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Abstract: Exosomes or small extracellular vesicles are considered a new generation of 
bioinspired-nanoscale drug delivery system (DDS). Endogenous exosomes function as sig-
nalosomes since they convey signals via ligands or adhesion molecules located on the 
exosomal membrane, or packaged inside the exosome. Recently, exosome membrane mod-
ification, therapeutic payloads encapsulation, and modulation of in vivo disposition of 
exosomes have been extensively investigated, among which significant advances have been 
made to optimize exosome-mediated delivery to solid tumors. Exosomes, specifically tumor 
cell-derived exosomes, are presumed to have tumor-preferential delivery due to the homo-
typic features. However, quality attributes that dictate the tissue distribution, cell type- 
selective uptake, and intracellular payload release of the administered exosomes, as well as 
the spatiotemporal information regarding exosome fate in vivo, remain to be further inves-
tigated. This review summarizes recent advances in developing exosomes as drug delivery 
platforms with a focus on tumor targeting. The pharmacokinetic features of naive exosomes 
and factors influencing their intracellular fate are summarized. Recent strategies to improve 
tumor targeting of exosomes are also reviewed in the context of the biological features of 
tumor and tumor microenvironment (TME). Selected approaches to augment tumor tissue 
deposition of exosomes, as well as methods to enhance intracellular payload delivery, are 
summarized with emphasis on the underlying mechanisms (eg, passive or active targeting, 
endosomal escape, etc.). In conclusion, this review highlights recently reported tumor- 
targeting strategies of exosome-based drug delivery, and it’s in the hope that multiple 
approaches might be employed in a synergistic combination in the development of exosome- 
based cancer therapy. 
Keywords: exosome, tumor-targeting, PK, drug delivery, nanovesicles

Introduction
Extracellular vesicles (EVs) are lipid bilayer-enclosed membranous structures 
secreted by cells under physiological conditions or following biological cues.1 

EVs comprise heterogenous populations with various sizes and subcellular origin 
of membranes. Since a consensus regarding specific markers of EV subtypes has 
not emerged, the term “exosome” in this review refers to small EVs with a size 
range of 40–160 nm with putative membrane origin from endosomal pathways.2 

Exosomes are initially formed as intraluminal vesicles (ILV) in late endosomes 
through inward invagination. Subsequently, ILV form multivesicular bodies (MVB) 
through endosomal-sorting complexes required for transport (ESCRT)-dependent or 
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ESCRT-independent processes.3 The term “exosome” was 
coined in the 1980s in the first report that exosomes were 
secreted upon MVB fusion with the plasma membrane 
during reticulocyte maturation.4 Since then, the physiolo-
gical functions of exosomes as well as their roles in dis-
ease progression have been appreciated.5 Exosomes permit 
contact-free substance exchange between cells and act as 
signaling vesicles in autocrine, endocrine, juxtracrine, 
paracrine, or distal modes of communication.6 It has 
been shown that exosomes are involved in various biolo-
gical processes including viral infection, immune 
responses, mammalian development, and reproduction.7 

Interestingly, exosomes may exert opposite functions 
depending on the producer cells and the biological context. 
For example, leukocyte-derived exosomes containing 
IFNα limit virus replication, whereas exosomes released 
by infected cells promote infection through exosome- 
mediated viral transfer.8 The purpose of physiological 
secretion of exosomes and the mechanisms that compel 
their release remain largely unknown and require further 
in-depth investigation. On the other hand, research inter-
ests have extended to the value of exosomes in the diag-
nosis of cancer, degenerative and metabolic diseases, 
which are evaluated by many ongoing clinical 
investigations.9

Exosomes are also characterized as signalosomes since 
they convey signals via ligands or adhesion molecules 
expressed on the exosomal membrane, or packaged as 
cargo inside the exosome.10 Therefore, exosomes mediate 
signal transduction either by membranous interactions with 
the plasma membrane of recipient cells, or by payload 
release following cell uptake of exosomes.11 This exosome- 
mediated communication has several unique features. First, 
exosomal membrane derived from MVB contains combina-
tions of ligands that can simultaneously engage with multi-
ple cell-surface receptors, providing a network of 
information in a way that highly simulates direct cell–cell 
contact.12 Second, binding of exosomes to recipient cells 
results in ‘new’ cell membrane bearing surface molecules 
from donor cells. Therefore, targeted cells acquire new 
properties of adhesion or cell recruitment.13 Third, exo-
somes provide an excellent platform for intracellular deliv-
ery of genes or proteins to reprogram targeted cells. For 
example, mesenchymal stem cell (MSC)-derived exosomes 
loaded with an anti-microRNA oligonucleotide can effec-
tively silence the targeted microRNA in glioblastoma multi-
forme cells.14 By taking advantages of those aforementioned 
features, exosomes open up opportunities for the 

development of safer and more effective drug delivery 
tools. Compared with liposomes or other synthetic polymer- 
based drug carriers, exosomes contain transmembrane and 
membrane-anchored proteins that enhance endocytosis and 
therefore, promote payload delivery.15 Another advantage of 
exosomes is due to their bio-originated membrane, which is 
inert to protein corona formation.16 Moreover, there is ample 
flexibility in exosomal surface modification by genetic 
manipulation of donor cells to accommodate multiplexed 
purposes. For instance, exosomes derived from CD47- 
overexpressed human foreskin fibroblasts have been shown 
to decrease phagocytosis-mediated clearance by monocytes 
and macrophages, as well as enhance cell uptake by cancer 
cells.17

This review summarizes recent advances in developing 
exosomes as drug delivery platforms with a focus on 
tumor targeting. Properties influencing PK of naive exo-
somes, as well as modifications to overcome tissue and 
cellular barriers for tumor targeting, are reviewed and 
summarized. In this review, modifications of exosomes to 
augment the enhanced permeability and retention (EPR) 
effect is reviewed in the passive targeting part. Strategies 
involve utilizing affinity ligands or targeting moieties on 
the surface of exosomes for tumor microenvironment 
(TME) normalization, increased retention at the tumor 
site, and uptake by the cancer cells are discussed in the 
active targeting section. The ligands are selected to bind to 
overexpressed proteins on cancer cell surfaces or to target 
specific cell populations in TME. The tissue-selective 
homing property of exosomes is influenced by the produ-
cing cells. Therefore, the other classification of active or 
passive targeting exosomes is according to whether the 
modification is by alteration of exosome-producing cells’ 
transcriptome.18 As for exosome biogenesis, content, and 
functions under physiological or pathological conditions, 
readers are referred to excellent reviews for detailed 
information.19–21 In addition, technologies in cargo load-
ing, surface modification, and up-scale manufacture of 
exosome have been comprehensively reviewed in previous 
publications.22–25

Exosomes and Exosome-Inspired 
Drug Delivery
Great efforts have been invested to optimize exosomal 
membrane properties and to improve the manufacturing 
process of exosomes or exosome mimetics. Here we cate-
gorized exosome-based drug delivery tools into three 
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subgroups according to the degree of human manipulation, 
ie, how “natural” they are compared with exosomes 
released from cells (Table 1). The most well-studied exo-
somes are isolated from cell culture conditioned medium. 
Common protein components found in exosomes include 
cytoskeletal (eg, actin), cytosolic (eg, GAPDH), heat 
shock (eg, HSP90), antigen presentation (MHC-I, -II), 
and membrane proteins (eg, CD9, CD63), as well as 
proteins involved in vesicle trafficking (eg, Tsg101).3 In 
addition, exosomes derived from different cell types may 
exhibit unique protein profiles, which are associated with 
intrinsic functions of donor cells and are also impacted by 
cell conditions. Therefore, the origins of producer cells 
will be summarized below in order to provide information 
about choosing the cell/cell lines to fulfil different study 
objectives. Furthermore, efforts in developing exosome 
mimetics to overcome technical obstacles, such as low 

loading efficiency or poor yield, are also discussed. On 
a supplementary note, milk- or plant-derived exosomes 
have shown potentials as drug carriers for oral delivery 
with minimal biosafety concerns.26,27

Exosomes from Culture Conditioned 
Media
Exosomes can be isolated from conditioned cell culture 
media using various methods, including sequential or gra-
dient ultracentrifugation, filtration, polymer precipitation, 
size exclusion-chromatograph, and immunoaffinity 
capture.28 Various properties of exosomes are affected by 
the isolation method, including the yield, size distribution, 
surface charge, and protein content. However, standard 
operation procedures in exosome preparation, including 
isolation and purification, have not been established. 
Selection of one specific method or combination of 

Table 1 Exosome-Based Delivery Vesicles and Features

Cell-Secreted Exosome Features Ref.

Immune 

cells

DCs ● induce potent cellular immune responses
● serve as cancer vaccine to boost NK cell activity in non-small cell lung cancer patient

123

imDCs ● contain miR-682 and promote immune tolerance via suppression of Rho-associated protein 

kinase
● reduced immunogenicity as drug carrier

124

NK cells ● contain killer proteins (granzyme and perforin) to exert cytotoxicity to tumor cells
● tumor-specific accumulation of NK-EXOs

125

effector CAR-T 

cells

● express a high level of cytotoxic molecules and inhibit tumor growth
● do not express Programmed cell Death protein 1 (PD1) compared with CAR-T cells

46

Cancer cells or cell lines ● targeting homotypic tumors 103

MCSs ● contain tissue regenerative growth factors for degenerative diseases
● allogeneic host to provide “off-the-shelf” cell-derived product

126 

127

HEK293T ● ideal host cell for membrane modification through genetic manipulation
● immune inert

93

Exosome mimetics Exosome features

liposome-exosome hybrid ● increased exosome yield
● mitigate functional loss of cargo during loading

128

Cell extrusion ● increased exosome yield
● exosome-mimetics from primary hepatocytes aid liver regeneration

51,129

Food-derived Exosome features

milk ● cross gastrointestinal tract via the neonatal Fc receptor 116

edible plants ● desirable nanoparticle morphology, environmentally safe and non-hazardous
● eminent potential for industrial pharmaceutical production

130

Abbreviations: DCs, dendritic cells; imDCs, immature dendritic cells; NK cells, natural killer cells; NK-EXOs, NK cell-derived exosomes; CAR-T cells, chimeric antigen 
receptor T cells; MCSs, mesenchymal stem cells.
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methods depends on the nature of the samples as well as 
the study objectives. Various different cell lines have been 
utilized for exosome isolation (Table 1). For example, Tian 
et al used mouse immature dendritic cells (imDCs) to 
produce exosomes with surface expression of iRGD pep-
tide, which navigated exosomes towards αv integrin 
expressing cancer cells.29 ImDCs were chosen as the 
donor cells to reduce immunogenicity and toxicity of exo-
somes, considering that imDCs are immune tolerogenic 
cells with low ratios of co-stimulatory to inhibitory 
signal.30 On the other hand, exosomes released from anti-
gen-pulsed DCs boost immune responses against cancer 
and might serve as a cell-free nanoscale vaccine in cancer 
immunotherapy.31 Natural killer (NK) cells have also been 
utilized to produce exosomes with antitumor effects, by 
means of the encapsulation of cellular perforin and gran-
zymes during EV biogenesis.32,33 Apart from immune 
cells, MSCs are a popular candidate for EV production, 
and exosomes are considered as a vital venue for the 
secretion of trophic factors, by which MSCs aid tissue 
repair and regeneration.34 In vivo studies have demon-
strated that MSCs-derived exosomes can facilitate spinal 
cord repair after injury,35 mitigate joint inflammation in 
osteoarthritis,36 and improve cardiac functions in ische-
mia-refusion injury.37 Moreover, MSCs possess large ex 
vivo expansion capacity and are immunosuppressive and, 
therefore, are compatible with mass production of exo-
somes for both autologous and allogenic clinical 
applications.38

Human embryonic kidney (HEK293) cells have wide 
applications in biopharmaceutical manufacturing, and 
represent one of the few mammalian cell lines to produce 
therapeutic biologics accepted by FDA.39 In addition, 
HEK293 cells are amenable to various transfection meth-
ods and permit genetic manipulation to engineer the exo-
some surface or to load cargos during exosome 
biogenesis.40 Previous studies have also reported that exo-
somes generated from HEK293 are immunologically inert 
and do not trigger inflammatory responses in vivo.41

Cancer cell lines were presumed to be efficient exo-
some producers since cancer cells overexpressed Rab 
GTPases Rab27a and Rab27b, which promote exosome 
secretion by facilitating multivesicular endosome (MVE) 
docking at the plasma membrane.42 In addition, exosomes’ 
tropism toward their cell origin could be utilized for can-
cer targeting. As exemplified in studies from Kim et al,43 

ovarian cancer cell line SKOV3-derived exosomes dis-
played enhanced tumor accumulation in SKOV3 

xenografted mice compared with HEK293-derived exo-
somes. However, there have been concerns about directly 
using tumor cell-produced naïve exosomes as drug carriers 
for several reasons. First of all, the pharmacokinetic profile 
of unmodified exosomes is less ideal in regards of their 
short plasma half-life and low targeting efficiency. 
Unmodified tumor exosomes exhibit a short half-life of 
less than 5 minutes after IV bolus in mice, and rapid 
clearance, which is partly due to complement opsonization 
in the innate immune system.44 Minimal tumor accumula-
tion is observed as well, though intratumor-injected exo-
somes remain associated with tumors to a significantly 
greater extent compared with liposomes. In addition, can-
cer cells by nature release exosomes with surface expres-
sion of programmed death-ligand 1 (PD-L1), an important 
form of soluble PD-L1 that mediates immunosuppression 
to aid tumor growth.45 Therefore, measurement of exoso-
mal PD-L1 expression is necessary before applying those 
unmodified exosomes as drug carriers, especially in com-
bination with PD1- or PD-L1-blocking immunotherapy.46 

In addition to membrane features of exosomes, the land-
scape of the encapsulated protein or gene materials is 
disparate.47 For example, miRNAs in exosomes derived 
from PC3 cells, but not from HEK293, can modulate the 
integrin pathway and induce macrophage M2 polarization. 
On the other hand, miRNAs in HEK293 exosomes are 
involved in cell migration through cadherin signaling.48 

Therefore, the endogenous content within exosomes needs 
stringent investigation and risk-to-benefit assessment 
before choosing a cell line as the producer cell of exo-
somes for drug delivery.

Exosome-Mimetics
Naturally released exosomes inspire the development of 
exosome-mimetic nanovesicles (EMNVs). Even though 
exosome secretion is considered as highly efficient with 
a secretion rate of about 100 exosome particles/cell/hour 
based on single-cell assays,49 the yield of exosome iso-
lation using culture conditioned is limited, with the com-
monly observed yield of <0.1 exosome particles/cell/ 
hour.50 One straightforward approach to overcome the 
issue for large-scale production is to generate EMNVs 
by serially extruding cells through micro-sized filters 
(Table 1). Using this method, the yield is boosted over 
100-fold, while EMNVs keep the biological functions 
similar as naïve exosomes.

EMNVs derived from different cell lines have been 
used to treat various diseases. For example, EMNVs 
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manufactured using primary hepatocytes promote liver 
regeneration in mice with partial hepatectomy (PH).51 

Pancreatic β-cell-derived EMNVs induce bone marrow 
(BM) cells to differentiate into insulin-producing cells, 
serving as potential therapeutics for diabetes.52 In addition, 
payloads such as anticancer drug doxorubicin could be 
encapsulated simultaneously along with serial extrusion 
of cells to further improve treatment of cancer.53 

However, EMNVs have mixed membrane components 
from both plasma membrane and intracellular organelles, 
whereas the exosome membrane is primarily originated 
from ILV in endosomal pathways.3 Additionally, certain 
lipid species, such as sphingolipids, cholesterol, and phos-
pholipid phosphatidylserine, are more enriched in exo-
somes compared with that in their donor cells.54 

Therefore, one open question is whether the altered mem-
brane composition would impact in vivo PK/PD behavior 
of EMNVs compared with naive exosomes, especially 
after long-term application. This concern also applies to 
nanoparticles cloaked with plasma membrane.55

Exosome–liposome hybrid nanoparticles are developed 
to overcome the low encapsulation of large size nucleic 
acids, such as plasmid. Lin et al56 have used liposome as 
an intermittent carrier for Cas9 plasmids with a minimal 
size of 5–6 kb. Afterwards, liposome is incubated with 
exosomes to form hybrid NVs and enables plasmid load-
ing by vesicles fusion. However, hybrid exosomes display 
cytotoxicity similar as liposomes (Lipofectamine) and, 
therefore, they should be further investigated using lipo-
somes with less toxicity.

Pharmacokinetic Characteristics 
and Tumor Distribution of Naive 
Exosomes
Tissue distribution of exosomes, similar to other nano-
vesicles, is dictated by particle size, surface charge, and 
the composition of lipid bilayers.57 Quantitative distri-
bution studies using radioactive tracers have shown that 
the majority of unmodified exosomes is distributed to 
the liver, lung, and spleen after IV administration.58 

Clearance of exosome is primarily mediated by the 
mononuclear phagocyte system (MPS).59 Exosomes 
carry a slightly negative charge on the surface, and are 
expected to reduce MPS-mediated clearance compared 
with positively-charged NPs.60 However, phosphatidyl-
serine, a negatively charged lipid, is involved in macro-
phage uptake of exosomes as part of exosome 

clearance.61 On the other hand, surface expression of 
glycosylphosphatidylinositol (GPI)-anchored CD55 and 
CD59 have been shown to protect exosomes from com-
plement-mediated lysis.62 On a special note, endogenous 
exosomes present in blood circulation also impact the 
in vivo fate of administered exosomes. For instance, 
a pre-IV injection of peripheral blood-derived exosomes 
reduces the hepatic accumulation of subsequently 
injected grapefruit-derived exosomes. Furthermore, tis-
sue distribution of grapefruit-derived exosomes is redir-
ected to the lung and tumor. In the study, endogenous 
exosomes inhibited macrophage uptake of exogenous 
exosomes by activating the CD36-mediated pathway, 
therefore serving as a competitor in hepatic clearance 
of exosomes.63 In addition to the circulated level of 
endogenous exosomes, the doses of administered exo-
somes could also alter the tissue distribution. It has been 
observed that increasing the dose level of exosome (400 
μg) leads to massive lung deposition, while a lower dose 
of exosome (60 μg) is predominantly distributed to the 
liver and spleen.44

As for tumoral distribution, exosomes falling within 
the size range of 100–200 nm are anticipated to exhibit 
the enhanced permeability and retention (EPR effect) 
in tumors.64 Moreover, exosomes are well known for 
their homotropic feature, therefore offering an addi-
tional mechanism to enable tumor targeting when uti-
lizing tumor cell generated exosomes as delivery 
vectors. The expression pattern of integrin has been 
shown as one determining factor in exosome organo-
tropism. For example, exosomal integrins α6β4 and α6 

β1 were associated with lung metastasis, while exoso-
mal integrin αvβ5 was linked to liver metastasis.65 In 
addition, glycans exposed on exosomes also impact 
their tissue distribution as well as cell targeting. For 
example, glycosaminoglycans exposed on glioblastoma 
exosomes direct the targeting of exosomes to CCR8- 
positive glioblastoma cells via a triple interaction with 
CCR8 ligand CCL18 as the bridging molecule.66 The 
mildly acidic pH in the tumor microenvironment 
(TME) also boosts exosome uptake by cancer cells. 
This targeting effect is attributed to high levels of 
sphingomyelin/ganglioside GM3 (N-acetyl neuraminyl-
galactosyl glucosylceramide) in the exosomal mem-
brane. GM3 becomes positively charged in a rich 
acidic environment, resulting in better exosome-cell 
fusion than that at physiological pH 7.4.67
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Strategies to Improve Tumor 
Targeting of Exosome
The homotypic targeting of tumor cell-derived exosomes 
has been demonstrated using in vitro accumulation 
studies.68 However, the tumor targeting shows discrepan-
cies in vivo across studies. Qiao et al69 reported that 
HT1080 cell-derived exosomes homed to their origin 
cells, resulting in enhanced tumor accumulation in 
HT1080 cell-xenografted mice compared with HeLa- 
derived exosomes. On the other hand, Smyth et al44 

found that exosomes released by 4T1, MCF-7, and PC3 
cells displayed minimal tumor accumulation after IV injec-
tion, which may be partly due to the rapid blood clearance. 
In vivo blockade of scavenger receptor-A (SR-A) with 
dextran sulfate dramatically decreased monocytes/macro-
phage-mediated hepatic clearance of exosomes in mice 
and, therefore, enhanced tumor accumulation of exosomes 
by 5-fold.70 Those results suggest that optimization of 
exosomes is necessary to achieve efficient tumor targeting. 
The following sections focuses on strategies to improve 
tumor targeting of exosome-based delivery vectors, where 
passive or active targeting mechanisms are discussed sepa-
rately (Figure 1).

Boosting EPR in Passive Tumor Targeting
Passive tumor targeting of nanoparticles (NPs) is 
a result of the EPR effect, described as the increased 
permeability of tumor vasculature and ineffective lym-
phatic drainage. However, only a small fraction (less 
than 1%) of NPs accumulate even in high-EPR xeno-
grafted tumors.71 The targeting efficiency of NPs is 
compromised due to uneven permeability of the hetero-
geneous size of endothelial gaps, dense interstitial tumor 
matrix, and inadequate blood perfusion.72 In addition, 
studies indicated that actively targeted NPs must first 
reach the target to take advantage of this increased 
affinity and avidity to cancer cells.73 Efficient passive 
targeting is considered a prerequisite for systemically 
administered NPs designed to target tumor specific- 
cells. Approaches to enhance EPR includes prolonging 
the circulation time of NPs as well as boosting their 
extravasation.74 Exosomes are primarily cleared via pha-
gocytosis and endocytosis by macrophages in MPS.59 

Overexpression of antiphagocytic factors on exosomes, 
such as CD47, protects exosomes from MPS-mediated 
clearance, thereby significantly increasing their circula-
tion time of exosomes by 3-fold.75 Stealth strategies, 

such as surface PEGylation, also reduce the clearance 
of exosomes76,77 with the tradeoff of potential 
immunogenicity.78 In some cases, the reduced clearance 
resulted in improved tumor retention, which was attrib-
uted to passive accumulation of the PEGylated exo-
somes via EPR.76,77 In other cases, however, 
PEGylation of exosomes does not lead to increased 
tumor retention.79 Although tumoral blood vessels are 
commonly described as leaky and are compatible with 
extravasation of NPs, targeting surface molecules 
expressed on endothelial cells can potentiate tumor 
penetration. For example, one study showed that exo-
somes modified with iRGD (CRGDKGPDC) bind spe-
cifically to αv integrin which is highly expressed on 
endothelial cells of tumoral vessels,80 leading to an 
increased tumoral accumulation in breast cancer cell 
xenografted mice.29

Active Tumor Targeting
The downside of passive tumor targeting is the lack of 
ligand-selective binding for specific tissues or organs. In 
addition, once exosomes are distributed to the desired tissue 
or organ, manipulation of exosomes to increase cell-specific 
uptake is another challenge. In this section, various 
approaches to augment active tumor targeting of exosomes 
are reviewed from two aspects, including TME normaliza-
tion and selective uptake by cancer cells (Table 2). These 
approaches aim to overcome sequential hurdles for efficient 
tumor targeted delivery.81

Tumor Microenvironment 
Normalization
The pathophysiology of TME is regulated by angiogen-
esis, fibrotic signaling, and hypoxia, which limit the 
intratumor infiltration of NPs following extravasation.82 

In TME with an inflamed immune phenotype, the can-
cer-immunity cycle of antitumor immune response is 
disrupted partly due to T cell exhaustion.83 A novel 
application is to display synthetic bispecific antibodies 
on exosomal membranes. For example, one study uti-
lized anti-EGFR scFv, which targets cancer cells, and 
anti-CD3 scFv, which redirects and activates cytotoxic 
T cells.84 The bispecific antibodies were displayed on 
exosomal membranes by fusing scFv antibodies with 
human platelet-derived growth factor receptor 
(PDGFR) transmembrane domain (TMD). The dual tar-
geted exosomes normalized the immunosuppressed TME 
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by facilitating cancer recognition by T cells, a principle 
similar to bispecific T cell engagers (BiTEs).85 

Compared with free bispecific antibodies, exosomes 
with genetically displayed antibody molecules showed 
significantly increased antibody avidity and more potent 
cytotoxicity in vitro.13 Another approach is to boost 

dendritic cell (DC)-mediated immune activation by gly-
can modification on exosomes. For example, glioblas-
toma-derived exosomes after de-sialylation and insertion 
of Lewis antigen, which contains fucosylated structures 
bound to DC-specific adhesion molecule CD209, 
resulted in a 4-fold increase of DC uptake and serves 

Figure 1 Graphical illustration of tumor targeting strategies of exosome-based delivery. In passive targeting, exosomes pass through the leaky vascular walls and accumulate 
at the tumor site by the enhanced permeability and retention (EPR) effect. The EPR effect is boosted by (A) increasing endothelial penetration of tumor vasculature by 
surface modification of iRGD peptide;80 and (B) prolonging circulation time of exosomes by overexpressing antiphagocytic factors.17 In addition, reshaping tumor 
microenvironment (TME) by targeting specific immune cells could enhance anti-tumor immune responses for cancer immunotherapy. For example, (C) exosome expressing 
in-tandem scFvs (anti-EGFR and anti-CD3) redirect cytotoxic T cells to attack tumor cells;84 and (D) glycan-modified exosomes displayed increased uptake by DC cells and 
augment DC-mediated immune responses.86 Active targeting can be achieved (E) by using specific targeting moiety to bind to the receptors on tumor cells or by 
modification to synergize external stimuli-guided tumor targeting.93,95,101,102,105.
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as a potential anticancer vaccine.86 Since TME normal-
ization using exosomes is still an emerging field, strate-
gies utilized by other NPs that either depend on the 
physiochemical characteristics (eg, redox pressure, pH) 
or on targeting specific cell populations in TME could 
be leveraged by exosomes. For instance, NPs modified 
with α-peptide and M2 pep fusion peptide exhibited 
preferential delivery to M2 TAM over tissue resident 
macrophages by binding to scavenger receptor B type 
1 (SR-B1) on M2 macrophages.87 Surface conjugation 
of methotrexate as both a ligand and a toxin on NPs 
enables targeting and depletion of ovarian TAMs with 
high expression of folate receptor-2.88

Cancer Cell Selectivity
The primary cell type responsible for exosome uptake after 
tissue distribution may vary depending on organ as well as 
the origin of exosomes. For example, IV infused cholan-
giocyte-derived exosomes are preferentially taken up by 
hepatic stellate cells (HSCs) and HSC-derived fibroblasts 
in mouse liver.89 Kupffer cells (KCs) take up the bulk part 
of exosomes released by pancreatic ductal adenocarcino-
mas (PDACs).90 The underlying mechanisms of the cell 
type–specific targeting of exosomes remain to be eluci-
dated. By nature, phosphatidylserine (PS) and carbohy-
drate moieties on exosomal membranes are involved in 
the recognition and uptake of exosomes by macrophages. 

Table 2 Targeting Ligands Used in Preclinical Studies for Tumor Targeting

Ligand Type Examples Effect Parent Cell Payloada Preparation 

Methodb

Sizec 

(nm)

Ref.

Antibody and fragments anti-SSTR2 mAb target somatostatin receptor 2- 

overexpressed neuroendocrine cancer

HEK293 cell Rom UF 125 131

anti-EGFR 

nanobodies

target cancer cells overexpressing EGFR Neuro2A cells NA UF and SEC 100 98

in-tandem scFvs 

against CD3 and 

HER2

redirect and activate cytotoxic T cells to 

attack HER2-expressing breast cancer 

cells

Expi293 cells NA UC 109 13

anti-EGFR CAR, 

anti-HER2 CAR

exosomes containing cytotoxic molecules 

and inhibit tumor growth

effector CAR- 

T cells

NA UC and IMS 85 46

Proteins or ligands ITGβ4 suppress lung cancer cell proliferation and 

migration

MDA-MB-231 

cells

miRNA- 

126

PureExo® exosome 

isolationKit

30 - 

120

132

IL3 sensitize IL-3R-expressing CML cells to 

imatinib

HEK293T cells BCR-ABL 

siRNA

UC 30 - 

60

40

biotin and avidin target cancer cells overexpressing lectins HUVECs Dox microfluidic chip 

with IC

<150 133

Peptides GE11 peptide target EGFR-overexpressing cancer cells HEK293 cells miRNA UC 100 93

R8 peptide, 

K4 peptide

stimulate tumor cell uptake of exosomes HeLa cells saporin UC 160, 

197

134, 

106

Nucleic acid-based 

ligands

AS1411 aptamer target tumor cells overexpressing 

nucleolin

MDA-MB-231 

cells

NA microfluidic 

sonication

181 101

Sgc8 aptamer target protein tyrosine kinase 7-positive 

cancer cells

imDCs Dox UC 111 135

Small molecules Folic acid bind folate receptors on cancer cells milk exosome PTX, 

DTX

UC 40 - 

100

136

Sialic acid bind lectin receptors on HeLa cells MSCs NA UC 178 137

Notes: aThe abbreviations in the column of Payload stands for romidepsin (Rom), doxorubicin (Dox), paclitaxel (PTX) and docetaxel (DTX). bThe abbreviations in the 
column of Preparation method stands for ultrafiltration (UF), ultracentrifugation (UC), and size-exclusion chromatography (SEC), immunomagnetic separation (IMS) and 
immunocapture (IC). cThe sizes of exosomes were determined using either DLS (dynamic light scattering) or NTA (nanoparticle tracking analysis). The mean values of 
exosome diameters or size ranges were cited wherever one was reported.
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For example, sialic acid on exosomes is recognized by 
CD169 on macrophages in vivo.91 This characteristic 
should therefore be considered in the design of targeted 
delivery systems, since exosomes taken up by macro-
phages such as KCs might be largely subject to hepatic 
clearance. One example is that surface modification of 
exosomes with cationized pullulan enhanced hepatocyte- 
specific uptake of exosome by binding to asialoglycopro-
tein receptors on hepatocytes. As a result, the anti- 
inflammatory effect of MSC-derived exosomes was poten-
tiated in a concanavalin A-induced liver injury model.92 

Moreover, a growing list of cell-targeting peptides, such as 
GE11 peptide targeting EGFR on solid tumor cells,93 and 
ischemic myocardium targeting peptide (IMTP) with 
unknown receptors to target ischemic myocardium,94 

have been studied for use in modifying the exosomal sur-
face. In addition, antibody or antibody fragments serve as 
versatile alternatives to active tumor targeting in exosomal 
surface modification. Compared with natural ligands or 
homing peptides, antibodies can be raised to target any 
antigens and, therefore, offer more freedom in target selec-
tion, in addition to an exquisite specificity due to higher 
binding affinity. The binding affinity of antibody or anti-
body fragments along with the target expression levels on 
cancer cell collectively determine the selectivity of exo-
somes. For example, high-affinity anti-Her2-scFv (KD≤1 
nM) and a high expression level of Her2 (≥106 copies per 
cell) on cancer cells are optimally required to enable 
selective cell uptake of exosomes in Her2-positive cells.95

On a special note, the impact of fusion partners 
employed to display targeting moieties (peptide or anti-
body fragment) on the exosomal surface should not be 
neglected. There are many reports about the impact of 
membrane-inserted fusion proteins on the targeting effect 
of an exosome. For examples, membrane display by fusion 
with lysosomal associated membrane protein 2b (Lamp2b) 
may cause ligand loss since it leads to peptide cleavage 
during exosome biogenesis.96 Lactadherin, a membrane- 
associated protein,97 and its peptide domains are located 
close to the membrane surface and not freely accessible to 
interact with cell receptors. Thus, incorporation of the 
C1C2 domain of lactadherin might interfere with cell 
uptake of exosomes.95 Furthermore, glycosylphosphatidy-
linositol (GPI) anchor signal peptides from decay- 
accelerating factor (DAF) renders an insufficient density 
of displayed ligands and, consequently, the increase of cell 
uptake of the modified exosomes is limited due to lack of 

receptor clustering to enable subsequent exosome 
internalization.98

Chimeric antigen receptor T (CAR-T) cell–based 
immunotherapy has emerged as a promising new treatment 
with unprecedented results for hematological 
malignancies.99 Exosomes released from CAR-T cells 
also carry CAR on the exosomal surface. Interestingly, 
PD1 was not detected on CAR exosome surfaces com-
pared with their parental cells. Therefore, CAR exosomes 
are compatible with recombinant PD-L1 immunotherapy 
without antagonizing the anti-tumor effects.46 Non-peptide 
targeting ligands, such as aptamers, have also been used to 
modify exosome surface. Aptamers are folded nucleic acid 
strands capable of binding to different target molecules 
with high programmability and low immunogenicity.100 

In one study, cholesterol modified aptamer AS1411 con-
ferred exosome enhanced tumor targeting in an MDA-MB 
-231-xenografted mouse model due to specific binding of 
AS1411 aptamers to nucleolin on breast cancer cells.101

Surface modification of exosomes also allows for 2-in- 
1 or all-in-1 strategies to achieve tumor specific-killing. 
The synergistic tumor-killing effect has been demonstrated 
in the study of engineered Cas9 vector-encapsulated exo-
somes with the surface expression of tumor necrosis factor 
(TNFα). In this case, TNFα not only served as a targeting 
moiety to bind cancer cells overexpressing TNF receptors, 
but also triggered cancer cell necroptosis by activating 
TNF receptors. The downstream signaling pathways of 
TNFα for survival or apoptosis are inactivated by cancer- 
selective expression of Cas9.102 In addition, to take advan-
tage of the intrinsic feature of cancer cells, exosomes have 
also been modified to synergize external stimuli-guided 
targeting, such as the encapsulation of sinoporphyrin sen-
sitizer for focused ultrasound-guided delivery,103 or with 
conjugation with superparamagnetic nanoparticles 
(SPMNs) in external magnetic field-driven targeting.104,105

Exosomes as Delivery Tools to 
Overcome Biological Barriers
The antitumor effects of exosomes with therapeutic pay-
loads also depend on the ability to deliver cargo to the 
intracellular action site (Figure 2). Approaches to enhance 
intracellular delivery for exosomes with encapsulated 
cargo are discussed, as the cell membrane is an existing 
barrier to the anti-tumor efficacy.81 In addition, the ability 
of exosomes to cross biological barriers, including the 
blood–brain barrier (BBB) and the gastrointestinal (GI) 
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tract, inspire growing areas of research interests utilizing 
exosomes for drug delivery.

Enhanced Intracellular Delivery
Cells can take up exosomes by various means including 
direct membrane fusion, pinocytosis, and endocytosis.19 In 
order to facilitate exosome entry into cells, one approach is to 
equip exosomes with cell-penetrating peptide (CPPs), such 
as arginine-rich CPPs, which enhance exosome internaliza-
tion by stimulating cell micropinocytosis.106 Another 
approach is by increasing the chance of membrane fusion. 
Biophysical studies suggest that increasing membrane rigid-
ity by enriching sphingolipid and cholesterol improves 
fusion efficiency between exosomes and the recipient 
cells.67 In addition, exosomes with a surface display of 
G protein of vascular stomatitis virus (VSV-G) exhibit 
increased intracellular delivery of payloads by promoting 
exosome-cell membrane fusion.107 Integration of exosomes 

with connexin 43 (Cx43), a membrane protein that assembles 
to form hexametric channels, allows exosomes to dock at the 
gap junction pore embedded in the plasma membrane of 
recipient cells, and therefore provides another route for direct 
cytoplasmic transfer of exosome payload.108 As for interna-
lized exosomes following the endosomal traffic route, the 
ability of the cargo to escape before lysosomal degradation is 
another challenge. Exosomes complexed with cationic lipids 
together with a pH-sensitive fusogenic peptide, GALA, 
increased exosome-endosome fusion and, therefore, aided 
in the cytosolic release of cargo.109 Currently, specific 
mechanisms for exosome internalization by cells remain to 
be elucidated. The inclusion of targeting moieties on exoso-
mal membrane also impact the uptake of exosomes, as well 
as exosome distribution among cell organelles. For example, 
cell uptake of HEK293-derived naive exosomes is similar to 
the uptake of cholera toxin subunit B (CtxB), a marker for 
lipid raft-associated cell uptake.110 On the other hand, 

Figure 2 Graphical illustration of approaches to enhance intracellular payload delivery. Cell uptake of exosomes is mediated by several means, including endocytosis, 
phagocytosis, and direct fusion with plasma membrane. Intracellular payload delivery can be enhanced by several approaches, including: (A) modifying exosomes with cell- 
penetrating peptides (eg, arginine-rich peptide) to stimulate cell micropinocytosis; Promoting exosome-cell fusion by (B) increasing membrane rigidity of exosome via 
enriched sphingolipid and cholesterol;67 or by (C) expressing VSV-G on exosome to aid membrane fusion.107 (D) Exosomes expressing connexin-43 that forms hexametric 
channels to allow exosome to dock to gap junction pore on plasma membrane and, therefore, enable direct cytoplasmic transfer of cargo.108 In addition, (E) integrating 
fusogenic peptide (eg, GALA peptide) facilitates exosome escape of payload before lysosomal degradation.109
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exosomes with a surface display of anti-Her2 ScFv increased 
overall cell uptake, with a greater extent of colocalization 
with transferrin and dextran, markers for clathrin-mediated 
endocytosis and micropinocytosis, respectively.95 The 
uptake mechanism also differs depending on recipient cells. 
The observed contributing fractions by caveolae-dependent 
endocytosis of exosomes vary among cell lines, which is 
partly subject to caveolin-1 expression levels.111 As the 
research community is starting to appreciate the diversity of 
exosomes in terms of size and originated cell organelles, 
trafficking routes other than the putative endosome destina-
tion, such as the nucleus, have also been described.112 Thus, 
exosomes may serve as potential tools to confer cell orga-
nelle-targeted delivery once the intracellular fates of exo-
somes are fully elucidated.

BBB
The BBB prevents the entry of toxic compounds into the 
brain and, consequently, restricts the delivery of most drugs 
for treatment of brain-associated diseases. Circulating exo-
somes are able to cross the BBB. Therefore, exosomes are 
considered as promising tools for drug delivery to the central 
nervous system (CNS) (Table 3). Exosomes derived from 
brain endothelial bEND.3 cells are able to deliver anticancer 
drugs across the BBB in zebrafish embryos due to the 
homotypic effect of exosomes.113 Another study suggests 
that unmodified exosomes from macrophages are sufficient 
to confer BBB penetration in the context of brain inflamma-
tion, where the expression level of adhesion molecule 1 

(ICAM-1) on endothelial cells increased the interaction 
with lymphocyte function-associated antigen 1 (LFA-1) on 
macrophages-derived exosome membranes.114 Exosomes 
modified with rabies viral glycoprotein (RVG) peptide, 
a CNS–specific peptide bound to acetylcholine receptor, 
also showed the ability to cross the BBB in vivo with 
minimal liver accumulation.115

GI Tract
Oral drug delivery is still a challenging task for many 
therapeutic biologics. Exosomes derived from milk or edible 
plants are able to cross intestinal barriers and, therefore, are 
considered as potential drug vectors for oral delivery.116,117 

An interesting finding is the discrepancy of vector effect; 
milk exosomes were mainly distributed into the liver and 
spleen, whereas the encapsulated miRNA accumulated in 
the spleen and brain. The authors speculated that the distinct 
tissue distribution of payload was subject to a relayed sub-
stance transfer from foreign exosomes to endogenous exo-
somes in the endosomal traffic routes in cells, therefore 
allowing the cargo re-distribution to the brain.118

Conclusion
There are currently over 100 exosome-related clinical trials 
registered at Clinicaltrials.gov with projects spanning from 
early Phase I to Phase II. For trials to investigate exosomes as 
therapeutics (Table 4), the most commonly used producer 
cells are MSCs and immune cells with indications for neu-
rodegenerative disease, inflammation, and cancers. MSC- 

Table 3 Exosomes Displaying BBB Penetration

Exosome Type Examples 
(Approach or 
Ligand/Target)

Parent Cell Payload Disease Model Ref.

Naïve exosome intranasal 

administration

EL-4 curcumin brain inflammation 138

Raw 264.7 caltase Parkinson’s disease 139

LFA-1/ICAM-1 Raw 264.7 BDNF LPS-induced brain inflammation 114

Modified exosomes with 

targeting peptide

RVG peptide/ 

acetylcholine 

receptor

DCs BACE1 siRNA Alzheimer’s disease 115

HEK293 opioid receptor 

Mu siRNA

Morphine relapse 140

cyclic RGD peptide/ 

integrin αvβ3

mesenchymal 

stromal cell

curcumin Cerebral ischemia /transient middle cerebral 

artery occlusion (MCAO) mice

141

RGE peptide/ 

Neuropilin-1

Raw 264.7 curcumin orthotopic glioma models 142
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derived exosomes with KRAS G12D siRNA for treating 
subjects with metastatic pancreas cancer is in phase 
I studies. Compared with liposomes, exosomes offer several 
unique advantages, including reduced immunogenicity,119 

enhanced tissue penetration,120 and exosomes enable endo-
genous and site-specific cargo loading during exosome 
biogenesis.121 However, there are still challenges in exosome 
manufacturing, such as scaling-up the production yield and 
control of purity, especially considering the size overlap 
between exosomes and other extracellular vesicles (eg, 
microvesicles) or manufacture contamination (eg, lipopro-
tein aggregates).122 As for exosome-based targeted delivery, 
a comprehensive understanding of determinant attributes 
leading to selective-cell uptake of exosomes and factors 
influencing their intracellular disposition is still lacking. In 
addition, elucidation of mechanisms driving the homotypic 
tropism of exosomes, as well as to deciphering the relative 
contribution in exosome targeting when combining with the 

aforementioned targeting approaches, will bring great value 
for the rational design of exosome-based delivery tools. 
Lastly, extensive research is required to optimize the target-
ing of exosomes as signalosomes and drug delivery vehicles, 
as they will also resolve issues encountered by cell-based 
therapy, and may provide a path forward as an “all-in-one” 
cell-free therapeutic modality.
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Table 4 Exosomes in Clinical Trials

Derived Sources Payload Indications Phases Sponsor ClinicalTrials.gov 
Identifier

Allogenic adipose 

MSCs

NA Severe COVID-19 

Pneumonia

Phase 1 Ruijin Hospital NCT04276987

Allogenic MSCs miR-124 Acute Ischemic Stroke Phase 

1/2

Isfahan University of Medical Sciences NCT03384433

Adipose derived stem 

cells

NA Periodontitis Phase 1 Beni-Suef University NCT04270006

Autologous plasma NA Cutaneous ulcers Phase 1 Kumamoto University NCT02565264

Plant curcumin Colon Cancer Phase 1 University of Louisville NCT01294072

Allogenic COVID-19 
Specific T Cell

NA Corona Virus Infection Phase 1 TC Erciyes University NCT04389385

Umbilical MSCs NA Dry Eye Phase 
1/2

Sun Yat-sen University NCT04213248

Umbilical MSCs NA Type I Diabetes Mellitus Phase 1 General Committee of Teaching Hospitals 
and Institutes, Egypt

NCT02138331

MSCs KRAS G12D 
siRNA

Metastatic Pancreatic 
Adenocarcinoma

Phase 1 M.D. Anderson Cancer Center NCT03608631

MSCs NA Macular Holes Phase 1 Tianjin Medical University NCT03437759

Grape NA Head and Neck Cancer Phase 1 University of Louisville NCT01668849

Allogenic Adipose 

MSCs

NA Alzheimer’s Disease Phase 

1/2

Ruijin Hospital NCT04388982

Allogenic MSCs NA Dystrophic 

Epidermolysis Bullosa

Phase 

1/2

Aegle Therapeutics NCT04173650

Abbreviation: MSCs, mesenchymal stem cells.
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