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Abstract: HIF-1α is an important factor regulating oxygen balance in mammals, and its expres-
sion is closely related to various physiological and pathological conditions of the body. Because 
HIF-1α plays an important role in the occurrence and development of cancer and other diseases, it 
has become an enduring research hotspot. At the same time, natural medicines and traditional 
Chinese medicine compounds have amazing curative effects in various diseases related to HIF-1 
subtype due to their unique pharmacological effects and more effective ingredients. Therefore, in 
this article, we first outline the structure of HIF-1α and the regulation related to its expression, then 
introduce various diseases closely related to HIF-1α, and finally focus on the regulation of natural 
medicines and compound Chinese medicines through various pathways. This will help us under-
stand HIF-1α systematically, and use HIF-1α as a target to discover more natural medicines and 
traditional Chinese medicines that can treat related diseases. 
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Introduction
Mammalian cells depend on oxygen, while hypoxia is also a common physiological 
and pathological phenomenon in organisms and a common microenvironment for 
solid tumors.1 Therefore, the mechanism in the body that can adapt to hypoxia is 
particularly important to the survival of human beings. Hypoxia-inducible factors 
(HIFs), a family of transcription factors involved in hypoxia response, is one of the 
key regulatory mechanisms of hypoxia stress at the cellular level.2,3 Although there 
are many mechanisms for hypoxic adaptation in mammals, including those with 
a faster response time than the HIF system, the HIF system’s unique extent of the 
effects makes it to be a more important regulator of hypoxic responses.4 Among 
them, HIF-1α is the most important regulator of oxygen balance in mammals.

HIF-1α, widely existed in mammalian cells, participates in multiple signaling 
pathways and is a transduction center that mediates hypoxia signals. Increasing studies 
have found that HIF-1α is closely related to the formation of animal cardiovascular 
system, the development of cartilage system, the formation of neural embryos and so 
on. HIF-1α regulated target gene involves erythropoiesis, angiogenesis, cell prolifera-
tion, metabolism and apoptosis. For example, HIF-1α can regulate the metabolism, 
apoptosis and autophagy of tumor cell to suppress tumor cells survival.5–7 In addition, 
the new blood vessels generation, epithelial–mesenchymal transition (EMT), transfer 
invasion, radiation and chemotherapy resistance, pH steady-state of cells are also 
related to HIF-1α.8–11 Therefore, HIF-1α is closely related to a variety of physiological 
and pathological processes in humans.
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Abnormally increased or decreased of HIF-1α may 
cause damage to the body. Up to now, many active ingre-
dients of traditional Chinese medicine (TCM) and natural 
products have been found to regulate HIF-1α content. For 
example, curcumin, mainly extracted from Curcumae 
longae Rhizoma, can inhibit the transcription of HIF-1α 
in vitro, and then produce a certain therapeutic effect on 
liver cancer.12 Traditional Chinese formulas, such as 
Wenshen Yangxue Decoction, can promote endometrial 
repair by increasing HIF-1α.13 Natural medicines that can 
influence HIF-1α are rich in variety and resources, and 
they are worthy of development and utilization.

The Protein Structure and 
Regulation of HIF-1α
HIF-1α Protein Structure
HIF-1α is a 120–130 kD protein. It is the most widely 
expressed HIF-α subunit in mammalian tissues and is also 
highly conserved in many other species. The N-terminal of 
HIF-1α subunits contains basic helix-loop-helix (bHLH) 
domains, Per-ARNT-Sim-A (PAS-A) and Per-ARNT-Sim- 
B (PAS-B) domains. The bHLH domain defines a large 
superfamily of dimeric eukaryotic transcription factors, 
mediates combination of HIF-1α and DNA.14 The bHLH 
domain can be dimerized with the PAS domain to form 
bHLH-PAS proteins, which are only found in multicellular 
animals and are a relatively small family of bHLH 
proteins.15 The bHLH-PAS domains mediate α, β-dimer-
ization of HIFs and binding of HIFs to hypoxic response 
elements (HRE) on target genes.4 The C-terminal of HIF- 
1α subunits contain oxygen-dependent degradation 
domains (ODD) and two transcriptional activation 
domains (TAD), N-TAD and C-TAD (N/C terminal activa-
tion domains). In the ODD, the LAPYIXMD motif plays 

a key role in the binding of HIF-1α to von Hippel-Lindau 
E3 ubiquitin ligase complex (pVHL), while N-TAD con-
tributes to HIF-1α stabilization against proteasomal degra-
dation, and the C-TAD has the role of recruiting 
coactivator proteins, CREB-binding protein (CBP)/p300, 
to form active transcriptional complexes on DNA 
(Figure 1).16–18

The Regulation of HIF-1α
The Synthesis of HIF-1α
The synthesis of HIF-1α under normoxic conditions is 
regulated by phosphatidyl inositol 3-kinase (PI3K) and 
mitogen-activated protein kinase (MAPK) pathways. The 
PI3K pathway can mediate the translation of HIF-1α 
through protein kinase B (Akt) and mammalian target of 
rapamycin (mTOR), while the MAPK pathway can initiate 
the translation of HIF-1α through extracellular regulated 
protein kinases (ERK). mTOR and ERK can activate the 
translation of specific mRNA sequences by inactivating 
the inhibitor eukaryotic initiation factor 4E-binding protein 
(4E-BP) or activating ribosomal protein S6 kinase 
(S6K).19,20

Eukaryotic initiation factor 4E (eIF4E) is a cap-binding 
protein that can be combined with eIF4G and eIF4A to 
form eukaryotic initiation factor 4F (eIF4F), which binds 
to the 5ʹ cap structure of mRNA to initiate HIF-1α transla-
tion. It is generally believed that eIF4E plays a central role 
in the initial stage of cap-dependent translation since its 
minimum content and is present in the cell in limiting 
molar amounts.21,22 The combination of 4E-BP and 
eIF4E inhibited the formation of eIF4F. Low phosphory-
lated 4E-BP has a high affinity with eIF4E and can com-
pete with eIF4G for the binding site of eIF4E, thus 
preventing the formation of eIF4F and the initiation of 

Figure 1 Functional domains in HIF-1α transcription factors. HIF-1α contains a bHLH (basic helix-loop-helix) motif, two PAS (Per-ARNT-Sim) domains (PAS-A and PAS-B) 
and a C-terminal transcriptional activation domain (C-TAD), a second transcriptional activation domain (N-TAD), as well as N- and C-terminal oxygen-dependent 
degradation domains (NODD and CODD, respectively).
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HIF-1α translation. When 4E-BP is fully phosphorylated, 
eIF4E is released and can be combined with eIF4G and 
eIF4A to form eIF4F, which improves the efficiency of 
translation.23,24 Activation of mTOR and ERK phosphor-
ylates 4E-BP at multiple sites, thereby releasing eIF4E, 
allowing eIF4F formation and subsequent cap-dependent 
translation. What is more, MAPK pathways can also acti-
vate the MAPK signal integrating kinase (MNK), which 
plays a role of eIF4E kinase, so as to promote the forma-
tion of eIF4F (Figure 2).25

The HIF-1α translation mechanism that S6K mediated 
is still controversial, but the viewpoint that activation of 
S6K can increase HIF-1α translation is widely accepted. 
At first, it was speculated that S6K could stimulate HIF-1α 
translation by increasing the affinity of ribosomes for the 
5ʹ-terminal oligopyrimidine tract (5ʹ TOP) motif in certain 
mRNAs.26 But the new study found that the 5ʹ TOP motif 
was not present in HIF-1α mRNA. Furthermore, S6K is 
dispensable for the translational activation of TOP 
mRNAs by growth factors.27 Therefore, the mechanism 
remains to be further studied.

Although the synthesis of most proteins declines under 
hypoxia, the translation of a few protein critical to cell 
survival does not stop, including HIF-1α. However, it is 
unclear that how HIF-1α is selectively translated during 
periods of global translation inhibition remains incomple-
tely understood. One possible mechanism is related to the 
internal-ribosome-entry-site (IRES). IRES do not require 
the presence of the elF4F cap-binding complex to initiate 

translation. It is a short RNA sequence (150~250bp) 
located at the 5ʹ untranslated region (UTR) of HIF-1α. 
IRES can fold into a structure similar to the initiation 
tRNA, which then mediates the binding of ribosomes to 
HIF-1α mRNA and initiates its translation in a cap-inde-
pendent manner.28–30 However, whether an IRES-depen-
dent mechanism occupies a dominant position in hypoxia 
conditions is debatable. When researchers evaluated IRES- 
mediated HIF-1α translation under hypoxia, they found 
that only <1% of the transcriptional activity was mediated 
by IRES, suggesting that the role of IRES was not 
primary.31 Another mechanism is related to the RNA- 
binding proteins polypyrimidine tract-binding protein 
(PTB) and HuR. It was found that in the COCl2-induced 
hypoxia model, PTB and HuR could combine with the 3ʹ 
UTR and 5ʹ UTR of HIF-1α to jointly promote the transla-
tion of HIF-1α.30,32

The role of microRNAs (miRNAs) in regulating HIF- 
1α translation has also received increasing attention. 
MiRNAs are small endogenous non-coding RNAs consist-
ing of 21 to 25 nucleotides. These miRNAs can be base- 
paired with the 3ʹ UTR of mRNA. After forming an RNA- 
induced silencing complex (RISC), it can degrade the 
mRNA or hinder its translation.33 Currently, it has been 
found that miRNA-17-92 clusters, −155, −199 and −519c 
can be directly base-paired with HIF-1α mRNA to inhibit 
translation. MiRNA-21 can indirectly enhance the expres-
sion of HIF-1α, mainly by targeting the phosphatase and 
tension homolog (PTEN) to reduce HIF-1α expression. 

Figure 2 MTOR-mediated synthesis of HIF-1α.
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Moreover, the reduction of PTEN can activate AKT and 
ERK, thereby increasing the expression of HIF-1α.34

Degradation and Stabilization of HIF-1α
Located in the cytoplasm, HIF-1α is easily degraded under 
normal oxygen with a half-life of less than five minutes, 
but its stability and transcriptional activity are significantly 
increased under hypoxic conditions.35–37 HIF-1α regulates 
its stability mainly through multiple ways.

Prolyl hydroxylase domain proteins (PHD) is an oxy-
gen-dependent enzyme. The oxygen-dependent degrada-
tion pathway is called the O2/PHDs/pVHL pathway 
(Figure 3). When oxygen levels are normal, it can make 
two of HIF-1α proline residues (P402 and P564 of HIF- 
1α) in the ODD (NODD and CODD, respectively) hydro-
xylation, with oxygen, α-Ketoglutaric acid as substrate, 
Fe2+ and ascorbate as coenzyme. And then pVHL com-
bined with HIF-1α, recruited a variety of ubiquitin protein, 
to form the E3 ubiquitin ligases proteasome, make HIF-1α 
subunit ubiquitination, and then degradation by the 
proteasome.38–41 PVHL is the substrate recognition com-
ponent of the complex and can bind directly to HIF-1α. A 
single hydroxylation at any one site (NODD or CODD) is 
sufficient for HIF-1α to target the pVHL for degradation.42 

In some cancers, particularly kidney cancer, pVHL is 
inactivated, and the resultant upregulation of HIF-1α may 
serve to promote tumor growth.43 The E3 ubiquitin ligases 
consist of Elongin-C, Elongin-B and lysine residues cata-
lyzed by pVHL, which degrade HIF-1α by protease. PHD 
is a key speed limiting enzyme of this pathway. There are 
4 PHDs in mammals, namely PHD1-4, among which 
PHD2 is mainly responsible for regulating the degradation 
of HIF-1α. PHDs are expressed differently in different 

tissues and have different affinities with different HIF 
proteins, which may lead to the diversity of hypoxic 
responses.44 Under hypoxic conditions, intracellular accu-
mulation of succinic acid, fumaric acid, reactive oxygen 
species (ROS) and other chemicals such as CoCl2, 
dimethyloxalylglycine (DMOG) and iron ion chelator can 
inhibit the hydroxylation activity of PHD, thereby block-
ing the O2/PHDs/pVHL degradation pathway and stabiliz-
ing HIF-1α. Among them, DMOG is a structural analogue 
of α-ketoglutaric acid and a competitive inhibitor of 
PHD.45 PHD’s catalytic center contains Fe2+, so iron 
chelators can also inhibit its activity.

The oxygen-dependent O2/PHDs/pVHL pathway is not 
the only pathway that leads to the degradation of HIF-1α. 
There are also some proteins that can affect the stability of 
HIF-1α. The most typical ones are small ubiquitin-like 
modifier (SUMO), receptor for activated protein C kinase 
1 (RACK1), heat shock protein 90 (HSP90) and proteins 
related to the PI3K/Akt signaling pathway. SUMOs are 
small proteins (12 kD) with low sequence identity to 
ubiquitin, but their 3D structures are very similar. It can 
bind substrate proteins and carry on the modification after 
translation, the process is called the SUMOylation.46 

Initially, it was found that SUMO-l can cause 
SUMOylation of HIF-1α. Overexpression of SUMO-1 
under normal and hypoxia can increase the stability and 
transcriptional activity of HIF-1α, because SUMOylation 
may compete with ubiquitination for the same modifica-
tion site of HIF-1α. But new evidence suggests that 
SUMOylation of HIF-1α can also lead to degradation. 
Hypoxia induces SUMOylation of HIF-1α, which pro-
motes its binding to the β-subunit of pVHL to form an 
oxygen-independent HIF-1α-pVHL-E3 ubiquitin ligases 

Figure 3 Degradation pathway of HIF-1α by O2/PHDs/pVHL.
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complex, and result in ubiquitination and degradation of 
HIF-1α.47 Therefore, when PHD is absent, pVHL can also 
bind to HIF-1α through this pathway. The effect of SUMO 
on HIF-1α is controversial and needs further research. In 
addition, the RACK1 and HSP90 can also regulate the 
stability of HIF-1α in a manner similar to pVHL pathway. 
After the homodimerization of RACK1, it can bind to the 
PAS region of HIF-1α, and then recruit Elongin-C and 
other components of the E3 ubiquitin ligase, resulting in 
ubiquitination and degradation of HIF-1α. HSP90 can 
compete with RACK1 to bind to the PAS region of HIF- 
1α, preventing the ubiquitination of HIF-1α.48

The PI3K/Akt signaling pathway is not only involved 
in the synthesis of HIF-1α but also can regulate the degra-
dation of HIF-1α through different mechanisms. One 
mechanism is mediated by glycogen synthase kinase-3 
(GSK-3). GSK-3 exists in two forms: serine-9 (Ser-9) 
phosphorylation and tyrosine-216 (Tyr-216) phosphoryla-
tion, while Ser-9 phosphorylation is its inactive form, and 
Tyr-216 phosphorylation is its active form.49 Active GSK- 
3 can phosphorylate serine 551 (Ser551), threonine 555 
(Thr555), and serine 589 (Ser589) at HIF-1α. After that, 
HIF-1α is ubiquitinated and degraded. Transient hypoxia 
can activate the PI3K-Akt pathway, which can make GSK- 
3 exist in an inactive Ser-9 phosphorylated form, thereby 
preventing the degradation of HIF-1α. In contrast, chronic 
hypoxia can inhibit the PI3K/Akt pathway, which can 
reduce the phosphorylation of Ser-9 and increase the phos-
phorylation of Try-216. So that more GSK-3 exist in 
active form which induces degradation of HIF-1α.50 

Another mechanism is achieved by fork-headed box O4 
(FOXO4). PI3K-Akt can phosphorylate FOXO4 and pre-
vent it from entering the nucleus, and FOXO4 can induce 
the ubiquitination and degradation of HIF-1α.51

In summary, the degradation of HIF-1α is very com-
plicated, including many pathways and regulators, some of 
which have not been fully proven and require further 
research.

Nuclear Transport of HIF-1α
The amount of protein accumulated in the nucleus depends 
on the relative proportion of its nuclear import and export. 
Classical HIF-1α nuclear import is mediated by nuclear 
transport receptors importin. Importin is a receptor of 
nuclear localization signal (NLS), which can bind to 
NLS and help nuclear proteins enter the nucleus. HIF-1α 
in the cytoplasm can enter the nucleus just because its 
C-terminal NLS (CNLS) can bind to importin α/β, while 

N-terminal NLS (NNLS) does not have this function.52 

Moreover, subsequent research found that in addition to 
the classical importin α/β NLS receptor, importins 4 and 
7 can also mediate nuclear import of HIF-1α. They can 
bind directly to HIF-1α and promote its entry into the 
nucleus. The difference between the two pathways is that 
importin a/β may release HIF-1α around the inner nuclear 
envelope, while importins 4 and 7 release HIF-1α in the 
nucleus.53,54

The nuclear export of HIF-1α involves the MAPK 
pathway. At first, some scholars found that the HIF-1α 
protein always appeared on the SDS-PAGE gel as a band 
with a molecular weight of 20 kDa more than expected. 
Subsequently, it was found that phosphorylation can 
change the migration rate of HIF-1α on the gel under 
normal or hypoxic conditions. Besides, it was confirmed 
that MAPK played a major role in this change. It can 
phosphorylate HIF-1α in vivo and in vitro and increase 
its transcriptional activity. In most research, MAPK does 
not change HIF-1α protein expression, stability and DNA- 
binding activity, but promotes HIF-1α transcriptional 
activity. MAPK increases HIF-1α transcriptional activity 
through different mechanisms, one of which involves the 
nuclear export of HIF-1α. The main component of HIF-1α 
nuclear export is located at the C-terminal nuclear export 
signal (NES) of HIF-1α, which is an atypical hydrophobic 
nuclear exporting factor I (CRM1)-dependent signal. HIF- 
1α in the nucleus can bind to CRM1 through its NES, 
allowing it to be exported from the nucleus. But when the 
Ser641 or Ser643 adjacent to NES is phosphorylated by 
MAPK, NES will be masked and unable to bind to CRMI, 
so that phosphorylated HIF-1α is accumulated in the 
nucleus55,56 (Figure 4).

Heterodimerization, Transcriptional Activation of 
HIF-1α and Interaction with Other Proteins
The stabilization and nuclear transport of HIF-1α are 
essential for its function, but these are not enough. 
Phosphorylated HIF-1α must be heterodimerized with 
HIF-1β to form HIF-1. After its active regions N-TAD 
and C-TAD bind to co-activating factors such as P300/ 
CBP (CREB-binding protein), an active complex is 
formed. The complex then binds to the HRE on the target 
gene to exerting its activity.

Under normoxic conditions, the N-terminal of aspartic 
acid hydroxylase (also known as factor-inhibiting HIF-1α, 
FIH) can bind to the HIF-1α region, while the C-terminal 
cannot bind to HIF-1α. What is more, FIH-1 can 
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hydroxylate Asn803 in the C-TAD domain of HIF-1α 
subunit, blocking the binding of HIF-1α to p300/CBP, 
thereby inhibiting the transcriptional activation of HIF-1. 
Like PHDs, FIH-1 is inhibited when in the hypoxia or the 
presence of CoCl2, DMOG, Fe2+, etc., and HIF-1α sub-
units that have not been hydroxylated were successfully 
combined with p300/CBP, thus activating target gene tran-
scription (Figure 5).57 FIH-1 and PHDs have different 
requirements for oxygen to maintain the activity. In vitro, 
the Km of FIH for O2 was about 40% of its atmospheric 
concentration, being about one-third of those of the 
PHDs.58 Therefore, PHDs can be inactivated under mild 

hypoxia (1% −5% O2), while FIH-1 can be inactivated 
only under severe hypoxia. In addition, researchers have 
found that pVHL can also regulate FIH-1, and FIH-1 can 
bind to the β-domain of pVHL.59 In aerobic conditions, 
Asn803 in C-TAD of HIF-1α is hydroxylated by FIH-1, 
and the combination of pVHL and FIH-1 can enhance this 
effect. In moderate hypoxia conditions, PHDs become 
inactive, which causes the accumulation of HIF-1α. 
Moreover, the FIH-pVHL complex depolymerized, and it 
can weaken the binding of FIH-I to C-TAD, thereby par-
tially activating C-TAD. On the other hand, when in severe 
hypoxic conditions, FIH-1 and PHDs were completely 

Figure 4 Nuclear transport of HIF-1α.
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inactivated, so C-TAD is fully activated. This makes us 
speculate that when the oxygen concentration begins to 
decrease, the cells first express a series of genes regulated 
by N-TAD, and when the oxygen concentration is further 
lower, the genes regulated by C-TAD can be expressed.60

Previous studies suggested that only C-TAD needs to 
recruit the transcription co-activator p300/CBP, so that 
C-TAD can play its role. However, the subsequent research 
found that N-TAD mediated transcriptional activities also 
require the participation of CBP. The difference is that 
C-TAD is bound to the CH1 region of CBP, while N-TAD 
is bound to its CH3 region.61 Moreover, MAPK can 
increase the recruitment of P300/CBP to HIF-1α, because 
P300 and CBP are direct phosphorylation substrates of 
MAPK, and MAPK can cause phosphorylation of P300 
and CBP. This phosphorylation can have specific effects 
on the affinity of P300/CBP and different protein factors, 
resulting in the redistribution of P300/CBP in the complex 
of interacting factors. In particular, because MAPK signals 
can stimulate the transcriptional activity of P300/CBP, so it 
is likely to increase the interaction between P300/CBP and 
basic transcriptional mechanisms.62 In addition to MAPK, 
the PI3K/Akt pathway can also indirectly regulate the bind-
ing of HIF-1α to p300/CBP. PI3K/Akt can phosphorylate 
fork-head box O3a (FOXO3a), thereby preventing 
FOXO3a from entering the nucleus. FOXO3a can interfere 
with the recruitment of p300 to HIF-1α after entering the 
nucleus, thereby negatively regulating its transcriptional 
activation activity.63

Role of HIF-1α in Different 
Physiological or Pathological States
HIF-1α and Angiogenesis
Angiogenesis is one of the basic events of many physio-
logical processes (eg, embryonic development, and 

menstrual cycle) and pathological processes (eg, tumor, 
ischemic disease, chronic inflammation, diabetic retinopa-
thy, endometrial hyperplasia, psoriasis, obesity, and wound 
healing). HIF-1α plays an important role in ischemia- 
induced angiogenesis by upregulating gene expression of 
proteins associated with the vascular system, while the 
most typical of which is vascular endothelial growth factor 
(VEGF) and its receptor. HIF-1α can regulate the angio-
genic factor angiopoietin-1, angiopoietin-2, placental 
growth factor (PLGF), platelet-derived growth factor B 
(PDGF-B) and VEGF, to participate in the whole process 
of angiogenesis.64 Related studies have confirmed that 
removing HIF-1α gene or blocking HIF-1α transcription 
can prevent tumor cells from secreting VEGF and inhibit 
the formation of tumor neovascularization. With the con-
tinuous growth and volume increase of the tumor, hypoxic 
necrosis occurred due to insufficient blood supply, which 
induced the overexpression of HIF-1α. Meanwhile, HIF- 
1α can enhance the expression of its downstream target 
gene VEGF, and then act on VEGF-R1 and VEGF-R2 on 
the surface of vascular endothelial cells, thereby promot-
ing angiogenesis and accelerating tumor metastasis.65 In 
the femoral artery ligation model with HIF-1α gene knock-
out, it was found that vascular growth factors such as 
VEGF were not activated and the reperfusion capacity 
decreased after ischemia.66 In addition, HIF-1α also had 
a role in promoting angiogenesis in models of myocardial 
hypertrophy, myocardial infarction, wound healing and 
retinal angiogenesis.67–69

HIF-1α and Cancer
The rapid proliferation of tumor cells leads to insufficient 
blood supply, so that tumor cells are often in a hypoxic 
environment. A large number of literatures have reported 
that HIF-1α is overexpressed in breast cancer, ovarian 

Figure 5 Transcriptional activation of HIF-1α.
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cancer, esophageal cancer, colon cancer, lung cancer and 
other tumor tissues. In addition, HIF-1α expression was 
significantly higher in multiple metastatic tumors than in 
primary tumors.70–73 Current studies have found that HIF- 
1α is involved in transcriptional regulation of more than 70 
target genes in various tumor growth processes. Among 
them, there are four types of gene that are closely related 
to tumor, which are factors related to glucose transport and 
glycolysis, factors related to angiogenesis, factors related 
to tumor proliferation and apoptosis, and factors related to 
tumor invasion and metastasis.74 They induce a series of 
responses in cells and tissues to adapt to the hypoxic 
environment, promoting tumor angiogenesis, and also 
increasing the invasiveness of the tumor itself and its 
resistance to chemoradiotherapy.

In tumor cells, HIF-1α can not only promote angiogen-
esis but also help tumor cells obtain energy by reconstruct-
ing the metabolic pathway of cells, among which 
glycolysis is an important means. First, HIF-1α is able to 
initiate glucose transporter and lactate dehydrogenase A 
(LDHA) to mediate pathway conversion to non-oxidative 
carbon metabolism and ATP-producing pathways such as 
glycolysis. In addition, PDK protein encoded by pyruvate 
dehydrogenase kinase-1 (PDK1), another HIF-1α target 
gene, inhibits the production of acetyl CoA, blocks the 
tricarboxylic acid cycle, and reduces oxygen consumption. 
It was found that cells lacking HIF-1α reduced ATP pro-
duction under hypoxic conditions, producing more oxy-
gen-free radicals and promoting apoptosis.75 In addition to 
these two pathways, activation of HIF-1α affects the pen-
tose phosphate pathway, which converts the intermediate 
products of glycolysis into 5-phosphoribose, an important 
raw material for synthesis of nucleotides.76 These results 
suggest that HIF-1α promotes cell survival under hypoxic 
conditions by reconstructing cell metabolic pathways, one 
of the steps required to convert glucose metabolism into 
RNA and DNA synthesis, which is important for survival 
and growth of hypoxic tumor cells.

HIF-1α can also promote the proliferation of tumor 
cells through the regulation of related factors. For exam-
ple, HIF-1 can induce the production of factors such as 
insulin-like growth factor-2 (IGF-2) and transforming fac-
tor-2 (TGF-2). These factors activate the MAPK and PI3K 
pathways through binding to cognate receptors, which not 
only cause cells hyperplasia but also increase the activity 
of HIF-1α and accelerate the transcriptional activity of 
HIF-1α-induced genes. This activity plays an important 
role in the evolution of tumors.77 In terms of tumor cell 

apoptosis, the mechanism is more complex. First, many 
scholars believed that HIF-1α could promote the apoptosis 
of tumor cells. HIF-1α stabilized p53 by inhibiting p53 
ubiquitination and blocking p53 translocation outside the 
nucleus, thus inducing various apoptotic genes to promote 
apoptosis.78 In other studies, HIF-1α also had an anti- 
apoptotic effect. Hypoxia or COCl2 can induce the expres-
sion of HIF-1α and inhibit the apoptosis of hepatoma cell 
line HepG2 caused by tert-butyl hydrogen peroxide or 
serum depletion.79

In addition to the above aspects, HIF-1α can also 
enhance the invasion and metastasis of tumor, which are 
closely related to the matrix metallo-proteinases (MMPs). 
HIF-1α may increase the expression of MMPs, thus pro-
moting the metastasis of malignant tumors. On the other 
hand, increased HIF-1α lead to the decreased of epithelial 
cadherin (E-cad) and β-catenin (β-cat), and the destruction 
of the E-cad/β-cat complex can reduce the adhesion 
between cells and matrix, which finally cause cell separa-
tion and migration. Further studies also found that multi-
drug resistance gene 1 (MDR1) and its encoded 
p-glycoprotein could be increased by HIF-1α, and the high 
expression of both was one of the main mechanisms of drug 
resistance in tumors.80,81

HIF-1α and Inflammation
HIF-1α can be detected in inflammatory diseases such as 
immune inflammation, bacterial infection, macrophage 
metabolism and viral infection. When an inflammatory 
response occurs, increased vascular permeability will 
cause more immune cells to reach the site of inflammation. 
At the same time, the increased oxygen consumption of 
inflammatory cells and antigens will lead to the formation 
of a local hypoxic environment in the inflammatory site 
due to the slow blood flow, which will induce the immune 
cells to transcribe HIF-1α.82 The response of immune cells 
to hypoxia is closely related to the nuclear factor-κb (NF- 
κb). As a key immune regulator, NF-κb can positively 
regulate the transcription of HIF-1α mRNA under 
hypoxia, and it can also activate NF-κb in macrophages, 
neutrophils, and some non-immune cells, which are not 
only participants in acute and chronic inflammation but 
also crucial front-line effectors for innate host defense 
against invading microbial pathogens. Hypoxia inhibits 
PHD1 activity and makes HIF-1α accumulation, leading 
to the activation of inhibitor of NF-κb (Iκb) kinase (IKK), 
which then phosphorylates NF-κb. Dissociated NF-κb 
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activates transcription of corresponding downstream 
genes, such as inflammatory cytokines.83

HIF-1α plays an important role in the inflammatory 
response. It can not only promote the secretion of inflam-
matory factors but also be regulated by inflammatory 
factors. Take rheumatoid arthritis (RA), a chronic, auto-
immune inflammatory disease characterized by synovial 
inflammation in the joints, especially the hands and feet, 
and progressive destruction of these and other joints. IL-1 
and TNF-α play important roles in the progression of RA 
as pro-inflammatory and immune regulators. Stimulated 
by IL-1 and TNF-α, fibroblast synovial cells in RA 
patients can promote HIF-1α increase in mRNA and pro-
tein levels. Among them, IL-1 can increase the binding of 
the heterodimer HIF-1 to the HIF consensus sequence.84,85 

In addition, IL-33 also can promote the expression of HIF- 
1α in synovial tissue of RA. The study found that the level 
of IL-33 in the synovial fluid of RA patients was 
increased, and the expression of HIF-1α upregulated, 
while the expression of HIF-1α, in turn, could control the 
expression of IL-33 through the p38 and ERK pathways, 
thus forming a closed loop of HIF-1α/IL-33, and aggravat-
ing the inflammatory response.86 Meanwhile, the role of 
VEGF, another downstream target gene of HIF-1α, cannot 
be ignored in RA. The synovial membrane of RA patients 
can produce a large amount of HIF-1α, which further 
stimulates the production of VEGF. During the develop-
ment of RA, VEGF can promote the formation of new 
blood vessels in synovium and further aggravate synovial 
tissue hyperplasia.87

HIF-1α and Physiological Hypoxia
In addition to pathological hypoxia, HIF-1α also plays an 
important role in the physiological hypoxia of the body. 
After entering plateau or strenuous exercise, hematopoietic 
organs increase the oxygen-carrying capacity of the blood 
by increasing the number of red blood cells, a process 
mediated by erythropoietin (EPO), the target gene of HIF- 
1α. EPO is an erythrocyte-specific hematopoietic hormone 
produced mainly by the kidney and liver. The presence of 
EPO promotes the production of hemoglobin and red blood 
cells and is a key factor in regulating the body’s balance in 
response to hypoxia. When the body is stimulated by 
hypoxia, the activated HIF-1α binds to the HRE located in 
the promoter region of the EPO gene, which then triggers 
the transcription of the EPO gene.88,89 Familial polycythe-
mia is a genetic disorder characterized by an abnormal 
increase in hemoglobin and red blood cells, which has 

been shown to be caused by a mutation in VHL that pre-
vents HIF-1α from hypoxia and activates EPO.90,91 In the 
adaptation of plateau and sea level mice to hypoxia, 
hypoxia-activated HIF-1α expression in sea level mice but 
had no significant effect on HIF-1α expression in plateau 
mice for generations. It means that the adaptive strategies of 
highland mammals to hypoxia seem to differ genetically 
from those of lowland mammals by a long evolutionally 
acclimatization to the hypoxic environment.92

Bioactive Components of Natural 
Medicine or Traditional Chinese 
Medicine Prescription
Natural medicines and TCM formulas have multi-target 
and multi-level therapeutic effects on various diseases due 
to their various components. After a large number of 
studies on their active components, they can be roughly 
divided into flavonoids, quinones, terpenes, polysacchar-
ides and glycosides, etc., based on the chemical structure 
differences. As a central regulator, HIF-1α is involved in 
many diseases. On the one hand, overexpression of HIF- 
1α is closely related to diseases such as solid tumors, and 
on the other hand, inhibition of HIF-1α is involved in 
hypoxic-ischemic diseases such as anemia. Therefore, by 
inhibiting or promoting HIF-1α, it can play a therapeutic 
role in related diseases. Natural medicine and TCM for-
mulas can affect the content of HIF-1α in the body by 
regulating the synthesis, degradation and nuclear transport 
of HIF-1α, thereby playing a therapeutic effect on cancer, 
inflammation and other diseases.

Inhibition of HIF-1α
Bioactive Components
The pathogenesis of many diseases such as solid tumor, 
endometriosis, renal interstitial fibrosis and intestinal 
epithelial barrier dysfunction is closely related to the over-
expression of HIF-1α, which threatens human health.93–96 

Up to now, researchers have found that they can mainly 
downregulate HIF-1α in the following ways: 1) block HIF- 
1α/p300 interactions; 2) decrease the expression of HIF-1α 
mRNA; 3) reduce stability of HIF-1α protein (Figure 6).97 

In modern research, a variety of natural medicines and 
traditional Chinese medicine prescriptions can achieve 
a therapeutic effect by reducing the content of HIF-1α. 
However, it is regrettable that the pathway through which 
many natural medicines or traditional Chinese medicine 
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prescriptions reduce HIF-1α is unknown, and further 
research is needed.

The known TCMs, such as Curcumae longae Rhizoma 
(named “Jianghuang” in Chinese), Curcumae Radix (named 
“Yujin” in Chinese), Curcumae Rhizoma (named “Ezhu” in 
Chinese), have the effects of promoting blood circulation 
and promoting qi. In modern pharmacological studies, 
researchers have found that in addition to the above-men-
tioned effects, they can also exert anti-inflammatory and 
anti-tumor effects, all of which are attributed to the curcu-
min, an active ingredient in these TCMs mentioned above. 
Curcumin is a diketone compound which is widely used in 
food industry as a spice and colorant because of its unique 
aroma and color. In addition, continuous evidences show 
that anti-inflammatory and anti-tumor efficacy of curcumin 
is closely related to its inhibitory effect on HIF-1α.98 

Curcumin has therapeutic effects on a variety of cancers, 
in particular for the liver cancer. As mentioned above, local 
hypoxia, increased angiogenesis, and increased cell adhe-
sions are commonly accompanied by tumors in the body, 
and interestingly curcumin has a significant effect on these 
phenomena. First, in the hypoxia-induced HepG2 liver can-
cer cell model, after co-incubation with curcumin, the tran-
scriptional activity of HIF-1α is inhibited, which in turn 
reduce the produced HIF-1α. At the same time, in vascular 
endothelial cells, the expression of HIF-1α and its down-
stream target gene VEGF will also decrease, inhibiting 
angiogenesis.12 In thyroid cancer, researchers further 
found that curcumin can inhibit the mRNA and protein 

expressions of HIF-1α by reducing the DNA-binding poten-
tial of HIF-1α to hypoxia response element under hypoxic 
conditions. In addition, after co-incubating with K1 papil-
lary thyroid cancer cells, the expression of E-cadherin 
increased and the activity of metalloproteinase-9 (MMP-9) 
enzymes decreased. All the above results indicated that 
curcumin had a strong anti-metastatic effect and could pre-
vent the malignant metastasis of cancer cells.99 With the 
continuous in-depth study of curcumin’s effects on cancer, 
researchers have focused their attention on the effect of 
curcumin on cancer metabolism. After continuous efforts, 
the researchers were surprised to find that curcumin can also 
down-regulate pyruvate kinase M2 (PMK2), a key regulator 
of the Warburg effect, through the mTOR-HIF-1α signaling 
pathway, and inhibit glucose uptake and lactic acid produc-
tion in a variety of cancer cell lines.100 In addition to the 
effective treatment of cancer, curcumin can also exert anti- 
inflammatory, anti-apoptotic and anti-oxidant effects by 
inhibiting HIF-1α, which can be used to treat atherosclero-
sis, hemophilia and other diseases. First, we take athero-
sclerosis as an example. Atherosclerosis is characterized by 
accumulation of lipid and fibrous elements and is accom-
panied by inflammation and immune response in the vas-
cular endometrium. In response to these phenomena, 
researchers have found that after treatment with curcumin, 
the total cholesterol and lipid levels in macrophages 
induced by hypoxia will decrease to varying degrees. At 
the same time, the expression of HIF-1α will decrease with 
the inhibition of the ERK signaling pathway, further 

Figure 6 Natural medicines and traditional Chinese medicine prescriptions can mainly downregulate HIF-1α in three following ways.
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reducing its downstream target genes such as VEGF and 
PDGF. In this case, VEGF is responsible for the formation 
of new blood vessels, while PDGF can cause the prolifera-
tion and vasoconstriction of vascular smooth muscle cells 
and aggravate the disease response. Curcumin can also 
effectively relieve the inflammation and immune response 
of the vascular intima during the development of athero-
sclerosis. For example, curcumin also can inhibit the 
hypoxia-induced the macrophage apoptosis and the upregu-
lated protein level of inflammation factor, IL-6 and TNF-α. 
Therefore, all these evidences suggest that curcumin could 
be a potential drug for treating atherosclerosis.79 Of course, 
studies have shown that curcumin can also treat hemophilia 
by inhibiting inflammation and angiogenesis101 (Figure 7). 
In addition to inhibiting the above factors, it can also inhibit 
IL-1 and MMP, other mechanisms are shown in Table 1.102 

In addition to inhibiting the above factors, it can also inhibit 
IL-1 and MMP, other mechanisms are shown in Table 1.102 

Flavonoids are an important part of natural medicines, and 
many compounds have the effect of inhibiting HIF-1α. Take 
isoquercitrin as a simple example. Isoquercitrin is mainly 
derived from Gossypium herbaceum L. and Apocynum 
cannabinum Linn. It is a phytoestrogen and a flavonoid. 
Isoquercitrin has a significant effect on osteoporosis caused 

by abnormally elevated HIF-1α after menopause. By sup-
pressing NF-κB activation, HIF-1α mRNA levels are 
reduced, bone histological characteristics are improved, 
and lumber strength is increased.103 Apigenin, a flavonoid 
mainly existing in Apium graveolens L., can improve abnor-
mal glucolipid metabolism by reducing the expression of 
HIF-1α and subsequent up-regulating PPARα-mediated 
CPT-1 and PDK-4 expressions and down-regulating 
PPARγ-mediated GPAT and GLUT-4 expressions.104,105

In addition to flavonoids, quinones also have inhibitory 
effect on HIF-1α. Rhei Radix et Rhizoma (named 
“Dahuang” in Chinese), a known TCM, is mainly used in 
the treatment of acute intestinal obstruction. Moreover, as a 
laxative, it has been proven to regulate the contractility of 
intestinal smooth muscle. However, it has been found in 
modern studies that the active ingredient emodin, an anthra-
quinone extracted from Dahuang has the effect of treating 
intestinal epithelial barrier dysfunction. In the critically ill 
state, intestinal barrier dysfunction often occurs, involving 
inflammation and hypoxia damage of intestinal epithelial 
cells. In certain studies, it has been clearly clarified that NF- 
κB and HIF-1α signaling pathways will promote the devel-
opment of this disease. Furthermore, cyclooxygenase 
(COX) 2 is a key enzyme in the intestinal barrier failure 

Figure 7 Curcumin downregulates the content of HIF-1α.
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Table 1 Bioactive Components of Natural Medicine That Can Inhibit HIF-1α

Compounds Original 

Plants

Chemical Structure Models Mechanism Disease Refs.

Flavonoids

Curcumin Curcuma longa 

L.; 

Curcuma 

rcenyujin Y; 

Curcuma 

aeruginosa 

Roxb.; 

Acorus 

tatarinowii 

Schott

HepG2, 

HUVECs cells 

Human THP1 

cells 

Synovial tissue 

and PB of HA 

patients

Suppressing the 

transcriptional activity of 

HIF-1α and the expression 

of VEGF, inhibiting 

angiogenesis; 

repressing the expression 

of HIF-1α at the protein 

level and the downstream 

genes of HIF-1α, such as 

HMOX1, ROS, VEGF and 

PDGF; 

Suppressing inflammation 

and angiogenesis by 

inhibiting HIF-1α, IL-1, IL-6, 

VEGF and MMPs.

Liver cancer 

Atherosclerosis 

Hemophilic arthropathy

[12,79,102]

K1 PTC cells Repressing HIF-1α 

expression, hypoxia- 

induced ROS generation, 

and the DNA-binding 

potential of HIF-1α to 

hypoxia response 

element under hypoxic 

conditions, up-regulating 

E-cadherin expression 

and inhibiting MMP-9 

enzyme activity.

Thyroid cancer. [99]

H1299, 

HEK293, PC3, 

HeLa and MCF- 

7 cells.

Decreasing glucose 

uptake and lactate 

synthesis by suppressing 

pyruvate kinase M2 

expression via inhibition 

of mTOR-HIF-1α axis.

Cancers. [100]

Ampelopsin Hovenia dulcis 

Thunb.

HUVECs and 

HepG2 cells

Suppressing both 

VEGFR2 signaling and 

HIF-1 α expression, 

leading to decreased cell 

proliferation, migration, 

invasion and tube 

formation.

Cancer and other 

angiogenesis-related 

human diseases.

[122]

Apigenin Apium 

graveolens L.

H9c2 cells Reducing the expression 

of HIF-1α, increasing 

PPARα-mediated CPT-1 

and PDK-4 expressions 

and decreasing PPARγ- 

mediated GPAT and 

GLUT-4 expressions.

Abnormal glucolipid 

metabolism.

[104,105]

(Continued)
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Table 1 (Continued). 

Compounds Original 

Plants

Chemical Structure Models Mechanism Disease Refs.

Formononetin Astragalus 

membranaceus

Female, Balb/c 

nude mice 

inoculated with 

cervical cancer 

HeLa cells (aged 

6-8 weeks and 

weighing 15-20 

g)

Inhibit the growth of 

cervical cancer and 

reducing the mRNA and 

protein expression levels 

of HIF-1α and VEGF in 

mouse cervical cancer.

Cervical cancer. [123]

Fraxinellone Dictamnus 

dasycarpus 

Turcz

A549, HeLa, 

Hep3B, HUVEC, 

and HLF-a cells

Inhibiting PD-L1 

expression by 

downregulating the 

STAT3 and HIF-1α 

signaling pathways, 

subsequently inhibiting 

proliferation and 

angiogenesis in cancer 

cells.

Cancers. [124]

Genistein Sophora 

tonkinensis 

Gagnep.

HCC-LM3, 

SMMC-7721, 

Hep3B, Bel- 

7402, and Huh- 

7 cells.

Abrogating aerobic 

glycolysis and triggering 

apoptosis of HCC cell 

lines by down-regulating 

HIF-1α and thereby 

inactivating GLUT1 and 

HK2 activity.

Hepatocellular 

carcinoma.

[125]

BALBc nu/nu 

mice inoculated 

with HCC cells.

Reducing tumor size and 

increasing the apoptotic 

area by down-regulating 

HIF-1α/GLUT1/HK2 

activity.

Hepatocellular 

carcinoma.

[125]

A549 cells. Inhibiting proliferation 

and promoting apoptosis 

by attenuating the 

expression of HIF-1α 

through the down- 

regulation of PI3K/Akt 

signaling pathways.

Lung cancer. [126]

Isoquercitrin Gossypium 

herbaceum L.; 

Apocynum 

cannabinum L.

Three-month- 

old female 

albino rats after 

bilateral 

ovariectomy 

(weighing 

150–170 g)

Suppressing NF-κB 

activation, reducing HIF- 

1α mRNA levels, 

improving bone 

histological 

characteristics and 

lumber strength.

Osteoporosis caused by 

menopause.

[103]

(Continued)
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Table 1 (Continued). 

Compounds Original 

Plants

Chemical Structure Models Mechanism Disease Refs.

Kaempferol Kaempferia 

galanga L.

HUVECs Suppressing the activation 

of HIF-1α, VEGFR2, and 

other markers of ERK/ 

p38 MAPK and PI3K/Akt/ 

mTOR signaling pathways 

in endothelial cells, 

inhibiting cell migration 

and tube formation.

Diseases related to 

angiogenesis.

[127]

Luteolin Dendranthema 

morifolium 

(Ramat.) 

Tzvelev; 

Lonicera 

japonica Thunb.; 

Lonicera confuse 

(Sweet) DC.; 

Lonicera 

hypoglauca Miq.; 

Lonicera 

fulvotomentosa 

Hsu et S. C. 

Cheng;

H9c2 cells Inhibiting HIF-1α 

expression and 

subsequent modulation of 

PPARα-mediated target 

genes, including CPT-1A, 

PDK-4, and GLUT-4.

Abnormal glucolipid 

metabolism of 

hypertrophic myocardial 

cells.

[128]

Oroxylin A Scutellaria 

baicalensis 

Georgi

Human 

hepatocyte LO2 

cells

Suppressing the nuclear 

translocation of HIF-1α, 

reducing the 

accumulation of lipid 

droplets associated with 

regulating the lipid 

metabolism genes.

Hepatic steatosis. [129]

Procyanidin B2 Red wine, 

green and black 

tea, cocoa/ 

chocolate, and 

fruit juices.

Six-week-old 

male C57 mice 

injected with 

CCl4 (weighing 

24±2 g), human 

immortal LX2 

cell

Suppressing the 

expressions of VEGF-A, 

HIF-1α, α-SMA, Col-1 and 

TGF-β1 of HSCs in vivo 

and in vitro, inhibiting the 

proliferation and inducing 

apoptosis of HSC.

Liver fibrosis. [130–132]

Quercetin Leaves, fruits, 

and vegetables 

including green 

tea, apples, 

berries, onions, 

red wine, etc.

LNCaP, CX-1, 

SkBr3, NCI- 

H157, HOS and 

MG63 cells.

Attenuating the synthesis 

of HIF-1α and its 

downstream target, 

VEGF.

Prostate cancer, colon 

cancer, breast cancer, 

lung cancer, 

osteosarcoma.

[133–135]

(Continued)

Li et al                                                                                                                                                                 Dovepress

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                   

Drug Design, Development and Therapy 2020:14 4928

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Table 1 (Continued). 

Compounds Original 

Plants

Chemical Structure Models Mechanism Disease Refs.

Resveratrol Grapes, 

berries, 

peanuts, and 

other plant 

sources.

The human 

pancreatic 

cancer cell lines 

BxPC-3 and 

Panc-1.

Decreasing production of 

ROS, ROS-induced 

invasion and migration, 

HIF-1α protein synthesis 

and expression of 

metastatic-related factors 

including uPA and MMP-2 

through the activation of 

a hedgehog signaling 

pathway.

Pancreatic cancer. [136]

Rutin Ruta graveolens 

L.; 

Scphora japonica 

L.; Hypericum 

aseyron L.; 

Berchemia 

polyphylla Wall, 

var leioclada 

Hand – Mazz; 

Fagopyrum 

esculentum 

Moench; 

Mallotus 

japonicus Muell - 

Arg

GBMs cells lines 

U251, U87, 

HS683 and 

A172 and 

human normal 

cell HA

Inhibiting HIF-1α/MMP-2 

pathway, inducing 

apoptosis and reducing 

the MDA level after 

radiotherapy

Glioblastomas [137]

Hyperin Eucommia 

ulmoides Oliv.

GBMs cells lines 

U251, U87, 

HS683 and 

A172 and 

human normal 

cell HA

Inhibiting HIF-1α/MMP-2 

pathway, inducing 

apoptosis and reducing 

the MDA level after 

radiotherapy

Glioblastomas [137]

Vitexin Vitex negundo L. 

var. cannabifolia 

(Sieb. et Zucc.) 

Hand-Mazz.

Balb/c nude 

mice inoculated 

with SU3 cells 

(weighing 18-20 

g)

Inhibiting HIF-1α protein 

expression and 

subsequent decrements 

of its downstream 

protein expressions such 

as VEGF, GLUT-1, GLUT- 

3, reducing antioxidant 

capacity.

Glioma. [138]

(Continued)
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Table 1 (Continued). 

Compounds Original 

Plants

Chemical Structure Models Mechanism Disease Refs.

Wogonin Scutellaria 

baicalensis 

Georgi

HCT116 cells; Decreasing the 

expression of glycolysis- 

related proteins (HKII, 

PDHK1, LDHA), glucose 

uptake, and lactate 

generation, down- 

regulating HIF-1α 

expression and glycolysis 

through inhibiting PI3K/ 

Akt signaling pathway.

Cancers [139]

Male BALB/c 

nude mice (35– 

40 days old and 

weighing 18–22 

g) injected with 

HCT116 cells.

Inhibiting the growth of 

transplantable tumors 

and the expression of 

HIF-1α, glycolysis-related 

proteins and PI3K/Akt.

Cancers [139]

Quinones

Emodin Rheum 

palmatum L．

Caco-2 cells; 

AsPC-1, BxPC-3, 

HPAF-2, 

MiaPaCa2, and 

Panc-1 cells, male 

athymic Balb/c 

mice injected 

with MiaPaC2 

cells (4–5 weeks 

old and weighed 

17–20g)

Inhibiting the HIF-1α and 

NF-κB signaling pathways, 

increasing zonula 

occludens-1 (ZO-1) 

expression in vivo and in 

vitro. 

Reducing HIF-1α through 

its biosynthesis, inhibiting 

the growth of cancer cells 

by inhibiting their 

proliferation.

Intestinal epithelial 

barrier dysfunction. 

Cancers.

[104,105]

Obtusifolin Cassia tora L. ARPE-19 cells Inhibiting the 

transcription and 

translation of HIF-1α, 

VEGF, VEGFR2 and 

eNOS, reducing cell 

viability under hypoxic 

conditions and arrest 

cells in G1 phase.

Choroidal 

neovascularization.

[107]

Rhein Rheum 

palmatum L．

AsPC-1, BxPC- 

3, HPAF-2, 

MiaPaCa2, and 

Panc-1 cells, 

male athymic 

Balb/c mice 

injected with 

MiaPaC2 cells 

(4–5 weeks old 

and weighed 

17–20g)

Reducing HIF-1α through 

its biosynthesis, inhibiting 

the growth of cancer cells 

by inhibiting their 

proliferation.

Cancers. [106]

(Continued)
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Table 1 (Continued). 

Compounds Original 

Plants

Chemical Structure Models Mechanism Disease Refs.

Shikonin Arnebia 

euchroma 

(Royle) Johnst.; 

Lithospermum 

erythrorhizon 

Sieb. et Zucc.; 

Arnebia guttata 

Bunge

HMVEC-dLy 

cells

Inhibiting cord formation 

ability of lymphatic 

endothelial cells, 

decreasing nuclear factor- 

kappaB (NF-κB) 

activation by 

phosphorylation and 

nuclear translocation of 

NF-κB p65, and also 

reducing both mRNA and 

protein levels of hypoxia- 

inducible HIF-1α.

Cancers, lymphatic 

metastasis.

[140]

Tanshinone IIA Salvia 

miltiorrhiza 

Bunge

HepG2 cells Inducing apoptosis, and 

increasing the expression 

of p53, inhibiting cell 

proliferation and 

expression of HIF-1α and 

VEGF.

Hepatocellularcarcinoma [119]

Terpenes

Celastrol Tripterygium 

wilfordii Hook f.

HepG2 cells Inducing apoptosis, 

inhibiting the expression 

of PPARβ and HIF-1α, and 

elevating the expression 

of p53.

Hepatocellular 

carcinoma.

[110]

Crocin Crocus sativus L. Human gastric 

cancer cell lines 

AGS and HGC- 

27 and the 

normal gastric 

epithelial cell 

line GES-1.

Reducing expression of 

KLF5 and HIF 1α, 

increasing microRNA-320 

expression, inhibiting the 

migration, invasion, and 

EMT of gastric cancer 

cells.

Gastric cancer. [141]

Oridonin Rabdosia 

rubescens 

(Hemsl.) Hara

MDA-MB-231, 

MCF-10A and 

HUVECs cells, 

female BALB/c 

mice inoculated 

with 4T1 cells 

(5–6 weeks old, 

weighed 14–16 

g)

Decreasing expression of 

E-cadherin, while 

increasing the expression 

of N-cadherin, Vimentin, 

Snail, HIF-1α, VEGF-A 

and VEGFR2.

Breast cancer. [111]

(Continued)
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Table 1 (Continued). 

Compounds Original 

Plants

Chemical Structure Models Mechanism Disease Refs.

Polysaccharides

Fucoidan Sargassum MDA-MB-231 

cells

Reducing the nuclear 

translocation and 

activity of HIF-1α, 

downregulation the 

expression levels of 

mesenchymal 

markers (N-cadherin 

and vimentin), but 

upregulating the 

expression levels of 

the epithelial markers 

(zonula occludens-1 and 

E-cadherin).

Mammary cancer. [112]

Glycosides

α-solanine Potato, tomato, 

and eggplant.

Pancreatic 

cancer cell lines.

Retarding the growth of 

tumor cells by 

suppressing the 

expression of VEGF, 

E-cadherin and down- 

regulating ERK1/2/HIF- 

1α and STAT3 signaling 

pathways.

Pancreatic cancer. [142]

Bufalin Venenum 

Bufonis

The human 

HCC cell line 

SMMC7721

Suppressing HIF-1α 

expression through the 

inhibition of the PI3K/AKT/ 

mTOR pathway, 

upregulation of E-cadherin, 

and downregulation of 

N-cadherin, vimentin, Snail.

Hepatocellular 

carcinoma.

[143]

Six-week-old 

BALBc nu/nu 

mice inoculated 

with 

SMMC7721- 

GFP cells.

Significantly reducing 

liver/lung metastases, 

inhibiting EMT by up- 

regulating E-cadherin and 

down-regulating 

N-cadherin, vimentin, 

Snail.

Hepatocellular 

carcinoma.

[143]

(Continued)
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Table 1 (Continued). 

Compounds Original 

Plants

Chemical Structure Models Mechanism Disease Refs.

Clematichinenoside 

AR

Clematis 

manshurica 

Rupr.; 

Clematis 

chinensis 

Osbeck; 

Clematis 

hexapetala Pall.

NIH-3T3 cells. Decreasing the 

expression of HIF-1α;

Arthritis. [144]

Female Wistar 

rats with 

collagen-induced 

arthritis 

(weighed 

130–140 g)

Inhibiting hypoxic TGF-β1 

induction and suppressing 

succinate-associated 

NLRP3 inflammasome 

activation by inhibiting 

SDH activity.

Arthritis. [144]

Digoxin Digitalis C57BL/6J male 

mice placed on a 

high fat diet.

Digoxin directly bound to 

PKM2 and inhibited 

PKM2 targeting HIF-1α 

transactivation without 

affecting PKM2 enzyme 

activation, attenuated 

HIF-1α sustained NLRP3 

inflammasome activation 

in macrophages.

Non-alcoholic 

Stsatohepatitis

[145]

DT-13 (13 of dwarf 

lilyturf tuber)

Ophiopogon 

japonicus (Linn. 

f.) Ker-Gawl.;

HUVECs Suppressing tube 

formation and migration 

under both normoxia and 

hypoxia by down- 

regulating the expression 

of HIF-1α, p-ERK 1/2, 

p-Akt, VEGF and 

p-VEGFR2.

Cancers [146]

Ginsenoside Rb1 Panax ginseng 

C. A. Mey; 

Panax 

quiquefolium L; 

Panax 

notoginseng 

(Burk.) F.H. 

Chen

ICR male mice 

(6–8 weeks), SD 

(200–250 g) rats 

and 1- or 2-days 

old neonatal 

rats.

Preventing hypoxic 

succinate accumulation in 

cardiomyocytes and 

improved PDH activity by 

blocking succinate- 

associated HIF-1α 

activation and GPR91 

signaling.

Ischemia/Reperfusion (I/ 

R) injury.

[147]

(Continued)
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Table 1 (Continued). 

Compounds Original 

Plants

Chemical Structure Models Mechanism Disease Refs.

Ginsenoside Rb3 Panax ginseng 

C. A. Mey; 

Panax 

quiquefolium L; 

Panax 

notoginseng 

(Burk.) F.H. 

Chen

SKOV3 and 

3AO cells.

Blocking EMT by 

promoting the ubiquitin 

proteasome-mediated 

degradation of HIF-1α, 

inhibiting the expression 

of NF-κB.

Ovarian cancer. [148]

Six-week old 

BALB/c female 

nude mouse 

inoculated with 

ovarian cancer.

Inhibiting tumor growth 

and also blocking EMT 

by promoting the 

ubiquitin proteasome- 

mediated degradation of 

HIF-1α.

Ovarian cancer. [149]

Isoliquiritin apioside Glycyrrhiza 

uralensis Fisch.

HT1080 cells Inhibiting MMP-9, 

placental growth 

factor and VEGF by 

weakening the HIF-1α 

pathway, suppressing 

cell metastasis by 

inhibiting the activation 

of NF- κB.

Cancers. [113]

Saikosaponin-d Bupleurum 

chinense DC.; 

Bupleurum 

scorzonerifolium 

Willd.

SMMC-7721 

cells

Inhibiting the proliferation 

and induces the 

apoptosis, inhibiting the 

expression of COX-2 via 

p-STAT3/HIF-1α pathway.

Hepatocellular 

carcinoma

[150]

Triterpenoid 

Saponins

Camellia sinensis OVCAR-3 and 

A2780/CP70 

cells.

Decreasing VEGF protein 

levels in a HIF-1α 

-dependent pathway.

Ovarian cancer [151,152]

Polypeptides

Melittin Bee venom SMMC-7721, 

Huh7, and Hep 

G2 cells, male 

Balb/c nude 

mice injected 

with SMMC- 

7721 cells (6–8 

weeks old 

and weighed 20 

±2 g)

Decreasing the protein 

and mRNA levels of HIF- 

1α, p-Akt, VEGF and 

MMP-2/9, restraining 

EMT and vasculogenic 

mimicry formation in liver 

cance.

Liver cancer. [114]

(Continued)

Li et al                                                                                                                                                                 Dovepress

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                   

Drug Design, Development and Therapy 2020:14 4934

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Table 1 (Continued). 

Compounds Original 

Plants

Chemical Structure Models Mechanism Disease Refs.

Polyphenols

Caffeic Acid Solidago 

decurrens Lour.

Cervical tumor 

cell lines C-4I

Alleviating glutamine 

anaplerosis by 

downregulation of 

Glutaminase (GLS) and 

Malic Enzyme 1 (ME1), 

altering TCA cycle 

supplementation with 

pyruvate via PDH, 

increasing ROS formation 

and enhancing cell death, 

inhibiting expression of 

HIF-1α.

Cervical cancer. [153]

Honokiol Magnolia 

officinalis Rehd. 

et Wils.

H460, A549, 

H358, H2122, 

BEAS-2B, 

NIH3T3, 

CCD19-Lu cells

Inducing G1 arrest and 

apoptosis, up-regulating 

Sirt3 and weakening the 

expression of HIF-1α.

Non-small cell lung 

cancer

[154]

Resveratrol Polygonum 

cuspidatum 

Sieb.et Zucc.; 

grapes

BxPC-3, HepG2 

and SKOV-3 

cells

Inducing apoptosis and 

decreasing the expression 

of the β2-adrenergic 

receptor (ADRB-2) and 

HIF-1α.

Pancreatic cancer [155]

Alkaloids

Berberine Coptis chinensis 

Franch.; 

Phellodendron 

chinense 

Schneid.

SC-M1 cells, 

HUVEC

Inhibiting the stimulatory 

potential of hypoxic SC- 

M1 cells on HUVEC 

migration by repressing 

the expression of HIF-1α 

and VEGF in SC-M1 cells 

and promoting HIF-1α 

degradation via a 

proteasomal proteolytic 

pathway and lysine 

acetylation.

Gastric adenocarcinoma [156]

HCT116 and 

KM12C

Impeding hyperactive 

glucose uptake and 

glycolysis by suppressing 

mTOR-mediated HIF-1α 

synthesis.

Cancers. [157]

(Continued)
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of mouse peritonitis. It is not only controlled by HIF-1α but 
also depends on the integrity of the NF-κB signaling 
pathway.106 In order to explore the molecular mechanism 
of emodin in the treatment of intestinal barrier dysfunction, 
Caco-2 cells (a human colonic cell line) were co-incubated 
with lipopolysaccharide (LPS) and treated with hypoxia/ 
reoxygenation to induce barrier dysfunction. In this experi-
ment, the scholars were surprised to find that the paracel-
lular permeability of Caco-2 cells was reduced after emodin 
treatment, and the levels of NF-κB and HIF-1α protein were 
significantly reduced, while the damage to cells caused by 
LPS and hypoxia/reoxygenation has also been alleviated. 
The above results indicate that emodin may protect the 
intestinal epithelial barrier dysfunction caused by inflam-
mation and hypoxia by inhibiting HIF-1α and NF-κB sig-
naling pathways.96,107 Subsequent studies on pancreatic 
cancer cells have shown that in addition to emodin, rhein, 

another anthraquinone compound in Dahuang, also regu-
lates HIF-1α. In previous studies, we know that Akt and 
ERK1/2 signaling pathways can induce HIF-1α expression 
by increasing HIF-1α biosynthesis. In the study on pancrea-
tic cancer, the researchers further clarified that rhein and 
emodin can reduce the content of HIF-1α regardless of 
whether it is under normoxia or hypoxia. What is more, 
this process is achieved by inhibiting Akt and ERK1/2 
signaling pathways to reduce the biosynthesis of HIF-1α, 
rather than by affecting the gene transcription or protein 
stability of HIF-1α. Besides this, emodin and rhein also can 
inhibit the growth of cancer cells by inhibiting their prolif-
eration rather than inducing cell death.108 In addition to 
Dahuang, there are many natural medicines that contain 
quinones, and they also have inhibitory effects on HIF-1α. 
For example, Cassiae Semen (named “Juemingzi” in 
Chinese) is dry, mature seed of the leguminous plant 

Table 1 (Continued). 

Compounds Original 

Plants

Chemical Structure Models Mechanism Disease Refs.

Capsaicin Capsicum 

annuum L.

LNCaP cells Decreasing nuclear AR, 

prostate specific antigen 

and Bcl-XL levels, 

reducing HIF-1 α 

stabilization.

Prostate cancer [158]

Ligustrazine Ligusticum 

chuanxiong 

Hort.

Human HSC- 

LX2 cells, rat 

HSC-T6 cells.

Inhibiting angiogenic 

cytokine production, 

migration, adhesion and 

contraction, activating 

PPARγ, activation of 

PPARγ by ligustrazine 

leading to transrepression 

of HIF-1α via a SMRT- 

dependent mechanism.

Hepatic fibrosis and 

cirrhosis.

[159]

Sulforaphane Broccoli, 

cauliflower, 

brussel sprouts, 

cabbage, kale, 

kohlrabi, and so 

on.

LNCaP cells; Decreasing nuclear AR, 

prostate specific antigen 

and Bcl-XL levels, 

reducing HIF-1 α 

stabilization.

Prostate cancer [160]

RT112 and RT4 

cells

Inhibiting cell 

proliferation, decreasing 

glycolytic metabolism by 

downregulating hypoxia- 

induced HIF-1α and 

blocking HIF-1α 

translocalization to the 

nucleus.

Bladder cancer [160]
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Cassia obtusifoiia L. or Cassia tora L. The quinones 
extracted from it, obtusifolin can treat choroidal neovascu-
larization by affecting the content of HIF-1α. In previous 
studies, it has been clarified that hypoxia is an important 
cause of choroidal neovascularization, and VEGF plays an 
extremely important role in this disease. In an in vitro 
hypoxia model of ARPE-19 cells induced by cobalt chlor-
ide (CoCl2), the mRNA and protein levels of HIF-1α, 
VEGF, and VEGFR2 in the cells decreased significantly 
after obtusifolin treatment, while their transcription and 
translation processes were inhibited. At the same time, 
obtusifolin also reduces cell viability under hypoxic condi-
tions and arrests G1 phase cells to treat choroidal neovas-
cularization from many aspects.109

Terpenoids and polysaccharides can be also beneficial for 
regulation of the content of HIF-1α. Celastrol, also known as 
tripterine, is a quinine methide triterpenoid compound 
extracted from the Chinese herb Tripterygium wilfordii 
HOOK F. It can decrease PPARβ, HIF-1α and elevate p53 
in HepG2 cells. At the same time, celastrol inhibits hepato-
cellular carcinoma survival by inducing cells apoptosis.110 

Another diterpene compound, oridonin, derived from the 
TCM of Rabdosiae rubescentis Herba, has anti-metastatic 
effect in breast cancer treatment by inhibiting epithelial– 
mesenchymal transition (EMT) and the HIF-1α/VEGF sig-
naling pathway. After treatment with oridonin, the expression 
of E-cadherin decreased, while the expression of N-cadherin, 
Vimentin, Snail, HIF-1 α, VEGF-A and VEGFR2 increased.-
111 Polysaccharides are a class of macromolecular substances 
composed of a large number of monosaccharides, some of 
which have significant inhibitory effects on HIF-1α. For 
example, fucoidan extracted from Brown seaweed is a kind 
of sulfated polysaccharide, which has a significant therapeu-
tic effect on mammary cancer. It not only reduces the protein 
level of HIF-1α but also inhibited the nuclear translocation of 
HIF-1α. In addition, it inhibits epithelial–mesenchymal 
transformation by down-regulating N-cadherin and vimentin 
and up-regulating ZO-1 and E-cadherin.112

Apart from the above compounds, a variety of compo-
nents that inhibit HIF-1α, including glycosides, peptides, 
polyphenol and so on. For instance, isoliquiritin apioside, 
a component isolated from Glycyrrhizae radix et Rhizoma, 
has been found to exert anti-cancer effects. Isoliquiritin 
apioside can inhibit matrix metalloproteinase-9 (MMP-9), 
placental growth factor and VEGF by weakening the HIF- 
1α pathway, thus playing an anti-angiogenic effect. In 
addition, it has no significant inhibitory effect on cell 
proliferation but can suppress cell metastasis by inhibiting 

the activation of NF- κB.113 Melittin is a kind of polypep-
tide, which is the main component of bee venom. It can 
decrease the protein and mRNA levels of HIF-1α, p-Akt, 
VEGF and MMP-2/9. Besides that, melittin also can 
restrain EMT and vasculogenic mimicry formation in 
liver cancer.114 Other bioactive components found at pre-
sent are shown in Table 1.

Compound Traditional Chinese Medicine Preparation
Compound traditional Chinese medicine (TCM) prepara-
tions have been used for thousands of years in Asian 
countries such as China, Korea, and Japan. With the devel-
opment of modern medicine, researchers have found that 
many compound TCM preparations also have an inhibi-
tory effect on the content of HIF-1α. Buyang Huanwu 
Decoction (BYHW) is a classic prescription for the treat-
ment of stroke. It was first recorded in the literature of 
Correction on Errors in Medical Works in the Qing 
Dynasty in 1830. The formula mainly contains seven 
Chinese herbs, namely: (1) Astragali Radix; (2) 
Angelicae sinensis Radix; (3) Paeoniaeradix Rubra; (4) 
Pheretima; (5) Rhizoma Chuanxiong; (6) Carthami Flos; 
(7) Persicae Semen, while the four components with the 
highest content in BYHWD are calycosin-7-O-β-D-gluco-
side, ononin, calycosin and formononetin.115,116 In modern 
clinical practice, BYHW is widely used in the treatment 
and prevention of ischemic cardiovascular vascular dis-
eases. Cerebral ischemia and reperfusion may lead to 
serious consequences such as damage to the blood-brain 
barrier and brain edema, thereby causing additional loss of 
brain tissue. Therefore, reducing the permeability of the 
blood-brain barrier and the severity of cerebral edema is 
important for the development of cerebral ischemia treat-
ment. In hypoxia or cerebral ischemia, the content of HIF- 
1α will increase rapidly, promoting the expression of its 
downstream target genes such as erythropoietin and 
VEGF, which will increase the vascular permeability and 
the area of cerebral infarction. In previous studies, it has 
been known that BYHWD can down-regulate apoptosis- 
related genes, inhibit inflammation and angiogenesis, and 
can also up-regulate neurodevelopment-related genes to 
protect mice from ischemic stroke. But at that time, the 
specific mechanism was unclear.115 On this basis, after 
further research, scholars found that after BYHWD was 
used to treat mice, the HIF-1α/VEGF pathway was inhib-
ited and protein expression decreased. At the same time, 
the transcription and translation of β-EnaC in the body 
increase, the blood–brain barrier is effectively protected, 
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the area of brain edema is reduced, and the symptoms of 
cerebral infarction are alleviated. In summary, we can 
think that BYHWD can maintain the integrity of the 
blood-brain barrier and treat ischemic stroke by inhibiting 
the HIF-1α/VEGF pathway.116

In addition, there are other compound TCM prepara-
tions, such as Yi Ai Fang, Shaofu Zhuyu Decoction, and 
Shengui Sansheng San, which can exert corresponding 
therapeutic effects by inhibiting HIF-1α. See Table 2 for 
details.

Promotion of HIF-1α
Bioactive Components
Currently, many researches have focused on the inhibitory 
effect of medicine on HIF-1α, while there have been far 
fewer studies on drugs promoting HIF-1α. Rhodiolae 
Crenulatae Radix et Rhizoma (Rhodiola), the root and rhi-
zome of Rhodiola crenulata (Hook. f. and Thoms.) H. Ohba 
has been used as a medicine for thousands of years. 
Rhodiola is mostly used to enhance the body resistance 
against hypoxia in mountain sickness, but its mechanism 
has only been gradually revealed in the past decade. First, it 
was found that the water extract deriving from Rhodiola can 
induce the expression of erythropoietin (EPO) in liver and 
kidney cells, increasing the level of mRNA and protein. As 
we all know, EPO is a key factor in regulating body balance 
under hypoxic environment, and it is also an erythrocyte- 
specific hematopoietic hormone that can increase red blood 
cell production. Application of water extract deriving from 
Rhodiola promotes the expression of EPO, so that the body 
can better adapt to the hypoxic environment.89 

Subsequently, the research team discovered that salidroside, 
a glycoside found in Rhodiola, is the main active substance 
of Rhodiola against hypoxia. Meanwhile, after using sali-
droside to co-incubate with human embryonic kidney fibro-
blasts (HEK293T) and human hepatocellular carcinoma 
HepG2 cells, the HIF-1α mRNA content did not change 
significantly, but the protein degradation became less, 
which eventually led to protein accumulation. The high 
expression of HIF-1α stimulated the expression of EPO 
mRNA from its transcription regulatory element HRE, 
located on EPO gene, which in turn increases the level of 
EPO mRNA and protein, so that cells can better adapt to the 
hypoxic environment.117 Interestingly, in the study of osteo-
blasts, it was discovered that salidroside can accelerate the 
healing of fractures from both cell-autonomous and non- 
autonomous aspects by regulating the MAPK/ERK and 
PI3K/Akt signaling pathways. First, salidroside can 

improve cell viability by changing the cycle of osteoblasts, 
and induce the expression of RunX2 and osteoblasts to 
promote cell differentiation and mineralization. In in vitro 
experiments, salidroside can increase the transcriptional 
activity of HIF-1α, promote nuclear translocation, thereby 
increase the expression of VEGF, induce angiogenesis, and 
accelerate fracture healing.118 Thus, it can be seen that 
although salidroside can increase the content of HIF-1α in 
different models, its effects are not the same. The rest are 
shown in Table 3.

The same active ingredient can not only increase the 
content of HIF-1α in different ways but also produce two 
distinct effects on the content of HIF-1α in different mod-
els. As mentioned in Table 3, tanshinone IIA can inhibit 
the growth and proliferation of HepG2 cells under hypoxic 
conditions and induce apoptosis. At the same time, the 
expression of HIF-1α and VEGF is reduced, while p53 is 
up-regulated, thereby producing a therapeutic effect on 
hepatocellular carcinoma.119 However, when studying 
myocardial infarction model rats, it was found that tanshi-
none IIA can promote angiogenesis by increasing the 
mRNA expression of HIF-1α and VEGF, improve heart 
function, and reduce the infarct size.120 Other bioactive 
ingredients found so far are shown in Table 3.

Compound Traditional Chinese Medicine Preparation
There are also some compound traditional Chinese medicine 
preparations that can treat related diseases by increasing the 
level of HIF-1α. Houshihesan (HSHS) is a classic prescrip-
tion of traditional Chinese medicine for the treatment of 
stroke, which has been used safely and effectively in clinical 
treatment for nearly 2000 years. HSHS consists of the fol-
lowing 13 traditional Chinese herbs: Chrysanthemi Flos, 
Saposhnikoviae Radix, Cinnamomi Ramulus, Chuanxiong 
Rhizoma, Asari Radix et Rhizoma, Platycodonis Radix, 
Atractylodis macrocephalae Rhizoma, Poria, Zingiberis 
Rhizoma, Angelicae sinensis Radix, Ginseng Radix et 
Rhizoma, Scutellariae Radix and Ostreae Concha. In the 
experiment, a permanent middle cerebral artery occlusion 
model was established in rats. After intragastric administra-
tion of HSHS with different doses, the symptoms of angioe-
dema in rats were obviously alleviated, and the damage of 
blood vessels and neurons in the ischemic area was reduced. 
At the same time, the results of real-time fluorescent quanti-
tative PCR and Western blot showed that HSHS can signifi-
cantly promote the expression of HIF-1α, and increase the 
expression of VEGF and VEGFR2 in rats, while the expres-
sion of stromal cell-derived factor-1 (SDF-1) decline. 
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Table 2 Traditional Chinese Medicine Prescription That Can Inhibit HIF-1α

TCM 

Formulas

Composition Experimental Models Mechanism Diseases Refs.

Buyang 

Huanwu 

Decoction

Astragali Radix, Angelicae sinensis Radix, 

Paeoniaeradix Rubra, Pheretima, 

Rhizoma Chuanxiong, Carthami Flos, 

Persicae Semen

Male SD rats (weighted 

190–210g) after occlusion of 

the right middle cerebral 

artery

Inhibiting the activation of the HIF-1α/ 

VEGF pathway and increasing the 

transcription and translation of β-ENaC.

Ischemia 

Stroke.

[115,116]

Jianpi 

Qingchang 

Decoction

Astragali Radix, Codonopsis Radix, 

Portulacae Herba, Sanguisorbae Radix, 

Notoginseng Radix et Rhizoma, Bletillae 

Rhizoma, Aucklandiae Radix, Coptidis 

Rhizoma, Glycyrrhizae Radix et Rhizoma

Male C57BL/6 mice (8 

weeks old) stimulated by 

administration of 3.5% 

dextran sulfate sodium.

Improving the mucosal inflammatory 

response and intestinal epithelial barrier 

function by inhibiting the NF-κB/HIF-1α 

signalling pathway.

Ulcerative 

colitis

[161]

Longshengzhi 

Capsules

Astragali Radix, Carthami Flos, Angelicae 

Sinensis Radix, Chuanxiong Rhizoma, 

Persicae Semen, Paeoniaeradix Rubra, 

Aucklandiae Radix, Acori Tatarinowii 

Rhizoma, Talxilli Herba, Siberian Ginseng.

Adult male SD rats (weight 

250–280g)

Decreasing brain edema, ROS and 

inflammatory factor levels, increasing 

activities of SOD, neurosynaptic 

remodeling, downregulating MMP-2/9, 

VEGF and NF-κB, upregulating Map-2 and 

GAP-43 via p38 MAPK and HIF-1α 

signaling pathways

Ischemic 

stroke 

outcomes and 

reperfusion 

injury

[162]

Qingshen 

Granules

Hedyotidis diffusae Herba, Coptidis 

Rhizoma, Artemisiae scopariae Herba, 

Rhei Radix et Rhizoma, Coicis Semen, 

Atractylodis macrocephalae Rhizoma, 

Lablab Album Semen, Poria, Salviae 

Miltiorrhizae Radix et Rhizoma, Leonuri 

Herba, Alismatis Rhizoma, Polyporus, 

Plantaginis Herba, Amomi Rotundus 

Fructus

Patients diagnosed with 

chronic kidney disease and 

damp-heat syndrome of 

TCM (aged between 18 and 

70 years old)

Reducing the levels of α-SMA and 

E-cadherin in peripheral blood and 

regulating the levels of HIF-1α, Wnt1, and 

β-catenin in serum

Chronic renal 

failure

[95]

Shaofu Zhuyu 

Decoction

Foeniculi Fructus, Zingiberis Rhizoma, 

Corydalis Rhizoma, Myrrha, Rhizoma 

Chuanxiong, Angelicae Sinensis Radix, 

RadixPaeoniae Rubra, Cortex 

Cinnamomi, Typhae Pollen, and 

Trogopteri Feces

Adult female SD rats 

(weighed 180–220g) with 

endometriosis induced by 

autologous transplantation

Decreasing cell proliferation, microvessel 

density and the expression of HIF-1α, 

increasing cell apoptosis

Endometriotic 

lesions

[94]

Shengui 

Sansheng San

Ginseng Radix et Rhizoma, Angelicae 

sinensis Radix, Cortex Cinnamomi

BMECs cells, SD rats after 

occlusion of the right middle 

cerebral artery

Improving neurological functional scores, 

survival rate and cerebral infarct volume, 

enhancing vWF+ vascular density and 

perimeter, SDF-1α/CXCR4 axis, VEGF 

expression, as well as activating AKT/ 

mTOR/HIF-1α and ERK1/2 and inhibiting 

Notch1 pathways in penumbra; 

increasing BMEC migration, capillary 

formation and VEGF expression via up- 

regulations of AKT/mTOR and ERK1/2 

pathways in vitro

Ischemic 

stroke

[163]

(Continued)
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Among them, SDF-1 can specifically bind to the CXC che-
mokine receptor 4 (CXCR4), guide the migration of endothe-
lial cells, and extend the ischemic blood vessels to areas with 
sufficient blood supply. In addition, the HSHS drug serum 
was used in vitro test, and the results showed that HSHS 
significantly promoted the proliferation and migration of 
HUVECs under hypoxic conditions. The expression trend 
of related factors was consistent with the in vivo results. 
HIF-1α, VEGF, SDF-1 and CXCR4 and other related factors 
have increased expression.121 Other compound traditional 
Chinese medicine preparations are shown in Table 4.

Conclusion and Perspectives
Taken together, all the collected evidences suggested that 
natural medicines and TCM formulas would be beneficial 
for treating various diseases (in particular for the tumors) 
through regulating HIF-1α. However, most of the studies 
only focus on the inhibitory effects of natural medicines 
and TCM formulas on HIF-1α, and just few studies go 
deep into the way through which they affect a certain step 
in the synthesis of HIF-1α. Besides that, there are few 
studies on the promotion effect of HIF-1α, and most of 
the experimental results are only from animal experiments 

Table 2 (Continued). 

TCM 

Formulas

Composition Experimental Models Mechanism Diseases Refs.

Tongxinluo Ginseng Radix et Rhizoma, Hirudo, 

Scorpio, Paeoniaeradix Rubra, 

Cicadaeperiostracum, Eupolyphaga 

Steleophaga, Scolopendra, Santali Albi 

Lignum, Dalbergiae Odoriferae Lignum, 

Olibanum, Ziziphispinosae Semen, 

Borneolum Syntheticum.

Human cardiac 

microvascular endothelial 

cel

Decreasing COX 2, iNOS, HIF-2α, HIF- 

1α, VEGF, PGE 2 and NT contents, 

attenuating the inflammatory and 

oxidative injury

Endothelial 

dysfunction

[164]

Weipixiao Astragali Radix, Pseudostellariae Radix, 

Atractylodis Macrocephalae Rhizoma, 

Curcumae Rhizoma, Salviae miltiorrhizae 

Radix et Rhizoma, Hedyotis Diffusa Willd

Male SD rats with MNNG- 

induced gastric 

precancerous lesions

Suppressing HIF-1α mRNA and protein 

expression, inhibiting VEGF protein 

expression and the ERK1/Cylin D1 

aberrant activation

Gastric 

precancerous 

lesions.

[165]

Weiqi 

Decoction

Angelicae Sinensis Radix, Astragali Radix, 

Codonopsis Radix, Curcumae Longae 

Rhizoma, Aurantii Fructus, Akebiae 

Caulis, Taraxaci Herba

Male Wistar rats with 

160–180 g

Decreasing the protein and gene 

expression of COX-2, HIF-1α, VEGFR1, 

and VEGFR2, increasing cell apoptosis

Chronic 

atrophic 

gastritis.

[166]

Xin-Sheng- 

Hua Granule

Angelicae sinensis Radix, Leonuri Herba, 

Chuanxiong Rhizoma, Persicae Semen, 

Zingiberis Rhizoma Praeparatun, 

Glycyrrhizae Radix et Rhizoma 

Praeparata Cum Melle, Carthami Flos

The blood deficiency female 

rats (weighed 220–250 g) 

induced by bleeding from 

orbit

Regulating coenzyme A biosynthesis, 

sphingolipids metabolism and HIF-1α 

pathways, which was reflected by the 

increased levels of EPOR, F2, COASY, as 

well as the reduced protein expression of 

HIF-1α, SPHK1, and S1PR1

Anemia [167,168]

Yi Ai Fang Astragali Radix, Atractylodis 

macrocephalae Rhizoma, Actinidia arguta, 

Curcumae Rhizoma, Benincasa hispida

HCT-116, Babl/c nude male 

mice inoculated with HCT- 

116 cells (weighed 18±2 g)

Enhancing expression of E-cd and 

Claudin-4, and decreasing expression of 

HIF-1α, vimentin in vitro and vivo

Colorectal 

cancer

[169]

Yifei Huoxue 

Granule

Astragali Radix, Codonopsis Radix, 

Atractylodis Macrocephalae Rhizoma, 

Angelicae sinensis Radix, Carthami Flos, 

Prunus persica, Cyathulae Radix, 

Rehmannia Radix, Chuanxiong Rhizoma, 

Paeonia lactiflora pall, Citri Reticulatae 

Pericarpium, Bupleuri Radix, Citrus 

aurantium L., Platycodonis Radix, 

Platycodon

PASMCs Inhibiting hypoxia-induced proliferation 

of rat PASMCs, decreasing the 

expression of HIF- 1α and attenuating the 

hypoxia-induced increase in intracellular 

concentration of ROS and Ca2+

Hypoxic 

pulmonary 

hypertension

[170]
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Table 3 Bioactive Components of Natural Medicine That Can Promote HIF-1α

Compounds Original 

Plants

Chemical Structure Models Mechanism Disease Refs.

Glycosides

Astragaloside IV Astragalus 

propinquus 

Schischkin

HUVECs Promoting cell proliferation and 

stimulated HIF-1α accumulation by 

PI3K/Akt pathway, not affecting the 

degradation of HIF-1α protein or 

the level of HIF-1α mRNA, inducing 

the nuclear translocation of HIF-1α.

Myocardial 

ischemia

[171]

Notoginsenoside 

R1

Panax 

notoginseng 

(Burk.) F.H. 

Chen

Male SD rats 

(200 ± 20 g) 

with cisplatin

Reducing the levels of ROS, MDA 

and NO, as well as the opening of 

MPTP, increasing the levels of HIF- 

1α mRNA, SOD, CAT and GSH, as 

well as ATP and MMP in renal 

tissues.

Mitochondrial 

damage 

induced by 

cisplatin

[172]

Salidroside Rhodiola 

rosea L.

Neonatal rat 

cardiomyocyte

Up-regulating the HIF-1α and VEGF 

protein expression, inducing HIF-1α 

translocation;

Heart failure [173]

HEK293T, 

HepG2 cells

Inducing the expression of EPO 

mRNA from its transcription 

regulatory HRE, stimulating the 

accumulation of HIF-1α by 

inhibiting HIF-1α degradation

Mountain 

sickness

[89,117]

ROB, MG-63 

cells

Stimulating osteoblast 

differentiation and mineralization 

by inducing the expression of 

Runx2 and Osterix, up-regulating 

HIF-1α expression at the 

mRNA and protein levels via 

MAPK/ERK and PI3K/Akt 

signaling.

Fracture [118]

(Continued)
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or in vitro cell experiments, which cannot effectively 
explain the problem. Therefore, it is recommended that 
in future research, more attention can be devoted to the 
promotion of HIF-1α by natural products or TCM formu-
las, and a combination of in vivo and in vitro methods 
should be adopted to further study its effect. Recent stu-
dies have shown that many natural products can not only 
affect HIF-1α content by themselves but also reduce the 
side effects of drugs when used in combination with other 
marketed drugs. We believe that discovering the effect of 
natural products on HIF-1α from the perspective of 

combined medicine is also the future research direction. 
Although the limited clinical trials are not perfect in qual-
ity, they still have certain reference value. In the future, we 
need more scientific and representative clinical trials.

A variety of active ingredients can be extracted from 
natural medicines, but in the current research, we have 
only found that some monomer ingredients can affect the 
content of HIF-1α, and these ingredients are more concen-
trated in flavonoids, terpenes and glycosides. So there are 
more active monomers to be discovered. We hope that this 
review can provide a scientific basis for existing natural 

Table 3 (Continued). 

Compounds Original 

Plants

Chemical Structure Models Mechanism Disease Refs.

Polysaccharides

Rhamnose, 

xylose, mannose, 

galactose, glucose

Enteromorpha 

Prolifera

HCMVEC; Protecting HCMVEC from OGD- 

induced viability loss, proliferation 

inhibition, apoptosis, inflammatory 

cytokine expression, and 

autophagy, enhancing the 

expression of HIF-1α in HCMVEC 

via the MEK/ERK pathway, 

attenuating OGD-induced NF-κB 

pathway activation and promoted 

the mTOR pathway in HCMVEC;

Acute 

myocardial 

infarction

[174]

Wistar rats 

pre-treated by 

PEP

Reducing the infarct size and 

enhancing the LVEDD, LVEF and 

LVFS of rats via up-regulation of 

HIF-1α.

Acute 

myocardial 

infarction

[174]

Quinones

Tanshinone IIA Salvia 

miltiorrhiza Bge.

Male SD rats 

weighing 200-

Improving heart function, reducing 

infarct size, and increasing survival 

rate, up-regulating the expression 

of HIF-1α and VEGF.

Myocardial 

ischemia

[120]

220 g (aged 10 

weeks) with 

myocardial 

infarction

Improving heart function, reducing 

infarct size, and increasing survival 

rate, up-regulating the expression 

of HIF-1α and VEGF.

Myocardial 

ischemia

[120]
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medicines and TCM formulas to affect HIF-1α content, 
further clarify the market positioning, and provide gui-
dance for the development of new products in the future.
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