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Abstract: Diabetic wound shows delayed and incomplete healing processes, which in turn 
exposes patients to an environment with a high risk of infection. This article has summarized 
current developments of nanoparticles/hydrogels and nanotechnology used for promoting the 
wound healing process in either diabetic animal models or patients with diabetes mellitus. 
These nanoparticles/hydrogels promote diabetic wound healing by loading bioactive mole-
cules (such as growth factors, genes, proteins/peptides, stem cells/exosomes, etc.) and non- 
bioactive substances (metal ions, oxygen, nitric oxide, etc.). Among them, smart hydrogels 
(a very promising method for loading many types of bioactive components) are currently 
favored by researchers. In addition, nanoparticles/hydrogels can be combined with some 
technology (including PTT, LBL self-assembly technique and 3D-printing technology) to 
treat diabetic wound repair. By reviewing the recent literatures, we also proposed new 
strategies for improving multifunctional treatment of diabetic wounds in the future. 
Keywords: hydrogels, nanoparticles, nanotechnology, diabetic wound healing

Introduction
Diabetes mellitus is a complex metabolic disorder that affects the health of millions 
of people around the world. The world of diabetes among adults (aged 20–79 years) 
are 285 million adults, which will increase to 439 million adults by 2030.1,2 

Diabetics will lead to high glucose condition as well as a variety of complications, 
including cardiovascular disease, nerve damage (neuropathy), kidney damage (kid-
ney disease), eye damage (retinopathy), hearing impairment, dementia, and especial 
the delayed wound healing which is one of the most serious complications of 
diabetes impaired wound healing.3–9 Severe diabetic wounds could lead to 
amputation.10 Diabetes can be divided into four main types: Type Ⅰ diabetes is 
caused by the autoimmune be destroyed of β-cells in the pancreas, eventually 
leading to reduction of insulin production;11,12 Type Ⅱ diabetes is closely asso-
ciated with insulin resistance and subsequent decompensation of pancreatic β-cells 
(including pancreatic β-cell mass loss and β-cell dysfunction);13 Gestational dia-
betes occurs during pregnancy and causes glucose intolerance;14 other diabetes are 
resulted by specific genetic defects of beta-cell function, illness of the pancreas, 
drugs or chemicals, etc.15

Normal Wound Healing
Wound healing is a complex and ordered biological process, including four classical 
stages: hemostasis, inflammation, proliferation and remodeling,16–18 involving 
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different cell types releasing many cytokines and growth 
factors (GFs).19,20 Hemostasis lasts 2–3 hours, the fibrin 
plug is formed, and aggressive platelets release pro- 
inflammatory mediators such as cytokines and growth 
factors. Cytokines recruit neutrophils and monocytes to 
the wound area, triggering an inflammatory period of 
wound healing that lasts from hours to days.21 The inflam-
matory phase begins immediately after injury and can last 
from hours to days in acute wounds, while in chronic 
wounds it can last for weeks or even months due to the 
effects of the underlying disease (eg, diabetic foot 
ulcers).16 Injury results in the rupture of vessels, and 
form clots and temporary extracellular matrix (ECM), 
which closes the wound, reduces blood loss, and helps 
guide cell migration.22 Platelets secrete and activate cel-
lular mediators that attract inflammatory cells (multinu-
cleated cells and macrophages), fibroblasts, and 
endothelial cells.23 In the proliferation, endothelial cell 
and fibroblast proliferation and migration promote angio-
genesis and new ECM formation.16 As the new ECM is 
reconstructed, the old matrix is degraded by proteases 
(matrix metalloproteinases, MMPs), MMPs promote auto-
lytic debridement and cell migration in wounds.16,17 The 
level of MMPs in wounds increases after tissue damage 
and decreases with remission of inflammation, but 
increases abnormally in chronic wounds.17 Epithelial 
cells migrate from the edge of the wound, initiating 
epithelialization.24 Keratinocyte differentiation helps 
restore the barrier function of the epidermis.25 

Remodeling can last for months and eventually an eschar 
(scab) has formed on the surface of the wound.17 The 
matrix is constantly reconstructed by myofibroblasts.16 

The microfilaments attached to the ECM densify the col-
lagen network and contract the wound.26 At the same time, 
new components are secreted to increase matrix density 
and stability.26,27 The proportion of different types of 
collagen began to change: the proportion of type 
I collagen increased (80%–90%) and the proportion of 
type III collagen decreased (10%–20%).28 Apoptosis 
reduces the density of myofibroblasts, making room for 
fibroblasts, further strengthening the ECM, and increasing 
its resistance to mechanical forces.26

Diabetic Wound Healing
Under normal physiological conditions, the injured tissue 
will initiate the acute wound healing process.16–18 

However, when the healing process is disturbed by the 
underlying pathological mechanism or microbial invasion, 

the wound cannot heal and become a chronic wound (such 
as diabetic wound)29 (Figure 1). Hypoxia is a major cause 
of diabetic wound damage caused by two factors: limited 
oxygen supply and high oxygen consumption in the 
wound.30 In diabetic patients, oxygen supply to the 
wound is limited due to vascular dysfunction and 
neuropathy.30 In addition to inadequate oxygen supply, 
high oxygen consumption by wound cells during inflam-
mation also induces hypoxia in wounds.30 In diabetic 
patients, the imbalance between angiogenic factors (eg, 
transforming growth factor-β, TGF-β; fibroblast growth 
factor 2, FGF2; vascular endothelial growth factor, 
VEGF; angiopoietins) and angiostatic factors (eg, throm-
bospondins, endostatin, angiostatin) may lead to angio-
genic imbalance and aggravate wound hypoxia.31 

Likewise, hypoxia can amplify the inflammatory response, 
thereby prolonging injury by increasing the levels of oxy-
gen radicals.32 Two main events for effective wound heal-
ing involve an inflammatory response and migration of 
keratinocytes, fibroblasts, and endothelial cells. However, 
diabetic wounds did not undergo a normal healing process 
rather trapped into a chronic inflammatory stage character-
ized by excessive accumulation of uninhibited M1 
macrophages.33 Moreover, the fibroblast proliferation, 
function, and differentiation into myofibroblast also sig-
nificantly reduced with suppressed expression of tumor 
growth factor β type II receptor and decreased collagen 
synthesis, which hindered the tissue remodeling stage.34 

The high glucose levels mediated-induction of matrix 
metalloproteases-9 (which is responsible for collagen 
degradation and regulates keratinocytes migration) over-
expression in diabetic models impaired keratinocyte 
migration.35,36 High glucose could also reduce the activity 
of VEGF and hypoxia-inducible factor 1α (HIF-1α), and 
increases the non-enzymatic glycation of many important 
proteins, leading to abnormal cellular and ECM function, 
thereby inhibiting angiogenesis in diabetic wounds.37

General wound clinical therapies include restoration of 
skin perfusion, treatment of infection, metabolic control, 
treatment of co-morbidity and local wound care.38 

Although these standard treatments may achieve the goal 
of symptom control, but the effective treatment of diabetic 
wound healing remains limited. Moreover, traditional 
treatment mainly use dressings, the treatment process is 
long, easy to cause secondary injury, psychological and 
physiological adverse effect on diabetic patients. 
Currently, there are some technologies of wound healing 
treatment for diabetes, namely topical drug treatment (eg, 
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drugs, peptides and growth factors), cellular therapies (eg, 
stem cells and fibroblasts) and biomaterial-based 
treatment.39 Biomaterials with controlled-release of signal-
ing molecules can be combined with other therapeutic 
methods, which is a promising treatment method for dia-
betic wound healing.40 In this review, we will summarize 
biomaterials and their potential applications in diabetic 
wound repair. In addition, we have also reviewed the 
challenges and application prospects of biomaterials in 
diabetic wound healing.

Substances Applied in Diabetic 
Wound Healing
Diabetic wounds often require a longer healing period due 
to persistent inflammation, bacterial infections, and degra-
dation or diminished expression of growth factors.41 In 
addition, chronic hyperglycemia makes new vessel forma-
tion is difficult, thus limiting the access of oxygen and 
nutrients to the wound site.42 Therefore, some substances 
need to be delivered from the outside to promote the 
healing of diabetic wounds. At present, a variety of bioac-
tive molecules (such as growth factors, genes/proteins/ 
peptides, stem cells/exosomes, etc.) and non-bioactive 

substances (metal ions, oxygen, nitric oxide, etc.) are 
widely used to promote diabetic wound healing (Figure 2).

Bioactive Molecules
Signaling Molecules
It is well known that chemokines can directly promote 
angiogenesis, ECM remodeling or formation and re- 
epithelialization.43,44 These chemokines play a crucial role 
in the migration of inflammatory cells and mesenchymal 
stem cells.45 Moreover, the chemokines (interleukin-8, IL-8; 
macrophage inflammatory protein-3α, MIP-3α) that possess 
the ability to recruit bone marrow-derived mesenchymal 
stem cells (BMSCs) for articular cartilage repair.46 In addi-
tion, IL-8 is also known to be a potent promoter of 
angiogenesis.47 Previous studies have shown that horserad-
ish peroxidase triggered in-situ cross-linked gelatin- 
hydroxyphenyl propionic acid (GH) hydrogels can be used 
as an injectable carriers for tissue engineering and regen-
erative medicine.48,49 Therefore, two types of chemokines 
(IL-8 and MIP-3α) could be loaded into GH hydrogel.50 

IL-8/MIP-3α was released through GH hydrogel within 
7 days, and endogenous cells were able to attract chemo-
kines to the wound. The incorporation of chemokines did 

Figure 1 The physiological process of normal wound and diabetic wound. Unlike normal wounds, diabetic wounds are characterized by impaired angiogenesis, excessive 
inflammatory macrophages. Excessive production of matrix metalloproteinases (MMPs) at the wound site, and hyperglycemia leads to an increase ROS that prevent the 
formation of healthy tissue.
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not affect hydrogels' properties (including swelling ratio and 
mechanical stiffness), and the bioactivities of IL-8 and MIP- 
3α were stably maintained in GH hydrogel. GH/IL-8 and 
GH/MIP-3α hydrogel dressings promote diabetic wound 
regeneration, enhance re-epithelialization/neovasculariza-
tion and collagen deposition.50 GH hydrogel can be used 
as a delivery platform for various therapeutic proteins for 
wound healing in the future.

Various growth factors are important function in med-
iating, coordinating and controlling cellular interactions 
during normal wound healing.51 But in diabetic wounds, 
the balance of many growth factors is upset, damaging 
angiogenesis, disrupting the ECM, and ultimately delaying 
wound healing (Figure 3). A strategy of mediating the 
diabetic wound cell signaling is to locally administering 
endogenous therapeutic growth factors.52 However, 
repeated high doses of growth factors are needed to 
achieve therapeutic effects.53 And the proteases in the 
cells cause growth factors to degrade rapidly. Therefore, 
a delivery system is required not only to maintain growth 
factor activity, but also to enable sustained and controlled 
release of growth factors to the target. Currently, various 
systems (including nanoparticles, hydrogels and nanofi-
bers) have been used for growth factors delivery in dia-
betic wound54–61 (Table 1).

Previous studies have shown that VEGF-A is the pri-
mary pro-angiogenic factor in normal healing wounds.62 

Its expression reached a peak at 2–3 days after injury and 
continued to rise for about a week.63 However, compared 
to normal mice, the increase of VEGF in db/db diabetes 
mice is transient, rather than sustained, and rapidly 

decreases to almost undetectable levels when granulation 
tissue is formed.64 The results of clinical trials showed that 
single-dose application of VEGF to wounds alone has 
limited success due to its short half-life.65 Repeated local 
delivery of VEGF-165 promoted rapid re-epithelialization 
and enhanced angiogenesis of diabetic wounds.66–68 In 
order to overcome the disadvantages of short half-life 
and repeated delivery of VEGF, delivering VEGF by 
gene activation strategy should be effective. Physical 
encapsulation of nucleic acid-carrier complexes in 
a hydrogel can protect the carrier from degradation and 
provide more sustained, localized transfection compared 
with rapid delivery of growth factors or genes.69 

Hyaluronic acid (HA), the main component of the ECM, 
is a highly biocompatible biomaterial, which can also 
promote angiogenesis.70 Porous HA hydrogel with encap-
sulated proangiogenic (pVEGF) plasmids for local gene 
therapy in diabetic wound healing.70 These researches 
have shown that porous hydrogels did not degrade and 
provided a mechanical barrier to wound healing. 
However, transfection levels of pVEGF did not appear to 
be high enough to enhance angiogenesis by increasing 
vascular density or size.70 Devalliere et al recombined 
keratinocyte growth factor (KGF) and cytoprotective pep-
tides into a protein polymer with the aim of increasing 
their activity in vivo (enhancing anti-proteolytic ability), 
thereby accelerating chronic wound healing (increasing 
wound bed angiogenesis).71 Previous studies have shown 
that two or more growth factors are more effective at 
stimulating angiogenesis and subsequent tissue repair 
than a single growth factor.72,73 For example, co- 

Figure 2 Schematic illustration of the categories of biomaterials used on diabetic wounds. Biomaterials are loaded with bioactive molecules (including GFs, genes/proteins/ 
peptides, stem cells/exosomes, etc.) and non-bioactive substances (including metal ions, oxygen, etc.) to promote diabetic wound healing.
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stimulation of VEGF-A and fibroblast growth factor 2 
(FGF-2) significantly improves cell migration and angio-
genesis in vivo compared to single angiogenic growth 
factor.74 In addition, the delivery of bFGF and VEGF as 
dual factors immediately restored the vascular network.75

In the future, local controlled delivery of multiple GFs 
by the combination of nanoparticles and hydrogels. At the 
same time, determine the optimal degradation rate of the 
hydrogel and reduce the toxicity of the nanoparticles to 
allow for overall faster wound closure.

Genes/Proteins/Peptides
Targeting disease-related miRNA may be an effective ther-
apeutic strategy in comparison with single-target angiogenic 
growth factors, since an individual miRNA with its pleiotro-
pic effects can regulate multiple different genes and 
processes76 (Table 2). Recently, miR-26a has been identified 

as a key negative regulator of angiogenesis in diabetic 
wounds, inhibition of this miRNA may be an effective treat-
ment for diabetes.76 Wu et al developed a redox-modulatory 
ceria nanozyme-reinforced self-protecting hydrogel (PCN- 
miR/Col).77 PCN-miR/Col not only remodeled the oxidative 
wound microenvironment, but also ensured the structural 
integrity of the encapsulated pro-angiogenic miRNA in the 
oxidative microenvironment.77 The design adopted the 
“seed-and-soil” concept in the regenerative medicine field 
with the aim to reshaping the oxidative wound microenvir-
onment into a proregenerative one (the “soil”), and providing 
proangiogenic miRNA cues for diabetic wound repair and 
regeneration (the “seed”). The proposed “seed-and-soil” 
strategy is applicable to the repair and regeneration of 
a wide range of damaged tissues, which exposed to highly 
oxidative diseased microenvironments and dysfunctional 
biomacromolecules.77 So, it is a new direction of treatment 

Figure 3 Changes in GFs in diabetic wounds. (A) Changes in growth factors in diabetic wounds and their effects on angiogenesis and ECM. (B) Hyperglycemia leads to the 
production of oxygen free radicals.
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for diabetic wounds. Li et al had developed a β-CD-(D3)7 as 
the gene carrier to carry siRNA, which effectively interfered 
with the expression of MMP-9, accelerated wound healing 
and could not cause organ damage and accumulation.78 The 
results suggest that this gene carrier might be developed as 
a novel topical agent for the diabetic wound treatment. See 
(Table 2) for other systems.79–81

Although genes and growth factors are intended to 
improve angiogenesis and re-epithelialization, cost and safety 
issues remain in their application.82 Introduction of peptides 
into hydrogels or scaffolds has been widely used to confer 
these tissue-engineering substrates with bioactivity83–90 

(Table 2). Carrejo et al prepared a multidomain peptide hydro-
gel that can rapid cell infiltration and elicit a mild inflamma-
tory response, thereby promoting angiogenesis and 
accelerating wound closure in diabetes.91 A therapeutic integ-
rin-binding pro-survival peptide-engineered silk fibroin 
nanosheet that can regulate angiogenesis and promote diabetic 

ulcer healing.92 Nanofibrous mats of Antheraea assama silk-
worm silk fibroin are coated with various recombinant spider 
silk fusion proteins through silk–silk interactions to fabricate 
multifunctional wound dressings.93

We recently reviewed the roles of peptides in diabetic 
wound healing. Research spans the use of native proteins, 
recombinant proteins, and engineered peptides with inte-
gration in a diverse set of substrates from conjugation to 
hydrogel matrices. While the current studies have demon-
strated the benefits of these strategies, the key considera-
tion should be how to promote diabetic wound repair. 
A large number of clinical trials should be carried out to 
conduct an overall evaluation of the efficiency and safety 
of peptides in diabetic wound healing.

Stem Cells/Exosomes
Stem cells can produce various bioactive substances (such 
as growth factors) to restore tissue/organ function, so stem 

Table 1 Growth Factors in Nanoparticles/Hydrogels/Scaffolds Used in Experimental Diabetic Wound Healing Studies

GFs System Results Characteristic References

IL-8 and 
MIP-3α

Gelatin hydrogels Enhanced reepithelialization and increased collagen 
deposition.

Stable bioactivity; in situ 
cross-linking.

[50]

bFGF and 
NGF

Heparin- 
poloxamer 

hydrogel

Facilitating schwann cell proliferation, enhanced axonal 
regeneration and remyelination.

Good affinity; controlled 
GFs release.

[54]

VEGF and 

bFGF

PLGA 

nanoparticles

Induced complete re-epithelialization, with enhanced 

granulation tissue formation and collagen deposition.

Control release of multiple 

GFs.

[58]

VEGF, 

PDGF, bFGF 
and EGF

Col–HA–GN 

nanofibrous 
membrane

Elevated collagen deposition and enhanced maturation of 

vessels.

A stage-wise release 

pattern of multiple 
angiogenic factors.

[59]

pVEGF 
plasmids

HA hydrogels Promoted wound closure and induced an enhanced angiogenic 
response.

Local gene delivery. [56,70]

SDF-1 PPCN hydrogel Exhibited accelerated granulation tissue production, epithelial 
maturation, and the highest density of perfused blood vessels.

Antioxidant 
thermoresponsive.

[55]

KGF Elastin 
biopolymers

Increasing angiogenesis in the wound bed and accelerating 
healing.

Increasing GFs proteolytic 
resistance, thus improve 

their activity in vivo.

[71]

rh-aFGF Carbomer 

hydrogel

Remarkable promotion of skin wound healing in diabetic rats 

with full-thickness injuries.

Good biostability. [57]

PDGF Sheath-core 

nanofibrous PLGA 

scaffolds

Sustainably released PDGF, vancomycin, and gentamicin for 

three weeks.

Biodegradable sheath-core 

nanofibers.

[60]

EGF OHA and SCS 

hydrogels

Promotion of fibroblast proliferation and tissue internal 

structure integrity, as well as the deposition of collagen and 
myofibrils.

pH-responsive hydrogel. [61]
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cell therapy is one of the most promising methods for 
diabetic wounds94–101 (Table 3). Epidermal growth factor 
(EGF)-loaded microcapsules and human adipose-derived 
stem cells (ADSCs) are integrated into the collagen hydro-
gel and facilitate tissue regeneration and effectively restore 
blood perfusion.102 Moreover, acrylated hyaluronic acid 
(AHA) hydrogels load pluripotent stem cells (hiPSCs) 
treat type-1 diabetic wounds.103 In addition, gingival 
mesenchymal stem cells (GMSCs) loaded into the chito-
san/silk hydrogel sponge effectively promote the skin 
wound healing.104 With the capacity to protect and 

regulate immune function during the healing process, 
macrophages (MΦ) especially MΦ2, contribute to reduce 
inflammation and promote proliferation and angiogenesis 
by releasing anti-inflammatory cytokines and growth fac-
tors (such as TGF-β and VEGF).97 Although the pullulan 
−collagen composite hydrogel has been reported to deliver 
monocytes or macrophages to the wound bed, the interac-
tion between immune cells and the material is unclear. Liu 
et al have reported a 0.5Cu-HHA/PVA@MΦ2 hydrogel to 
provide and regulate MΦ2 for synergistic improvement of 
immunocompromise and impaired angiogenesis to 

Table 2 Genes/Proteins/Peptides Used in Diabetic Wound Healing are Summarized. Most of the Genes are miRNA, and There are 
Both Natural and Synthetic Peptides

Gene/Proteins/ 
Peptides

Carrier 
System

Function References

siRNA β-CD-(D3)7; 

nanometer- 
scale coatings.

Decreasing MMP-9 expression. [78,79]

Keap1 siRNA Lipoproteoplex 
delivers

Activate Nrf2-mediated endogenous antioxidant mechanisms, normalize the ROS 
imbalance.

[81]

miR-26a PCN hydrogel Offer the proregenerative wound microenvironment and proangiogenic miRNAs. [77]

Plasmid DNA 
encoding VEGF

Ga-BDEs Enhance sustained expression of VEGF. [80]

Heparin mimetic 
peptide 

amphiphiles

Nanofibers Enhance production and activity of major angiogenic growth factors (VEGF). [84]

DMOG PCL fiber 

meshes

Reducing the expression of pro-inflammatory factors (IL-1β,IL-6, and TNF-α), increasing 

anti-inflammatory factors (TGF-β1 and IL-4) and GFs (IGF-1, HB-EGF, NGF, and bFGF), 

and promoting angiogenesis (CD-31 and VEGF-α).

[86]

K2(SL)6K2 MDP hydrogels Allowing rapid cellular infiltration, and thus are ideal for tissue engineering strategies. [91]

Proline IKFQFHFD 

hydrogel

Eradicate MRSA biofilm. [85]

Spider silk fusion 

proteins

Nanofibrous 

mats of AaSF

Efficient matrix remodelling of wounds. [93]

Heparin or 

bemiparin

CS hydrogels Improved diabetes-associated impaired wound healing. [87]

Nucleic acids tFNAs Antioxidant activity via the Akt/Nrf2/HO-1 signaling pathway. [88]

Integrin Silk fibroin 
nanosheets

Regulate angiogenesis and promote diabetic ulcer healing. [92]

Laminin mimetic 
peptide SIKVAV

CS hydrogels Significantly promoted BMSCs adhesion and proliferation. [89]

MMP-9 inhibitor 
(R)-ND-336

Linezolid Inhibiting the detrimental MMP-9, mitigating macrophage infiltration to diminish 
inflammation

[90]
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accelerate the diabetic chronic wound healing phase 
transition from inflammation to proliferation and 
remodeling.97 Hydrogels facilitate the adhesion, growth, 
migration and regeneration of immune cells.

Exosomes are nanoscale membrane vesicles (30–150nm in 
diameter) that can be identified by the expression of exosome- 
related markers (such as Alix, Tsg101, CD9, CD63 and CD81) 
and carry functional complexes of proteins, lipids and nucleic 
acids.105–108 Therefore, exosomes are considered as drug 
delivery carriers, and natural RNA carriers for the treatment 
of diseases.109–111 And exosomes are considered as one of the 
most important secretory products of bone marrow mesench-
ymal stem cells, which can mediate intercellular communica-
tion and promote wound healing.112–115 Polypeptide-based 
FHE hydrogel (F127/OHA-EPL) contains adipose-derived 
mesenchymal stem cell exosomes (AMSCs-exo),116 

FHE@exo hydrogel has multifunctional properties of biologi-
cal activity, including injectability, self-healing, antibacterial 
activity, and exosome release. And it can significantly improve 
the proliferation, migration and angiogenesis of human umbi-
lical vein endothelial cells (HUVECs). FHE@exo hydrogel 
promotes neovascularization and cell proliferation, leading to 
faster granulation tissue formation, re-epithelialization, and 
collagen remodeling at wound sites, thus accelerating the 

healing process of diabetic wounds.116 Wang et al developed 
an injectable thermosensitive multifunctional polysaccharide- 
based dressing (FEP) with sustained pH-responsive exosome 
release that promotes angiogenesis and diabetic wound 
healing.117 Moreover, hydroxyapatite/chitosan or chitosan 
hydrogel incorporating microRNA-126-overexpressing syno-
vium mesenchymal stem cells (SMSC-126-Exos) can accel-
erate re-epithelialization, stimulate the proliferation of human 
dermal fibroblasts, and activate angiogenesis.118,119 Exosome- 
based hydrogels hold great promise in the treatment of chronic 
wounds (especially diabetic wounds) and skin regeneration. 
Therefore, it may become a treatment means in the future.

Drugs
Under the framework of pharmaceutical and clinical chal-
lenges of drug delivery in diabetic wound infections, an 
ideal drug delivery system must deliver the drug in deep 
layers of skin. The nanoscale local drug delivery system, 
combined with hydrogel/nanoparticles properties, can sta-
bilize the long-term release of drugs to the wound and 
promote healing.120 At present, a variety of complex deliv-
ery systems have been developed to extend drug delivery 
time121–126 (Table 4). A multi-responsive composite poly-
dopamine/nanocellulose hydrogel with the ability of drug 

Table 3 Summary of Stem Cell/Exosomes Towards Effective Control of Diabetic Wounds

Cell Types Systems Characteristic References

SMSC exosomes CS Wound Dressings Overexpression microRNA-126-3p exosomes. [118,119]

AMSCs exosomes OHA hydrogels Bioactive multifunctional properties (injectability, self-healing, 

antibacterial activity, stimuli-responsive exosomes release).

[116]

GMSCs Exosomes CS/Silk hydrogel sponge Combination of GMSC-derived exosomes and hydrogel. [114]

ASCs exosomes FEP dressing Injectable adhesive thermosensitive multifunctional dressing. [117]

hASC exosome hASC-exos carrying miR-21-5p as 

a cargo by electroporation

Combination of ASC-exos with miR-21 to achieve synergetic 

therapeutic.

[115]

hiPSCs AHA hydrogels Engineering vascularized constructs. [103]

ASCs PEG-gelatin hydrogel Delivery of allogeneic ASCs in vivo. [95]

MSCs RGO nanoparticles Acellular dermal composite scaffold. [96]

ADSCs GSL cryogels Delivering ADSCs on antioxidant GS scaffolds coated with GSL, an 

endothelial basement protein to improve angiogenesis.

[98]

M2 phenotype 

macrophages

HHA hydrogel Multiple modulation mechanisms of immunocompromise and 

angiogenesis.

[97]

Decellularized ECM dECM hydrogels Hydrogels derived from genetically engineered. [100,101]

ECM-biomimetic 
cell-free nanofibrous

Bone ECM-biomimetic 
nanofibrous scaffolds

Without additional growth factors. [99]
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(tetracycline hydrochloride) release and wound healing.127 

The drug can be released continuously for more than 24 
hours, and no explosive drug release occurs at the begin-
ning of the release process. The maximum drug release 
ratio reached 77%, with long-term drug delivery 
properties.127 Desferrioxamine (DFO) is used as 

a hypoxic-mimetic agent, and has been used for the induc-
tion of HIF-1α accumulation.128–130 And HIF-1α has been 
shown to play an important role during the wound 
healing.131 DFO-loaded hydrogel/scaffolds by upregulat-
ing HIF-1α that rapidly promote angiogenesis for diabetic 
skin regeneration132–134 (Figure 4). In addition, mixed 

Table 4 Delivery of Drug/Natural Macromolecular Bioactive Substances Systems with Effective Control of Chronic/Diabetic Wounds

Drugs/ Drug Delivery Systems Functions References

Deferoxamine(DFO) TDDS; 
multifunctional hydrogels; 

nanofibrous/scaffolds.

Increases HIF-1α expression; 
upregulate VEGF expression.

[132–134]

Statins Tissue engineering scaffold In situ eNOS/NO up-regulation. [121]

Insulin Injectable hydrogels pH and glucose dual-responsive hydrogels. [137]

Curcumin Gelatin microspheres; 
chitosan nanoparticles.

MMP9-responsive drug-release system; 
anti-inflammatory and antioxidant.

[139–141]

Dimethyloxalylglycine (DMOG) Porous electrospun fibrous 
membrane

Controllable released DMOG drugs [138]

Ciprofloxacin CS and cyclodextrin polymer 
sponges

local drugs release without risk of toxicity to the body. [122]

Snail glycosaminoglycan Sulfated polysaccharide Accelerated the healing of full-thickness wounds in 
diabetic mice skin.

[123]

Kirenol Diterpenoid Encourage angiogenesis, fibroblast propagation [124]

Quercetin Collagen-nanomaterial-drug 

hybrid scaffold

Promoting collagen deposition and angiogenesis in 

diabetic wound repair.

[125]

Herbal extract of didymocarpus 

pedicellatus

pDMAEMA−HA hydrogel Enhanced cutaneous wound repair as well as high level of 

cellular repair.

[126]

Figure 4 Development of a transdermal drug delivery system for DFO. (A) DFO patch is administered through transdermal drug delivery system into the dermis to 
perform its functions. (B) Functional diagram of DFO and its regulation in the HIF-1a signaling pathway.
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DFO and bioglass (BG) in sodium alginate hydrogel, BG 
and DFO could synergistically upregulate HIF-1α and 
VEGF expression, and subsequently vascularization in 
the wound sites, and better facilitate diabetic skin wound 
healing.135 Insulin is a universal drug for treating diabetes 
because it is a physiological glucose-lowering agent. The 
use of topical insulin became of greater interest as 
a healing agent in diabetic foot ulcers.136 However, the 
use of topical insulin presents a great challenge due to the 
instability of the molecule. In order to ensure molecular 
stability of insulin, it is incorporated into hydrogels to 
maximize its effect. Recently, the drug- and cell-loaded 
hydrogels have promising potential in wound healing. 
Protein drugs (insulin) and live cells (fibroblasts L929) 
can be encapsulated in the pH and glucose dual- 
responsive injectable hydrogels, this hydrogel dressing 
could promote neovascularization and collagen deposition 
and enhance the wound-healing process of diabetic 
wounds.137 The combination of drugs and cell/growth 
factors hydrogel may be a promising approach to enhance 
wound healing and can also be used for the regeneration of 
other vascularized tissues. A kind of aligned porous poly 
(L-lactic acid) electrospun fibrous membranes loaded 
mesoporous silica nanoparticles that release dimethyloxa-
lylglycine for diabetic wound healing.138 Encapsulation of 
curcumin nanoparticles with MMP9-responsive and ther-
mos-sensitive gelatin microspheres hydrogel improves dia-
betic wound healing.139–141

Improving some properties of composite scaffolds/hydro-
gels can increase drug load and control drug release. When 
scaffolds/hydrogels are subjected to certain stimulation (near 
infrared laser irradiation or pH), drugs are released in “on-off” 
mode without explosive drug release at the beginning of the 
release process, and has long-term drug delivery performance. 
In the future, our research direction should be precise admin-
istration, which can be achieved gradually at different stages of 
wound healing. Wound-healing research will need to incorpo-
rate hydrogels, which can deliver more DNA, growth factors, 
peptides and drugs, increasing angiogenesis and wound heal-
ing. It is also important to determine the optimal hydrogel 
degradation rate and water content for faster wound healing, 
while maintaining complex release and mechanical support to 
the wound bed. However, emerging drug resistance and phy-
sicochemical characteristics require the design of more accu-
rate topical drug delivery systems which could be combined 
with 3D technology to achieve high functional efficiencies in 
terms of permeability, stability and therapeutic efficacy.

Non-Bioactive Elements
Metal Ion
Currently, the antibacterial nanoparticles used in wound heal-
ing are silver nanoparticles, gold nanoparticles, copper nano-
particles, nano-bioactive glass particles, etc.142–147 Among 
different metal nanoparticles, AgNP is the most active nano-
particle due to its unique anti-inflammatory properties and 
antibacterial activity against natural and nosocomial strains 
of multidrug-resistant (MDR) microorganisms, promoting 
wound healing.148 The mechanisms of antimicrobial action 
of AgNPs are of two types, (a) the inhibitory action and (b) the 
bactericidal action.15 Such as NIR laser-excited silver triangu-
lar nanoparticles (Tri-Ag) can eradicate multidrug-resistant 
bacteria and promote wound healing.149 Tong et al constructed 
a combinational antibacterial system by loading AgNPs on the 
polydopamine-modified prussian blue NPs(PB@PDA@Ag), 
the bactericidal mechanism of this system can be attributed by 
damaging cell integrity, producing ROS, the reducing ATP and 
disrupting bacterial metabolism.150 Likewise, Zhao et al used 
polydopamine decorated silver nanoparticles, and then loaded 
into conductive hydrogel to inhibit bacterial growth and con-
trol diabetic wound infection.151 Gold NPs (AuNPs) can per-
form gene transfer, drug delivery, as biosensors and cancer cell 
imaging, angiogenesis as well as wound healing.152–155 

AuNPs could inhibit the lipid from peroxidation and prevents 
the formation of ROS to restores antioxidant discrepancies.15 

AuNP combines with epigallocatechin gallate (EGCG) or 
alpha-lipoic acid (ALA) or both (EA) to achieve synergistic 
effects and enhance diabetic wound healing by modulating 
angiogenesis and anti-inflammatory effects.156,157 Wang et al 
optimized a novel gene delivery system based on antimicrobial 
peptide (LL37) grafted ultra-small gold nanoparticles for the 
topical treatment of diabetic wounds with or without bacterial 
infection.158 Copper nanoparticles (CuNPs) have been gained 
increasing attention due to its antibacterial activity in diabetic 
foot ulcer infections159,160 (Table 5). Bhadauriya et al focused 
on the synthesis of the yeast extract-immobilized and copper 
nanoparticle-dispersed carbon nanofibers as a potential dia-
betic wound dressing material.161 Copper-based metal 
−organic framework nanoparticles can be modified to slowly 
release Cu2+, which reduces toxicity and improves wound 
healing in diabetes.147,159,160 However, rapid oxidation and 
agglomeration of copper nanoparticles are key problems dur-
ing their use, and needs to control the stability of CuNPs by 
using biocompatible stabilizer such as chitosan and folic 
acid.159–161
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In recent years, bimetallic/polymetallic composite nano-
materials have great potential in diabetic wound repair.162–164 

Das et al reported a bimetallic (Fe-Cu) wound healing dressing 
material that exhibited antimicrobial activity against methicil-
lin-resistant Staphylococcus aureus and displayed in vivo dia-
betic wound healing property.165 Bioactive glass (BG), which 
is typically composed of Na2O, SiO2, CaO and P2O5, is con-
sidered to be a classical material for hard tissue 
regeneration.166 The ionic products of bioglass dissolution 
stimulate macrophages to secrete anti-inflammatory 
factors.167 Zeng et al combined bioglass and sodium alginate 
for diabetic wound healing.168 Jiang et al found that the Si ions 
released by bioactive glass up-regulated the expression of 
VEGF.169

In the future, the reversible swelling-shrinking transition of 
hydrogels can be utilized to achieve controllable and sustained 
release of Ag+, Cu2+ and Si2+ etc., so as to avoid the explosive 
ion release causing damage to cells. This system has great 
potential in tissue repair and antibacterial application.

Oxygen
Chronic diabetic wounds are limited in oxygen supply due 
to vascular dysfunction and neuropathy.170 In addition, 

high oxygen consumption by cells during inflammation 
also leads to hypoxia in the wounds. Due to the increased 
utilization of oxygen in some regenerated tissues, there are 
inevitable differences between the supply and demand of 
oxygen, and the result is a hypoxic environment with high 
oxidative stress.171 In addition, increased oxidative stress 
in diabetic ulcers is caused by macrophages and neutro-
phils producing more ROS in a hyperglycemic 
response.172,173 Hence the need for multifaceted biomater-
ials that will simultaneously reduce the oxidative stress, 
provide oxygen, and induce angiogenesis. To reduce oxi-
dative stress, Zhu et al developed a thermoresponsive anti-
oxidant poly(polyethylene glycol co-citric acid-co 
-N-isopropylacrylamide) hydrogel (PPCN) that uses the 
laminin-derived dodecapeptide A5G81 (PPCN-A5G81). 
A5G81 peptide conjugation to PPCN via the cross-linker 
N-β-maleimidopropionic acid hydrazide. A5G81 has 
unique receptor-mediated and antioxidant properties and 
is beneficial to the diabetic wound repair.174 Novel nanofi-
brous mats (chitosan/poly (vinyl alcohol)/ZnO nanofi-
brous) with antibacterial and antioxidant properties for 
diabetic wound healing,175 but the mechanism of the 

Table 5 Metallic and Metal Oxide Nanomaterials are Used in Diabetic Wound Repair

Metal Ion Delivery Systems Relative Merits References

Silver PB@PDA@Ag 
nanosystem; 

PDA@Ag NPs/CPHs 

hydrogels

1.Eradicating MRSA assisted with NIR; 
2.Epidermal sensors

[145,146,150,151]

Copper HKUST-1 NPs; 

Cu-CNF-YE nanofiber; 
BSA-CuS nanoparticles

1.Decrease copper ion toxicity and apoptosis; 

2.Simultaneous control of bacterial infections; 
3.As a controllable NO-releasing vehicle.

[147, 159–161, 

213]

Gold AuNPs@LL37 1.A novel gene delivery system; 

2.Topical treatment of diabetic wounds with or without bacterial infection

[158]

Rubidium Rb−CA gel hydrogel Rb−CA gel exhibited a strong anti-inflammatory 

effect on the wound.

[208]

Si and Ca 

ions

BG/AA hydrogel; 

BG/PEM membrane;

1.BG particles stimulated macrophage proliferation; 

2.Improve the angiogenic condition of the wound area.

[163,164,167,168]

Iron 

−Copper

Bimetallic Fe−Cu 

nanocomposite

1.Antimicrobial activity; 2.wound healing property [165]

nCeO PHBV membrane Enhance cell proliferation and vascularization [210]

MoS2 MoS2-BNN6 nanovehicle MoS2-BNN6 nanovehicle can precisely control NO release, generating 
oxidative/nitrosative stress.

[212]

NAGEL 
particles

PCL/gelatin nanofibers 
scaffold;

1.Released Si ions; 
2.Synergetic effect on the improved efficiency of diabetic wound healing.

[162,169]
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healing of diabetic wounds caused by nanofiber mats has 
not been clarified in this study.

Oxygen Containing Nanocarriers 
At present, oxygen-producing materials are mainly delivered 
through some nanoscale systems to relieve wound hypoxia. 
The main oxygen-producing materials are sodium percarbo-
nate (SPO), calcium peroxide (CaO2), magnesium peroxide 
(MgO2), hydrogen peroxide (H2O2), and fluorinated 
materials.176–180 It has been shown that the combination of 
nanomedicine and some oxygen-producing agents can 
improve the wound healing of diabetes.30 Recently, Shiekh 
et al developed a porous cryogels (polyurethane polymeric 
material-calcium peroxide, PUAO-CPO), PUAO-CPO cryo-
gels can not only continuously release oxygen, but also 
supplement with adipose-derived stem cell (ADSCs) 
exosomes181 (Figure 7B). Nanoperfluorocarbon (nano-PFC) 
has been widely studied as an oxygen-carrying system 
to overcome hypoxia-associated resistance in cancer thera-
pies due to its high oxygen affinity and good 
biocompatibility.182–184 In addition, PFC has been approved 
by the USA Food and Drug Administration (FDA) to 
improve myocardial oxygenation and prevent ventricular 
dysfunction.185,186 Therefore, nano-PFC can be used as 
a nano-drug delivery system (NDDS) to deliver molecules, 
such as drugs and oxygen to target tissues, and release the 
contents under the stimulus of external conditions.187,188 

Wang et al combined the radial extracorporeal shock wave 
therapy (rESW) with oxygen-carrying nano-PFC to provide 
targeted oxygen supply, improving blood microcirculation of 
DFUs and accelerating wound healing.189 And when nano- 

PFC is injected into the blood circulation, the nanodroplets 
triggered by rESW can reversibly release oxygen within the 
tumor tissue189 (Figure 8C). This strategy offered a great 
potential for further clinical trials. However, the potential 
safety problems of PFC-based micro/nanomaterials cannot 
be ignored. Therefore, a large number of experiments are 
needed to further prove its reliability. In addition, Zehra et al 
developed a polycaprolactone (PCL)-based oxygen- 
releasing electrospun wound dressings. The dressing can 
produce oxygen continuously for up to 10 days and stimulate 
angiogenesis.190 These oxygen-loading nanomaterials can 
improve wound healing efficiency. Therefore, oxygen- 
producing biomaterials are essential to cure chronic diabetes 
wounds in the future191–194 (Table 6).

Hydrogen Sulfide Containing Nanocarriers 
Besides, the synthesis and levels of circulating hydrogen 
sulfide (H2S) are reduced in diabetic mellitus.195 Studies 
have shown that H2S can stimulate cell proliferation and 
migration and regulate ECs assembly into capillary 
structures.196 Therefore, exogenous H2S supplementation 
is a promising treatment method to promote refractory 
wound healings in diabetic. Lin et al used emulsion tech-
nique to prepare NaHS particles (NaHS@MPs), which 
could be used as in situ depot for continuous release of 
exogenous H2S under physiological conditions.197 The 
sustained release of H2S from NaHS@MPs promotes sev-
eral cell behaviors, including epidermal/endothelial cell 
proliferation and migration, as well as angiogenesis, by 
extending the activation of cellular ERK1/2 and p38, 

Table 6  Summary of Current O2 Delivery Systems

Materials Delivery Systems Functions References

Perfluorocarbon Nano-PFC The targeted release of oxygen into the wound from oxygen-loaded Nano- 
PFC

[189]

MNs with oxygen 
carrying

GelMA tips Oxygen carrying and controllable oxygen delivering ability for wound healing [191]

Calcium peroxide OxOBand; 

PGS/PCL nanofibers; 

scaffolds; 
OGA hydrogel

Delivering oxygen, inducing angiogenesis, and management of oxidative 

stress and infection

[181,192–194]

Sodium percarbonate PCL nanofibers scaffolds Continuously generating oxygen for up to 10 days [190]

Sodium hydrosulfide NaHS@MPs NaHS@MPs sustained release of exogen-ous H2S under physiological 

conditions

[197]

Nitric oxide DNICs Continuous release of nitric oxide [201]
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accelerating the healing of full-thickness wounds in dia-
betic mice.197

Nitric Oxide Containing Nanocarriers 
NO is an antibacterial agent effective against a broad range 
of bacteria, including biofilm forming microorganisms, 
through an oxidation process involving free radical super-
oxide (O2*−) to form peroxynitrite (−OONO).198 Nitric 
oxide (NO) plays a key role in the physiological regulation 
of vascular function, but in diabetic patients, NO synthesis 
and bioavailability decrease as well as NO consumption 
increases.199,200 A direct and effective strategy for promot-
ing diabetic skin ulcer healing is exogenous supplement of 
NO. Chen et al activated the NO-sGC-cGMP pathway by 
inducing long-term NO release (t= 27.4±0.5 h at 25°C and 
16.8±1.8 h at 37°C) and maintaining the angiogenesis 
process.201

Technology
Nanoparticles
Nanoparticle (NP) is a basic component of nanostructure 
and has its unique size and characteristics.202 NPs applica-
tions mainly include drug and gene delivery, tissue engi-
neering and fluorescent biological labels, etc.203–206 

(Figure 5). Currently, the NPs used in diabetics wound 
healing mainly include metallic and metal oxide nanoma-
terials, nonmetallic nanomaterials (Table 7). NPs and 
nanotechnology allow them to achieve high local drug 

concentrations with relatively few side effects compared 
to traditional drug delivery systems, so drug therapy is 
more effective. There are two main criteria of nanomater-
ials used in wound healing (1) nanomaterials that are 
beneficial to wound healing; (2) nanomaterials as delivery 
vehicles.

Metallic and Metal Oxide Nanomaterials
The antibacterial mechanism of silver is realized by block-
ing the respiratory enzyme pathways and altering the 
microbial DNA and cell wall.15 Tong et al promoted 
diabetic wound healing through the antibacterial of silver 
ions.150 Copper ions can also stimulate angiogenesis and 
collagen deposition processes in addition to antibacterial 
effects, thus improving diabetic wound healing.159–161 

Rubidium (Rb) is an important microelement for the 
human body. Rb+ has been reported to inhibit or kill 
bacteria by affecting membrane potential.207 He et al 
loaded rubidium into calcium alginate hydrogel to achieve 
antibacterial and promote diabetic skin wound healing.208 

The intrinsic antibacterial properties of zinc oxide nano- 
particles (nZnO) prompt the use of these nanomaterials in 
several hydrogel-based wound dressings.209 Cerium oxide 
nanoparticle incorporated electrospun membranes for dia-
betic wound healing.210 However, despite the high poten-
tial of metallic nanoparticles in treating drug-resistant 
bacteria, the high toxicity of these materials limits their 
use in wound healing.211 In addition, Gao et al have 
reported a new near-infrared 808nm laser-mediated nitric 

Figure 5 The major applications of nanoparticles.
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oxide-releasing nanovehicle (MoS2-BNN6), MoS2-BNN6 
can effectively inhibit the growth of ampicillin-resistant 
Escherichia coli, heat-resistant Escherichia faecalis, and 
pathogen Staphylococcus aureus.212 Zhao et al used 
bovine serum albumin stabilized-CuS (BSA-CuS) NPs to 
propose that PTT could kill bacteria in the field of diabetic 
wound infection213 (Figure 6). See Table 5 for detailed 
description of metal ion nanoparticles.

Nonmetallic Nanomaterials
A recent study reported that the use of graphene oxide 
(rGO)-isabgol nanocomposite dressings for enhanced vas-
cularization and accelerated wound healing in normal and 
diabetic rats.214 Furthermore, a study has shown that the 
different adhesion and bioactivity properties of GO can 
prevent bacterial adhesion and biofilm formation. 
Therefore, there is a growing interest in studying the poten-
tial of graphene-based materials in biomedical applications, 
such as drug delivery, tissue engineering, imaging, biosen-
sing and wound healing.125,215,216 Porous silicon (pSi) is 

a biological material widely used in vivo and in vitro.217 pSi 
has the ability to store and release a variety of small mole-
cular drugs, oligonucleotides, and even protein 
therapeutics.218,219 The use of porous silicon nanoparticles 
(pSi NPs) is demonstrated for the controlled release of Flii 
neutralizing antibodies (FnAb) to diabetic wounds.220 The 
use of nanotherapeutic drugs alone may cause rapid degra-
dation and cannot reach the target tissue quickly and effec-
tively, thus reducing the biological effect.58 Xie et al used 
a dual-growth factor releasing nanoparticle-in-nanofiber 
system, encapsulated platelet derived growth factor in NP, 
embedded into VEGF nanofiber, and delivered VEGF 
quickly and PDGF in a relayed manner. Nanofiber/nanopar-
ticle scaffolds significantly accelerate wound healing by 
promoting angiogenesis, increasing reepithelialization, 
and controlling granulation tissue formation.221

Naturally occurring polymers, such as chitosan nano-
particles, have been studied for their antibacterial activity 
and pro-wound healing properties.222,223 Correa et al 
reported a melatonin loaded lecithin-chitosan 

Table 7 Other Approaches for Diabetic Wound Repair

Technology Systems Results References

NPs Chitosan/PVA Nano fiber; CW/NPs/HBC-HG 
hydrogel; 

MEL-NPs; CS/PVA/ZnO nanofibrous 

membranes.

Substrate does not have any recognized cytotoxicity; 
antibacterial properties.

[175,222–224]

rGO; 

ADM-GO-PEG/Que.

Enhanced angiogenesis, collagen synthesis, and deposition in 

treated wounds.

[125,214]

pSi NPs. FnAb-loaded pSi NPs treated with proteases show intact and 
functional antibody for up to 7d post-treatment.

[220]

3D printing A top layer made of silver-loaded gelatine 
cryogel; a bottom layer made of PDGF-BB- 

loaded 3D printed Gel scaffold.

The substrate was able to promote reepithelialization, 
granulation tissue formation, collagen deposition and 

angiogenesis in vivo.

[248]

Satureja cuneifolia-loaded SA/PEG scaffolds. 3D printed scaffolds have shown an excellent antibacterial 

effect

[262]

Microneedle patches. Regulated the blood glucose levels of diabetic mice in 

normoglycemic ranges for up to 40 h

[263]

Radially or vertically aligned nanofibers in 

combination with BMSCs.

Enhancing the formation of granulation tissue, promoting 

angiogenesis, and facilitating collagen deposition.

[249]

PCL hydrophobic outer layer; 

Gel-pio inner layer.

Exhibit excellent ability to waterproof and prevent bacterial 

adhesion.

[250]

Four-layer composite dressing 

(PU and dCA).

Not only allows wound exudates transport from wound bed 

to the dressing, but also enables controlled backflow of 

bioactive ion containing fluid to the wound bed for 
stimulating angiogenesis.

[251]
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nanoparticles improved the wound healing in diabetic 
rats.224 Chitosan composites usually exhibit unique prop-
erties that are not individually displayed by chitosan or the 
incorporated materials.175,225

Currently, nanocarriers have been validated in vitro and 
offered potential therapeutic applications that require to be 
further tested in vivo. At the same time, several nano- 
therapeutic agents are used in combination with NPs 
(loaded copper, which is helpful for wound healing) to 
provide synergistic effect and accelerate wound healing.

Smart Hydrogels
Hydrogels are considered to be three-dimensional nanofi-
ber materials composed of cross-linked hydrophilic poly-
mer networks.46 Due to the presence of chemical or 
physical cross-links, they are able to swell and retain 
large amounts of water, and preserving their structural 
and dimensional constrained integrity.47 Hydrogels are 
biocompatible and biodegradable materials and have 
been used in cell therapy, drug delivery, biosensing, tissue 
engineering and wound healing226–229 (Table 8).

Injectable Hydrogels
In recent years, injectable hydrogels have favored among researchers 
due to its nonsurgical treatment to the patients for the purpose of 
mini-invasive medicine, especially for deep, irregular injuries.230,231 

To enable injection, most in situ forming hydrogels are delivered in 
a liquid form that will subsequently solidify in the body.232,233 

Typically, the injected precursor gel solution forms a hydrogel via 

chemical (eg, michael-type addition reaction, disulfide bond forma-
tion, click chemistry, radical polymerization) or physical (eg, ionic 
interactions, hydrogen bonding, hydrophobic interactions) 
crosslinking.234,235 Chen et al developed injectable self-healing and 
antibacterial hydrogel, the multi-functional hydrogel featured man-
ageable, resistant to mechanical irritation, antibacterial and angio-
genic properties. Hydrogel would show great promise in the 
physiological dysfunction and bacterial infection wounds.236 

However, further studies are needed on the release and cytotoxicity 
of silver ions. Wang et al developed multifunctional hydrogel 
(injectable, self-healing, and adhesive) that simultaneously elimi-
nated MRSA infection, reduced hyperglycemia, improved oxidative 
stress, and continuously provided oxygen.237 In addition, Kong et al 
loaded desferrioxamine and bioglass into injectable sodium alginate 
hydrogel to synergistic promote diabetic wound healing.135

There have been many reports on wound dressing with 
bioactive/non-bioactive substances (growth factors, stem 
cells/exosomes and oxygen, etc.) for diabetic wound, but 
few studies have considered the specific physiological 
environment (such as acidic pH, ROS and high glucose 
levels) of diabetic wounds. Li et al reported a pH and 
glucose dual-responsive injectable hydrogel by in situ 
crosslinking of modified chitosan and oxidized dextran, 
and then Zhao et al incorporated insulin and fibroblasts 
into the hydrogel, which could not only respond to pH and 
glucose, but also promote wound healing in diabetic 
wounds.137,238 Zhu et al used zwitterionic hydrogel to 
monitor pH value and glucose concentration in diabetic 

Figure 6 Schematic diagram of BSA-CuS antibacterial therapy. Reprinted with permission from Zhao Y, Cai Q, Qi W, et al. BSA-CuS nanoparticles for photother- mal 
therapy of diabetic wound infection in vivo. Biol Chem ChemBiol. 2018;3:9510–9516. Copyright 2018, John Wiley and Sons.213 (A) HRTEM image of the BSA-CuS 
nanoparticles. (B) Schematic illustration of BSA-CuS nanoparticles as photothermal agent for photothermal antibacterial therapy in vitro and in vivo.
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wounds, and these two parameters are converted into 
visible images, which were collected by smartphones and 
monitor changes in wounds at any time239 (Figure 7A). 
This multifunctional wound dressing may open vistas in 
chronic wound management and guide the diabetes treat-
ment in clinical applications.

Conductive Hydrogels
In recent years, conductive hydrogels have also been widely 
used in health recording electrodes, biomedical patches, wear-
able/implantable bio-devices, and electronic skin.240–244 

Conductive hydrogels are stimulated by external electrical 
signals, which are converted to bioelectrical stimulation after 

Figure 7 Schematic diagram of hydrogel synthesis. (A) Scheme of poly-carboxybetaine (PCB) hydrogel dressing for the detection of pH value and glucose concentration in 
wound exudate. Reprinted with permission from Zhu YN, Zhang JM, Song JY, et al. A multifunctional pro-healingzwitterionic hydrogel for simultaneous optical monitoring of 
pH and glucose in diabetic wound treatment. Adv Funct Mater.2019:1905493. Copyright 2019, John Wiley and Sons.239 (B) The formation of OxOBand from PUAO-CPO 
cryogels with ADSC-exos. Reprinted with permission from Shiekh PA, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound 
dressing OxOBandalleviate diabetic and infectious wound healing. Biomaterials.2020;249:120020. Copyright 2020, Elsevier.181 

Abbreviations: HRP, horseradish peroxidase; DCF, dichlorofluorescein; GOx, glucose oxidase; H2DCF, 2′,7′-dichlorofluorescein-diacetate.
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reaching the skin to achieve the purpose of treatment. Zhao 
et al developed a conductive hydrogels (good self-healing 
ability as well as repeatable adhesiveness), which can promote 
angiogenesis, collagen deposition, inhibit bacterial growth and 
control diabetic wound closure.151 Zhang et al designed 

conductive hydrogels based on polyvinyl alcohol and chitosan, 
the conductivity can enable hydrogels to perceive temperature 
and strain.245 The hydrogels are expected to build flexible 
sensory systems and the next generation of intelligent biome-
dical products in the future.245 Researchers are now focusing 

Figure 8 Schematic diagram of material synthesis. (A) Schematic of the hierarchical structure of LbL films into a single coating. The first (X) film is a hydrolytically 
degradable undercoating, while the second (Y) film contains the siRNA to be delivered. (B) Side-on schematic of hierarchical LBL film architecture. Reprinted with 
permission from Castleberry SA, Almquist BD, Li W, et al. Self-assembled wounddressings silenceMMP-9 and improve diabetic wound healing in vivo. Adv Mater. 
2016;28:1809–1817. Copyright 2016, John Wiley and Sons.79 (C) Schematic illustration of the synthesis procedure and rESW-responsive oxygen release from Nano- 
PFC. Adapted from Wang S, Yin C, Han X, et al. Improved healing of diabetic footulcer upon oxygenation therapeutics through oxygen-loading nanoperfluorocarbon-
triggered by radial extracorporeal shock wave. Oxid Med Cell Longev. 2019;2019:5738368. Creative Commons license and disclaimer available from: http://creativecommons. 
org/licenses/by/4.0/legalcode.189

Table 8 To Summarize the Role of Multifunctional Hydrogel in Diabetic Wound Healing

Smart Hydrogels Peculiarity References

Phenylboronic-modified CS, PVA and benzaldehyde- 

capped poly(ethylene glycol) hydrogels.

pH and glucose dual-responsive injectable hydrogels. [137,238]

PDA@Ag NPs/polyaniline, 

and PVA hydrogels.

Skin-inspired antibacterial conductive hydrogels; good self-healing 

ability as well as repeatable adhesiveness.

[151]

Calcium silicate nanowires, SA, and OPO hydrogel 

scaffolds.

Excellent and controlled photothermal ability. [247]

SH-PEG and silver nitrate hydrogel. Injectable self-healing coordinative dynamic multifunctional hydrogel. [236]

EPL-coated MnO2 nanosheets and insulin-loaded FCHO 

hydrogel.

Injectable multifunctional hydrogel. [237]

Polypyrrole or Zn-functionalized CS PVA hydrogel. Highly stretchable and conductive self-healing hydrogel. [245]

PCB hydrogel. Multifunctional pro-healing zwitterionic hydrogel; simultaneous 
optical monitoring of pH and glucose.

[239]

SA hydrogel. Bioactive injectable hydrogels. [135]

PVA-based hydrogel. ROS-scavenging hydrogel. [246]
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on developing smarter hydrogels that not only contain “sen-
sor” moieties that can respond to wound environmental pH, 
ROS levels, glucose concentrations, etc., but also are easy to 
operate and safe, this smart drug delivery system can promote 
diabetic wound healing.246,247

Although significant progress has been made in inject-
able hydrogels, more research is needed to address some 
of the current technical challenges. A major limitation of 
injectable gels is the rapid release of low molecular weight 
compounds such as drugs and biomolecules. One way to 
slow down the kinetics of drug release is to hybrid the 
hydrogel with drug-loaded nanoparticles. Furthermore, the 
interaction between cells-matrix should be enhanced. All 
of these methods in combination with 3D cryoprinting. 
Additionally, the size of injectable hydrogels could be 
a barrier when moving from preclinical studies into clin-
ical practice, where larger scaffolds are often required for 
humans. In the future, designing more compressible or 
self-healing injectable intelligent hydrogels should 
broaden their biomedical applications and accelerate their 
clinical translatability.

Other technology
Currently, various technologies, especially multifunctional 
systems (including photothermal therapy (PTT), layer-by- 
layer (LBL) self-assembly technique and 3D-printing tech-
nology), are widely used in diabetic wound repair.248–251

Photothermal Therapy
PTT is based on near infrared (NIR) laser triggered ther-
apy, widely used in cancer treatment. It combines near- 
infrared laser and light-absorbing nanomaterials to achieve 
local high temperature around NPs, leading to cancer cell 
death. Huang et al synthesized BSA-CuS nanoparticles by 
biomineralization method of bovine serum albumin (BSA) 
and copper sulfide (CuS), it showed strong killing bacterial 
ability under NIR.213,252 PB@PDA@Ag NPs can acceler-
ate the healing of diabetic wounds under NIR.150 In addi-
tion, MoS2-BNN6 can effectively inhibit the growth of 
ampicillin-resistant Escherichia coli, heat-resistant 
Escherichia faecalis, and pathogen Staphylococcus 
aureus.212 Although nanoparticles based PTT has great 
potential for treating diabetic wound infections, local 
heat can also severely damage surrounding healthy tissue, 
so precise research and specific clinical trials are needed 
for PTT therapy.

Layer-by-Layer Self-Assembly Technique
Some biomaterials can improve their biomedical proper-
ties through many simple methods, such as layer-by- 
layer (LBL) self-assembly technique.253 LBL self- 
assembly technique is widely used in biomedical for 
delivery from a broad range of material surfaces.254 

And LBL modified composite material has good stabi-
lity, mechanical properties and hydrophilicity.255,256 

LBL self-assembly technique is favored by many people 
because it can alternately deposit the electrostatic force 
with opposite charge on the surface of polyelectrolyte 
matrix, improving the continuous release of drugs, and 
is easy to operate, controllable and economical without 
potential complications.257 Natural rubber latex (NRL) 
can be used to treat chronic skin wounds, but because of 
their low integration, most applications of NRL bio-
membranes are external, short-term implants, or as 
delivery matrices.258,259 Davi et al can increase the 
membrane formation speed by 10 times by spraying 
LBL technology.260 In addition, self-assembled nan-
ometer-scale coatings can incorporate and release ther-
apeutically relevant quantities of siRNA in a controlled 
fashion to yield rapid diabetic wound closure79 (Figure 
8A and B). Thus, the use of LBL to alter localized 
protein expression levels has significant implications 
for the treatment of site-specific diseases, including car-
diovascular disease, DFUs, cancers, and transplant 
rejection.

3D-Printed
3D-printed scaffolds for wound dressings have many 
advantages, such as the ability to adjust the dimensional 
characteristics of wound dressings (such as area, thickness, 
or pore size), simple drug loading, the use of a variety of 
materials, and oxygen penetration due to pore design.261 

Sodium alginate/polyethylene glycol (SA/PEG) scaffolds 
were prepared by adding different concentrations (1, 3 and 
5 wt.%) of PEG to SA using 3D-printing technology. 3D- 
printing scaffolds had good antibacterial effect, especially 
against gram-positive bacteria. In addition, using 3D- 
printing technology, ideal porosity and properties were 
obtained, enabling cells to grow on/within the 
scaffold.262 Wu et al used extrusion-based 3D printing 
and post stretching to fabricate a microneedle patch system 
for minimally invasive and glucose-responsive insulin 
delivery for diabetes treatment.263
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Conclusions and Perspectives
The treatment of diabetic wounds is complex and challenging 
due to its pathophysiology, resulting in impaired function of 
different cells and in unbalanced levels of key biochemical 
healing mediators. Based on the characteristics of diabetic 
wounds and the mechanism of tissue repair, nanoparticles/ 
hydrogels loaded with bioactive molecules (such as growth 
factors, genes, proteins/peptides, stem cells/exosomes) and 
non-bioactive substances (metal ions, oxygen and nitric 
oxide), as well as nanotechnology (eg, PTT, LBL self- 
assembly technique and 3D printing) have been applied to 
diabetic wound healing (Figure 9). The etiopathogenesis of 
diabetic ulcers is too complex, one or two substances are not 
enough to accelerate wound healing, so a variety of sub-
stances can be combined to release in different stages of 
wounds to accelerate diabetic wound healing. Overall, the 
future direction may be the development of new biomaterials 
with multiple roles (including improve hypoxia, enhance 
angiogenesis, reduce oxidative stress and prevent infection) 
that may regulate wound healing at all stages and provide 
a balanced environment throughout the wound healing pro-
cess, thereby reducing potential complications.

In recent years, people are interested in using various 
technologies to prepare some multifunctional nano-systems 
for diabetic wound healing. However, enough information 
about the physicochemical properties of nanoscale systems 
and their expected behavior and toxicity in human body 
remains unclear. In the long term, further studies are indis-
pensable to provide insights into how research findings 
about technology-based therapies can be applied in the 
clinical arena. In the future, we are sure to design exciting 
intelligent nanotechnology platforms for the diagnosis and 
treatment of various chronic diseases.
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Figure 9 Potential therapies for diabetic wound repair. Strategies for manipulating the regeneration of diabetic wounds include the use of hydrogels (loaded with small 
molecules and stem cells, etc.), photothermal therapy, and materials that release oxygen. All of these elements have been demonstrated to have an effect on in vitro and 
in vivo models of wound healing. These repair mechanisms include vascularization, less ROS production, oxygen release, and antimicrobial resistance. Therefore, combining 
these strategies will undoubtedly change the result of diabetic wound healing.
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