell surface markers. The result showed 
that the tested cells were positive for MSCs markers, such as 
CD106 (Figure 2A), CD105 (Figure 2B), and CD90 
(Figure 2C), which were highly expressed by 87.8%, 
60.8%, and 47.6%, respectively in tested cells. On the 
other hand, tested cells were negative for HSCs markers, 
such as CD45 (Figure 2D) and CD146 (Figure 2E), which 
had a low expression of 1.8% and 2.2%, respectively.

Morphological Characteristics of 
Differentiated Cells
After 24 hr of incubation with differentiated media, the 
viability of HUM-WJ isolated MSCs in GII, that is affected 
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by differentiated media, was visually observed (Figure 3A). 
On the other hand, compared with GII, differentiated media 
in GIII had a limited effect on cellular viability (Figure 3B). 

The viable MSCs in both groups proliferated and differen-
tiated gradually throughout the days that followed induction. 
One week later, the morphology of GII cells changed by 

Figure 1 Morphological characteristics of HUM-WJ isolated MSCs. 
Note: (A) Morphology of HUM-WJ isolated MSCs after 24 hr in culture; arrows point to the spherical shape of suspended cells, (B) after 72 hr in culture; arrows point to 
the swirl-like cells, and (C) after 4 weeks in culture; arrows point to the spindled shaped cells. 
Abbreviations: HUM-WJ, human umbilical cord-Wharton’s jelly; MSCs, mesenchymal stem cells.

Figure 2 Flow cytometry analysis of HUM-WJ isolated MSCs. 
Note: Flow cytometry analysis of HUM-WJ isolated MSCs; (A) with CD106, (B) with CD105, (C) with CD90, (D) with CD45, and (E) with CD146 markers. 
Abbreviations: HUM-WJ, human umbilical cord-Wharton’s jelly; MSCs, mesenchymal stem cells.

Stem Cells and Cloning: Advances and Applications 2020:13                                                          submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                          
95

Dovepress                                                                                                                                                   Abou-ElNaga et al

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


expanding and enlarging (Figure 3C), like the morphology 
of GIII cells. However, GIII cells showed more noticeable 
expansion (Figure 3D). Three weeks later, cells in GII 
became elongated and aligned forming a stick- like mor-
phology with extensions linked to the surrounding cells 
(Figure 3E). However, cells in GIII, as visually observed, 
were typically differentiated with more regular uniformed 
morphology than those of GII (Figure 3F). These visual 
observations were detected by an inverted microscope by 
making a comparison with cells in GI, preserved with their 
original spindled fibroblastic morphology during culture, as 
a control.

Ultrastructural Characterization of the 
Differentiated Cells
TEM observation of MSCs in GI was photographed to 
be a controlling factor for the differentiated cells, 
which were detected with the absence of any myofila-
ments (Figure 4A). TEM observation of cells in GII 
and GIII, after three weeks of induction, generally 
showed the differentiated cells with a centric nucleus 
and richer organelles in the cytoplasm, as rough endo-
plasmic reticulum, mitochondria, and free ribosomes. 
Specifically, cells in GII showed abundant myofila-
ments that aligned in a parallel shape without the 
appearance of striated sarcomeres (Figure 4B). Also, 

cells in GIII showed myofilaments but with extra typi-
cal striated sarcomeres and a denser look of granulated 
cytoplasm (Figure 4C).

Quantification Assays for Cardiac 
Markers
The protein expressions of cardiac markers (LDH and 
cTnI) were measured in media and they revealed the 
functionality of the differentiated cells’ dependent 
manner. The results showed that differentiated cells of 
both GII and GIII expressed significantly higher levels 
of LDH (Figure 5A) and cTnI (Figure 5B) proteins, 
compared to their corresponding undifferentiated cells 
in GI (P<0.05). However, these expressions increased 
by the time of induction. Limited expression of cardiac 
markers was specifically detected in cells of GII com-
pared to cells of GIII that showed a remarkable higher 
expression of these markers.

Molecular Analysis
The traditional PCR analysis (Figure 6A) and the RT- 
qPCR analysis (Figure 6B) were carried out to measure 
the fold changes in the expression of NKX2.5, TNNT1, 
and Desmin by differentiated cells in GII and GIII, in 
comparison with cells of GI as a control. Cells of GII 
and GIII actively expressed NKX2.5, especially after 

Figure 3 Morphological characteristics of differentiated cells. 
Note: Morphological changes were examined by inverted microscope in cells of (A) GII after 24 hr, (B) GIII after 24 hr, (C) GII after 1 week; arrows point to expanding 
cells, (D) GIII after 1 week; arrows point to large expansion of cells, (E) GII after 3 weeks; arrows point to cells with stick like morphology, and (F) GIII after 3 weeks of 
induction; arrows point to uniform stick like morphology of cells.
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one week with 10.97-fold and 4.40–fold, respectively, 
which are significantly higher than GI (P<0.05) 
(Figure 6B.i). Also, TNN1 gene was highly expressed 
by cells of GII and GIII, especially after three weeks 

with 3.54–fold and 2.64–fold, respectively, which are 
significantly higher than cells of GI (P<0.05) (Figure 
6B.ii). Moreover, cells of GIII highly expressed 
Desmin, especially after three weeks with 2.36–fold, 

Figure 4 Ultrastructural characterization of the differentiated cells. 
Note: Ultrastructural changes was examined by TEM in cells of (A; i, ii, iii, iv) GI as a control, (B; i, ii, iii, iv) GII; arrows point to abundant aligned myofilaments, and (C; i, ii, 
iii, iv) GIII; arrows point to aligned myofilaments with striated sarcomeres. 
Abbreviations: N, nucleus; Nu, nucleolus; NM, nuclear membrane; ER, endoplasmic reticulum; Sm-ER, smooth endoplasmic reticulum; PM, plasma membrane; M, 
mitochondria; MF, myofilaments; F, fibrils; and V, vacuoles.

Figure 5 Quantification expressions for cardiac markers. 
Note: Quantitative expressions for (A) LDH marker, and (B) cTnI marker in differentiated cells, *P<0.05 vs Control. 
Abbreviations: LDH, lactate dehydrogenize; and cTnI, cardiac troponin I.
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which is significantly higher than the other differen-
tiated cells in GII and control cells in GI (P<0.05) 
(Figure 6B.iii).

Discussion
Recently, regenerative medicine based on MSCs becomes 
a promising therapeutic strategy for many diseases such as 
cardiac diseases.18 Many previous studies focused on well- 
known tissues as sources for MSCs such as; bone marrow and 
adipose tissue.19 Although bone marrow isolated extracted 
MSCs proved their efficiency in the treatment of many dis-
eases, such as orthopedic disorders, this is related to their 
expression of genes associated with the osteogenetic habit.20 

Thus, bone marrow isolated MSCs are not the best choice in 
the treatment of other diseases such as cardiac diseases. This 
study tested the hypothesis that: HUC-WJ is an unusual MSCs 
source. Not only for its ethically legal, but also for its higher 
differentiation potential. Therefore, we focused on HUC-WJ as 
a challenging ethical fetal tissue that is better than other con-
ventional adult tissues as a competitive source for MSCs with 
cardiac differentiation potency.

In the present study, primary HUC-WJ isolated MSCs line 
was established by the formulated simple method depending 
upon enzymatic digestion. It does not perform only by collage-
nase, but also by the effect of trypsin to ensure a sufficient 
count of MSCs.21 The purity of primary cultured adherent cells 
with their microscopic spindle appearance is confirmed by 

flow cytometry, depending on previous studies. It is estimated 
that MSCs were expressed by specific markers such as CD106, 
CD105, and CD90.22 CD106 is a member of the immunoglo-
bulin superfamily and it was highly expressed in these cells 
(87.8%). It is also known as vascular cell adhesion molecule-1 
(VCAM-1), because it has an essential role in adhesion and 
homing.23 CD105 or endoglin was expressed in 60.8% of 
tested cells whereas it is necessary for cell division and cellular 
differentiation.24 An extra MSCs specific marker, CD90 or 
Thy-1 is a cell surface anchored glycoprotein, and it is essential 
for cell mobility and migration.25 It was positively expressed in 
47.6% of the tested cells. Many previous studies estimated that 
MSCs were negative for the hematopoietic marker (CD45) and 
endothelial marker (CD146).5 Since CD45 is a transmembrane 
protein tyrosine phosphatase that controls the motility of hema-
topoietic progenitor cells and the maturation of leukocytes as 
lymphocytes.26 Besides, CD146 or M-CAM regulates the 
migration and motility of endothelial cells.27 In the present 
study, CD45−ve and CD146−ve (1.8% and 2.2%; respectively) 
proved the purity of the mesenchymal nature of tested cells and 
the lacking of contamination with other cell types.

The study also tested the differentiation of HUC-WJ iso-
lated MSCs into cardiomyocytes that were enhanced, not only 
by a 5-Aza factor but also by 5-Aza with BFGF. We hypothe-
sized the combination of 5-Aza and BFGF as having a synergic 
effect in the differentiation of MSCs into cardiomyocytes. 
Previous studies concluded that many growth factors can 

Figure 6 Expression of NKX2.5, TNNT1 and Desmin mRNA. 
Notes: (A) PCR analysis for gene expression and (B) RT-qPCR analysis for fold change of gene expression. (I) NKX2.5, (II) TNNT1 and (III) Desmin. Fold change of GAPDH 
was used as an internal control. *P<0.05 vs Control, and **P<0.05 vs Control and GII.
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stimulate higher myocardial differentiation of MSCs and 
induce the gene expression related to cardiomyocytes under 
proper condition.28,29 Although 5-Aza is known as 
a differential factor for MSCs into cardiomyocytes cells,30,31 

it could not be regarded as safe and sufficient for inducing the 
cardiomyogenic fate.32,33 BFGF is considered a potential co- 
inducer required to support the effect of 5-Aza in forcing the 
differentiation of MSCs into cardiomyocytes.34 In the current 
study, the morphological changes of MSCs confirmed this 
hypothesis: 5-Aza affect harmfully the viability of cells that 
were handled by BFGF. The differentiation of MSCs was 
improved by BFGF that supported the effect of 5-Aza through 
the remarkable morphological expansion of differentiated 
cells. The existence of primitive myofilaments was the sharp 
morphological sign that emphasized the higher differentiation 
induction effect of the 5-Aza and BFGF combination.

The present study showed the morphological changes 
in MSCs resulted from the expression of cardiomyogenic 
proteins. Whereas, cell culture supernatant showed a high 
level of LDH and cTnI significantly after cellular differ-
entiation. LDH is mainly on the filaments of cardiac mus-
cle fibers that have immune-function. cTnI is a part of the 
contractile mechanism of the cardiac muscle.35 The syner-
gic effect of both myocardial differential inducers (5-Aza 
and BFGF) of MSCs is confirmed through the up- 
regulation of these cardiac-specific biomarkers by time. 
This result confirmed that cardiogenic differentiation is 
performed not only by 5-Aza36 but also by the help of 
BFGF in regulating the myocardial differentiation.37

5-Aza induced MSCs were previously proved to be able to 
express cardiac-specific genes such as NKX2.5, TNNT1, and 
Desmin,38 while every gene has its specific cardiogenic role. 
The study also highlighted NKX2.5 or homeobox gene as the 
earliest-specific marker of cardiac lineage during 
embryogenesis.39 It also shows how TNNT1 gene encodes 
the slow skeletal muscle troponin.40 Desmin is an essential 
gene in maintaining the structure of sarcomeres as it has 
a necessary role in cardiac muscle tone.41 Thus, this study 
detected the progress of myocardial differentiation of MSCs 
through the expression of these genes at the RNA level to 
determine the best differential protocol in a time-dependent 
manner (one and three weeks). Both protocols of differentia-
tion confirmed a significantly higher expression of these car-
diac-specific genes in comparison with undifferentiated cells. 
TNNT1 and Desmin expression increased gradually by time, 
while NKX2.5 is an early marker that elevated in the first week 
and peaked after three weeks from the starting of induction in 
both protocols. Particularly the significantly high level of 

Desmin was detected after differential induction by extra 
help of BFGF. The expression of these cardiac genes encoded 
the morphological and functional properties of differentiated 
cells.42 So high expression of TNNT1, Desmin, and NKX2.5 
was driving the cardiomyocytes’ features and the expression of 
functional proteins. The results showed the cardio-differential 
potency of HUC isolated MSCs through the morphological, 
the functional, and the genetic levels.

Collectively, the results of this study recommend using 
HUC-WJ as a competitive source of MSCs, that has 
a promising regenerative therapeutic effect on cardiac diseases. 
Significant differentiation of HUC-WJ isolated MSCs into 
cardiomyocyte-like cells has been detected in vitro by combin-
ing 5-Aza with BFGF. In addition, in vivo experimental studies 
and functional tests are requested for the myocardial differen-
tiation of HUC-WJ isolated MSCs in order to be applicable in 
the clinical trials.

Conclusion
In brief, this study concluded applying for regenerative medi-
cine by MSCs may represent a therapeutic strategy for achiev-
ing better treatment of cardiac diseases. The study presents 
HUM-WJ as a competitive source for seeding MSCs, and an 
efficient mechanism mediated by 5-Aza and BFGF to enhance 
the HUC-WJ isolated MSCs with myocardial features.
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