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Background: Despite considerable efforts, the pathogenic mechanisms of asthma are still 
incompletely understood, due to its heterogeneous nature. However, metabolomics can offer 
a global view of a biological system, making it a valuable tool for further elucidation of 
mechanisms and biomarker discovery in asthma.
Methods: GC-MS–based metabolomic analysis was conducted for comparison of urine 
metabolic profiles between asthmatic children (n=30) and healthy controls (n=30).
Results: An orthogonal projections to latent structures discriminant–analysis model revealed 
a clear separation of the asthma and control groups (R2

x=0.137, R2
y=0.947, Q2=0.82). A total 

of 20 differential metabolites were identified as discriminant factors, of which eleven were 
significantly increased and nine decreased in the asthma group compared to the control 
group. Pathway-enrichment analysis based on these differential metabolites indicated that 
sphingolipid metabolism, protein biosynthesis, and citric acid cycle were strongly associated 
with asthma. Among the identified metabolites, 2-hydroxybutanoic acid showed excellent 
discriminatory performance for distinguishing asthma from healthy controls, with an AUC of 
0.969.
Conclusion: Our study revealed significant changes in the urine metabolome of asthma 
patients. Several perturbed pathways (eg, sphingolipid metabolism and citric acid cycle) may 
be related to asthma pathogenesis, and 2-hydroxybutanoic acid could serve as a potential 
biomarker for asthma diagnosis.
Keywords: asthma, metabolomics, sphingolipid metabolism, citric acid cycle, biomarker

Introduction
Asthma is the most common chronic inflammatory airway disease in childhood, and 
is characterized by airway hyperresponsiveness coupled with reversible airway 
obstruction.1 High prevalence of asthma in children is found in both high-income 
countries and low- and middle-income countries.1 For instance, asthma affects 
approximately 6 million children in the US.2 As one of the most asthma-afflicted 
countries, China has nearly 30 million asthmatics, 10 million of which are 
children.3 Also, the Chinese National Cooperative Group on Childhood Asthma 
reported the prevalence of asthma in children aged 0–14 years in China was 0.09%– 
2.60% in 1990, 0.52%–3.34% in 2000, and 0.42%–5.73% in 2010, with the national 
average being 0.91%, 1.54%, and 2.32%, respectively, indicating the increasing 
number of pediatric asthma patients over the last few decades.4 As a result, child-
hood asthma imposes a heavy burden on both society and individual families, due 
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to increased hospital visits, health-care costs, and parental 
absence from work, compared to asthma in adults.1,5,6 

Despite considerable advances in diagnosis and long- 
term management, asthma still accounts for 0–0.7 per 
100,000 deaths in children globally and remains a serious 
public health concern.1

Currently, inhaled and oral corticosteroids, inhaled 
short-acting and long-acting β2 agonists, and leukotriene- 
receptor antagonists are commonly used as therapeutic 
drugs for asthma;7 however, some patients show comple-
tely refractory responses to these treatments.8,9 Even 
worse, side effects, including osteoporosis, immunosup-
pression, mood changes, and hypothalamic–pituitary–adre-
nal axis suppression, have been found to be 
associated with corticosteroid intake at high doses or pro-
longed use of inhaled corticosteroids.10 As a multifaceted 
disease, asthma is influenced by interactions among multi-
ple genetic, epigenetic, and environmental factors.11 

Although a number of genetic determinants have been 
identified, incomplete understanding of molecular determi-
nants as mediators of asthma pathogenesis are major impe-
diments to asthma prevention and treatment.12,13 Given the 
heterogeneity of underlying pathogenesis, early diagnosis 
and management of asthma are considerably more difficult 
in asthmatic children, as they undergo rapid biological, 
developmental, and psychosocial changes in a relatively 
short period. As such, these issues underscore the crucial 
need to better understand childhood asthma by identifying 
potential diagnostic biomarkers/therapeutic targets and 
illustrating pathophysiological mechanisms.

In recent years, metabolomics, which systematically ana-
lyzes the global collection of endogenous small-molecule 
metabolites (eg, amino acids, lipids, carbohydrates, nucleo-
tides, and organic acids) in biological specimens (eg, bio-
fluid, cells, and tissue), provides a comprehensive assessment 
of biological processes (eg, redox balance, oxidative stress, 
signaling transduction, apoptosis, and inflammation).14 For 
instance, a high-resolution metabolomic study conducted by 
Khan et al showed that L-homocysteine sulfinic acid and 
cysteic acid along with carnitine could serve as promising 
noninvasive biomarkers for early acute myocardial infarction 
detection.15 Global metabolomic analysis showed nitrogen 
metabolism and its components (glycine, taurine, and phe-
nylalanine) was a potential effector of the earliest stages of 
type 2 diabetes pathophysiology,16 indicating metabolomics 
can be employed in biological studies or biomarker- 
screening studies. Similarly, several studies have been per-
formed for asthma to identify novel biomarkers and altered 

pathways and have contributed to better understanding of 
asthma pathogenesis.17–25 As a result, a variety of metabolic 
pathways (including glycine, serine, and threonine metabo-
lism, N-acylethanolamine and N-acyltransferase pathways, 
and glycerophospholipid, retinol,and sphingolipid metabo-
lism) and biological molecules (such as methionine, gluta-
mine, and acetate) have been found to be involved in the 
progression of asthma.11,17–25 However, most of these studies 
were conducted in animal models or adult patients. 
Furthermore, samples used were usually sera or bronchoal-
veolar lavage fluid. On the other hand, urine-based biomar-
kers are especially appealing in children,23–25 as urine 
collection is noninvasive, easily accessible, abundant, stable, 
and comprehensive in metabolite composition.

Taking into consideration these issues, we aimed to 
further systematically study metabolic perturbance in asth-
matic children by applying GC-MS–based metabolomic 
analysis to urine samples in the current study. More spe-
cifically, our findings not only identify potential biomar-
kers of interest and provide pathway and mechanistic 
information but also provide important data complement-
ing previous studies.

Methods
Study Population
Thirty children with asthma and 30 age- and sex-matched 
healthy controls were recruited from Children’s Hospital, 
Zhejiang University School of Medicine between 
March 2015 and August 2015. Asthma diagnosis was 
confirmed by pediatric respiratory physicians based on 
clinical history, eg, recurrent cough, recurrent wheeze, 
shortness of breath, chest tightness, and evidence of rever-
sible airway obstruction of ≥12% increase of forced 
expiratory volume in 1 second (FEV1) after bronchodilator 
inhalation, according to Global Initiative for Asthma 
guidelines.26 Asthmatic subjects with normal lung function 
free from asthma exacerbations for at least 3 months were 
considered stable asthmatic patients. Normal lung function 
was indicated by  
FEV1, forced vital capacity (FVC), peak expiratory flow 
≥80% predicted, and bronchial obstruction FEV1/FVC 
<90%.26 All asthmatic subjects had used inhaled 
corticosteroids as a maintenance medication, and all were 
in stable condition. All asthmatic medications were 
stopped for at least 3 days before sampling to minimize 
possible drug effects on urine-metabolite levels. Healthy 
controls had no history of chronic respiratory condition, 
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allergic diseases, or any other diseases that might influence 
the results. None of the participants had had acute airway 
infection in 6 weeks, or were prescribed a particular diet or 
food deprivation before sampling. At recruitment, children 
underwent routine blood tests, lung-function assessment 
and total IgE determination. Meanwhile,demographic and 
atopic-index data were collected. The Ethics Committee of 
the Children’s Hospital, Zhejiang University School of 
Medicine approved the study, and all parents provided 
written informed consent prior to sample and data collec-
tion. All methods were conducted in accordance with the 
principles of the Declaration of Helsinki.

Urine-Sample Collection and Preparation
Early-morning midstream-urine specimens were collected 
following overnight fasting, centrifuged at 3,000 rpm for 10 
minutes at 4°C to remove debris, and then the supernatants 
were kept at −80°C until analysis. After being thawed at 
room temperature and centrifuged at 10,000 rpm for 5 min-
utes, 200 μL urine samples were treated with 20 μL urease to 
degrade the urea at 37°C for 60 minutes. Then, 40 μL 0.1 mg/ 
mL L-2-chlorophenylalanine (Hengbai Biotech, Shanghai, 
China) was added as an internal standard and vortex-mixed 
for 30 seconds. Subsequently, 600 μL methanol was added to 
this solution, followed by centrifugation at 13,000 rpm for 10 
minutes at 4°C to precipitate the protein. Thereafter, the 
supernatant was transferred to a new tube and dried under 
a stream of N2 gas. Before analysis, the dried metabolic 
extracts were dissolved in 30 μL methoxyamine solution 
(20 mg/mL in pyridine) at 37°C for 90 minutes. Later, 30 
μL methyl-N-trimethylsilyltrifluoroacetamide with 1% 
chlorotrimethylsilane was added for trimethylsilylation for 
60 minutes at 65°C. After derivatization, the supernatant was 
subjected to GC-MS analysis. Meanwhile, quality control 
(QC) samples, used for monitoring the repeatability, stability, 
and reliability of the analytical method, were prepared by 
mixing equal volumes (10 μL) of urine samples from all 
subjects before sample processing. The pooled QC sample 
was pretreated as aforementioned for experimental samples. 
Each QC sample was then injected every ten experimental 
samples throughout the whole assay.

GC-MS Analysis
A 7890 GC system (Agilent Technologies, Santa Clara, CA, 
USA) coupled with a Pegasus HT time-of-flight mass spec-
trometer (Leco, St Joseph, MI, USA) was used to analyze 
the derivative samples. Samples (1 µL) were injected in 
splitless mode with helium as the carrier gas at a constant 

flow rate of 1 mL/min, and then separated with an HP5 MS 
fused-silica capillary column (30 m × 0.25 mm × 0.25 μm; 
Agilent). The initial column temperature was set at 50°C for 
1 minute, raised to 330°C at a rate of 10°C/minute, and then 
held at 330°C for 5 minutes. Temperatures for the inlet, 
transfer line, and ion source were 280°C, 280°C, and 250° 
C, respectively. Ionization was achieved in electron-impact 
mode at 70 eV. MS data were obtained in full-scan mode 
across a mass:charge ratio of 30–600 at a rate of 20 spectra 
per second after a solvent delay of 366 seconds.

Data Processing
Chroma TOF4.3X (Leco) and the Leco-Fiehn Rtx5 data-
base were employed for preprocessing the raw data 
obtained from GC-MS, including raw peak extraction, 
data baseline filtering and calibration, peak alignment, 
deconvolution analysis, peak identification, and integra-
tion of the peak area.27 The retention index was used to 
identify the peak, and index tolerance was 5,000. 
Metabolites were identified by referring their mass spectra 
and retention indices of peaks to to the Leco-Fiehn 
Metabolomics Library. If the similarity value generated 
from the library were >700, it indicated the metabolite 
identification was reliable.27 The metabolic features 
detected in less than half the QC samples were removed. 
Additionally, missing values of raw data were filled by 
half the minimum value. The metabolites were left using 
interquartile-range denoising, and data analysis was 
accomplished using internal-standard normalization.28 

Then, the resultant data of peak numbers, sample names, 
and normalized peak areas were imported to Simca ver-
sion 14.0 (Umetrics, Umea, Sweden) for principal- 
component analysis (PCA) and orthogonal projections to 
latent structure–discriminant analysis (OPLS-DA) to 
observe metabolic variations between samples. In detail, 
PCA was used to display the overall difference, while 
OPLS-DA was used to verify the model and visualize 
discrimination between groups.29 Significantly different 
metabolites were screened by variable importance for 
projection (VIP) values >1 and p<0.05.29 For detecting 
the diagnostic capacity of the identified panel, receiver- 
operating characteristic (ROC) curves and area under the 
ROC curve (AUC) were computed by R package version 
3.1.0.30

Pathway analysis and functional enrichment analysis of 
metabolites was done with MetaboAnalyst 3.0, which is 
online software with predictive ability mapped to the 
Kyoto Encyclopedia of Genes and Genomes metabolic 
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pathway database.31 All identified pathways were shown 
according to p-values from pathway-enrichment analysis 
and pathway-impact values from pathway-topology 
analysis.31 The criteria applied to select significantly 
altered metabolic pathways were p<0.05 and impact >0.

Statistical Analysis
SPSS version 23.0 was used for statistical analysis of the 
baseline characteristics of the study subjects. Categorical 
variables are represented as numbers (percentages) and 
were analyzed with χ2 tests. Continuous normal–distribu-
tion variables are expressed as means ± SD and were 
analyzed with Student’s t-test, while continuous abnormal- 
distribution variables are expressed as median (25th–75th 
percentile) and analyzed with Mann–Whitney U test. 
Results were considered statistically significant at p<0.05.

Results
Population Characteristics
A total of 60 children were enrolled in this study: 30 asth-
matics and 30 healthy controls. Comparison of baseline 
characteristics of children with asthma and healthy controls 
is presented in Table 1. There were significant differences in 
eosinophil percentage, eosinophil count, FVC (% predicted), 
FEV1 (% predicted), peak expiratory flow (% predicted), 
total IgE levels, and atopic indices (including pollen, cold 
air, and mite sensitization) between children with asthma 
and healthy controls. There were no differences in age, sex, 
height, weight, BMI, white blood–cell counts, food sensiti-
zation, or FEV1/FVC between the groups.

Metabolic Profiling
After GC-MS data processing, 333 peaks were detected 
(Supplementary Dataset 1). After the missing raw data had 
been filled by half the minimum value, 232 metabolites 
(Supplementary Dataset 2) were finally selected through 
interquartile-range denoising and internal standard 
normalization.27,28

Initially, PCA was performed to show the distribution 
of the original data. As shown in the score plots of PCA 
(Figure 1 and Supplementary Figure 1), although the R2 

and Q2 values generated from the PCA model appeared 
to be low (R2

x=0.152, Q2=0.0396), a separation trend of 
samples between the two groups was observed. 
Subsequently, OPLS-DA was applied to further improve 
group separation and get a better understanding of vari-
ables responsible for the classification. The score plot of 

the OPLS-DA model demonstrated that the asthma and 
control groups were fully separated (R2

x=0.137, R2
y 

=0.947, Q2=0.82; Figure 2A), implying robust metabolic 
differences between the asthma and control groups. 
Through a permutation test repeated 200 times, Q2 and 
R2 values were found to be higher than their original 
values (Figure 2B), suggesting goodness of fit and better 
predictive capability for the OPLS-DA models.

Potential Metabolite-Biomarker 
Identification
According to the ranking of VIPs from the OPLS-DA 
models, 20 metabolites were considered associated with 
asthma (with VIP >1 and p<0.05): five amino acids, three 
fatty acids, four organic acids, four sugars, and four aro-
matic compounds (Table 2). Levels of eleven metabo-
lites — L-allothreonine 1, stearic acid, succinic acid, 
2-hydroxybutanoic acid, azelaic acid, gentiobiose 2, tyra-
mine, leucine, D-altrose 1, D-erythrosphingosine 1, and 
citraconic acid 4 — were significantly higher in urine 
samples from asthmatic patients than healthy controls. In 
contrast, levels of nine metabolites — valine, uric acid, 
methionine 1, 3,4-dihydroxycinnamic acid, purine ribo-
side, malonic acid 1, cysteine, erythrose 1, and lactamide 
1 — were significantly lower in the urine of asthmatic 
patients than control subjects.

To further evaluate the diagnostic efficacy of the afore-
mentioned metabolites, ROC curves were constructed and 
AUCs calculated. As shown in Supplementary Table 1, only 
2-hydroxybutanoic acid showed excellent accuracy with 
AUC of 0.969, sensitivity 96.2%, and specificity of 100% 
(Figure 3), while ten metabolites showed moderate accuracy 
(AUC 0.7–0.8) and the remaining nine metabolites showed 
poor accuracy (AUC <0.7).

Construction of Metabolic 
Pathways Based on Differential 
Metabolites
To further illustrate the underlying meaning of the altered 
metabolic products, the 20 differential metabolites were 
imported into MetaboAnalyst 3.0 to conduct pathway and 
functional enrichment analysis. As shown in Figure 4A 
and Supplementary Table 2, 32 perturbed metabolic 
pathways were identified, among which ten were signifi-
cantly perturbed in asthma patients compared with healthy 
controls (p<0.05, impact >0). Within these pathways, 
sphingolipid metabolism (p=0.0003, impact 0.103), citrate 
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cycle (TCA cycle) (p=0.002, impact 0.075), and valine, 
leucine, and isoleucine biosynthesis (p=0.005, impact 
0.034) pathways were highlighted as targets for investigat-
ing pathological mechanisms underlying childhood 
asthma. Functional enrichment analysis revealed that the 
top-three pathways associated with asthma were sphingo-
lipid metabolism, protein biosynthesis, and citric acid 
cycle (Figure 4B, Supplementary Table 3).

Discussion
Despite the clinical and public health concern of asthma, the 
molecular determinants involved in the pathophysiological 
processes of asthma are still not fully understood.32 

Particularly, the pathogenesis of childhood asthma is differ-
ent from adult asthma.5 Asthma onset starts early in life and 
can carry into adulthood.5 As terminal products downstream 
from genes and proteins, metabolites are inherently sensitive 
to subtle alteration in biological pathways. Therefore, meta-
bolomic studies have been applied to discover biomarkers/ 
therapeutic targets and reveal underlying mechanisms of 
various diseases.33 Similarly, in the current study we 

provided an overview of metabolic changes in asthma during 
childhood based on a GC-MS metabolomic approach, which 
broadens our knowledge of pathobiological pathways 
involved in childhood asthma and sheds light on the preven-
tion, diagnosis, and treatment of asthma at an early age. 
Moreover, asthma diagnosis relies on clinical manifestations 
and confirmed expiratory-airflow limitation, but symptoms 
and pulmonary function measurements may not always 
reflect the underlying airway inflammation and are insensi-
tive to small variations in inflammatory status.5,32 Indeed, 
asthmatic children enrolled in the present study were stable 
and had normal lung function. In other words, the 20 identi-
fied metabolites imply an inflammatory condition, which is 
a characteristic of asthma pathophysiology. Altogether, the 
major novel finding emerging from our study is the discovery 
of new molecules, which may pave the way for the develop-
ment of effective asthma management and the study of 
metabolic pathways involved in childhood-asthma 
pathogenesis.

Several studies have also examined metabolic profiles 
for asthma by applying metabolomic approaches using 

Table 1 Baseline Characteristics of the 60 Children Investigated in this Study

Asthma (n=30) Controls (n=30) p

Age (years) 8 (7–11) 9 (8–10.25) 0.192

Sex (male/female) 20/10 20/10 1

Height (cm) 134.60±16.25 132.39±12.98 0.700

Weight (kg) 31.41±10.17 32.54±11.77 0.575

BMI (kg/m2) 16.52 (15.55–18.49) 15.67 (14.88–21.64) 0.981

Routine blood tests
WBC count (×109/L) 8.91±3.29 8.97±2.37 0.937
E (%) 3.50 (2.70–5.13) 1.80 (1.05–2.48) <0.001

EC (×107/L) 31.98 (16.61–46.83) 13.07 (9.16–22.37) <0.001

Atopic indices
Pollen sensitization 13 (43.3%) 0 (0) <0.001

Cold-air sensitization 25 (83.3%) 2 (6.7%) <0.001
Mite sensitization 30 (100%) 1 (3.3%) <0.001

Food sensitization 7 (23.3%) 3 (10%) 0.166

IgE (IU/mL) 365.50 (229.50–647.50) 27.40 (18.50–68.85) <0.001

Lung-function tests
FVC (% predicted) 88.40 (83.58–93.60) 103.15 (98.98–110.95) <0.001

FEV1 (% predicted) 94.85 (91.90–100.35) 107.60 (105.35–120.65) <0.001

FEV1/FVC (%) 91.07(89.92–94.87) 91.29 (88.37–92.94) 0.375
PEF (% predicted) 88.79±12.94 103.35±15.44 <0.001

Notes: Data shown are means ± SD, median (25th–75th percentile), and n (%) of patients as appropriate. 
Abbreviations: BMI, body-mass index; WBC, white blood cell; E, eosinophil; EC, eosinophil count; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 second; 
PEF, peak expiratory flow.
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different biofluids from either experimental asthma 
models or clinical samples, and some distinct metabolites 
were identified.18–20 For instance, four eicosanoid-related 
metabolites identified from portable exhaled breath–con-
densate metabolomics were found to be related to asth-
matic conditions.19 Pang et al reported 18 metabolites in 
the sera of asthma patients.18 Distinctive compartmental 
metabolic signatures have also been observed in bronch-
oalveolar lavage fluid, sera, and lung tissue in a murine 
model of house dust mite–induced asthma.20 Although the 
identified metabolites vary from study to study, different 
study populations, experimental designs, biological sam-
ples, disease states, and metabolomic techniques used in 
these studies might all contribute to these differences. Still, 
these studies, including ours, could complement each other 
for in-depth illustration of the pathogenesis of asthma.

Although significant differences exist, common features 
can also be found among studies. For example, McGeachie 
et al showed that altered sphingolipid metabolism repre-
sented an underlying feature of both asthma control and 
cellular response to albuterol by integrating metabolomic, 
genomic, and methylation data.21 In addition, when we ana-
lyzed the metabolomic results from Comhair et al,22 sphin-
golipid metabolism was ranked second in pathway- 
enrichment analysis (Supplementary Figure 2). 
Furthermore, previous integrated omics analysis discovered 
that impaired lung function was associated with dysregulated 
sphingolipid metabolism in asthma.34 Likewise, enrichment 

of sphingolipid metabolites is positively correlated with dis-
ease severity among infants with bronchiolitis, which is one 
of the risk factors for asthma development.35,36 Taken 
together, these observations suggest a key role of dysregu-
lated sphingolipid metabolism in the development of child-
hood asthma, which might serve as a novel therapeutic target 
for asthma. Indeed, in asthma mouse models inhibition of 
sphingosine kinase–attenuated airway inflammation has been 
demonstrated,37,38 emphasizing the therapeutic potential of 
this pathway.

As one of the altered sphingolipids identified in our 
study, D-erythrosphingosine 1 is known to inhibit arachi-
donic acid release and prostaglandin F2α formation in 
cells.39 On the other hand, some lipid mediators (eg, 
cysteinyl leukotrienes) in asthma are produced from ara-
chidonic acid.40 Inflammatory factors produced during the 
development of asthma may simulate the requirement of 
energy.41 Interestingly, a prominent change in energy 
metabolism, eg, the TCA cycle, where most of the 
body’s energy is generated,42 has been observed in asthma 
patients (Figure 4). Notably, succinic acid (an intermediate 
compound in the TCA cycle) is the third–most enriched 
metabolite in asthma samples (Table 2). This is consistent 
with previous studies in which higher abundance of succi-
nic acid in the urine or serum of asthmatic patients was 
reported.11,43,44 Additionally, branched-chain amino acids, 
including valine, leucine, and isoleucine, showed changes 
in asthma patients. Of note, valine and leucine affect the 

Figure 1 PCA model generated based on GC-MS analysis of urine samples from asthmatic and healthy subjects. The X- (PC1) and y-axes (PC2) indicate the first and second 
principal components, respectively.
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TCA cycle through succinyl-CoA formation and acetyl- 
CoA formation, respectively. It was noted that methionine, 
a glucogenic amino acid and potential energy source, was 
decreased in the urine of asthma patients in our study. 
Collectively, our results provide evidence that asthma is 
tightly associated with abnormalities in energy metabo-
lism, especially the TCA cycle.

We also report for the first time that levels of 2-hydro-
xybutanoic acid were significantly higher in the asthma 
group than healthy subjects (Table 2). The underlying 

biochemical mechanism may involve increased lipid oxi-
dation and oxidative stress in asthma pathogenesis, 
because 2-hydroxybutanoic acid is produced from threo-
nine and methionine catabolism, as well as glutathione 
metabolism.45 It might also be related to the altered energy 
metabolism, as it has been reported that 2-hydroxybuta-
noic acid can alter the intracellular balance of acetyl-CoA, 
succinyl-CoA, and NAD, which are all important mole-
cules in the TCA cycle.46 We found that 2-hydroxybuta-
noic acid possessed the highest AUC (0.969) and was able 

Figure 2 OPLS-DA plots with corresponding permutation-test plot obtained from GC-MS metabolite profiles of asthmatic and healthy subjects. (A) Score plot of OPLS-DA 
model showing clear separation of asthma patients from healthy subjects. The x- (t[1]P) and y- (t[1]O) axes indicate predictive and orthogonal directions, respectively. (B) 
Permutation test (200×)of the OPLD-DA model showing corresponding permuted values (bottom left) as significantly lower than original R2 and Q2 values (top right), 
demonstrating the robustness of the OPLS-DA model. R2 and Q2 indicate interpretability and predictability, respectively.
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Figure 3 ROC analysis of 2-hydroxybutanoic acid for distinguishing asthma patients from healthy controls (AUC=0.969).

Figure 4 Metabolic pathway analysis of differential metabolites identified from asthma patients compared with healthy controls. (A) Significantly changed pathways based on 
enrichment and topology analyses: sphingolipid metabolism (a), citrate cycle (b), valine, leucine, and isoleucine biosynthesis (c), propanoate metabolism (d), aminoacyl–tRNA 
biosynthesis (e), tyrosine metabolism (f), glycine, serine, and threonine metabolism (g), glyoxylate and dicarboxylate metabolism (h), cysteine and methionine metabolism (i), 
and alanine, aspartate, and glutamate metabolism (j). (B) Functional enrichment analysis of pathways. Color depth and column length indicate degree of disturbance.
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to distinguish asthma from healthy controls (Figure 3) in 
the present study. This suggested 2-hydroxybutanoic acid 
might be of great importance as a biomarker in diagnosing 
asthma or monitoring asthma progression. Interestingly, 
2-hydroxybutanoic acid has been shown to be a reliable 
marker for early-stage type 2 diabetes.47 On the other 
hand, studies have shown that exogenous 2-hydroxybuta-
noic acid has therapeutic benefits against stress conditions, 
such as kidney injury,48 depression,49 Alzheimer’s disease, 
and atherosclerosis.50 Further studies are warranted to dis-
cover the precise function of 2-hydroxybutanoic acid in 
asthma.

There are several limitations to our study. Firstly, 
this was a single-center study with a relatively small 
sample. Our results cannot be fully extrapolated to all 
asthmatic patients, as we recruited only pediatric 
patients with stable asthma. These results should be 
validated in a multicenter prospective and larger-scale 
study to evaluate our findings to discriminate asthma 
from healthy controls. Secondly, the biomarkers iden-
tified in the present study may not be specific for 
asthma. A new study comparing differential metabo-
lites for asthma and other lung diseases (eg, cystic 
fibrosis and idiopathic pulmonary fibrosis) will help 
identify specific biomarkers for asthma. Thirdly, the 
mechanisms behind the relationship between asthma 
and differential metabolites remain to be elucidated. 
Further studies involving molecular/cellular biology 
and animal models are required to reveal potential 
pathological mechanisms of asthma comprehensively. 
Fourthly, we could not determine whether the meta-
bolic changes in urine were the cause or consequence 
of asthma. Finally, given the pilot nature of this study, 
other possible confounding factors, such as ethnicity, 
passive smoking, lifestyle, and diet, were not taken 
into consideration. Altogether, it is still a great chal-
lenge to obtain systematic metabolome changes, 
because of complexity and individual factors. Further 
investigations are still necessary to translate metabolo-
mics into clinical practice.

In summary, we observed metabolic dysregulation 
in urine samples of asthma patients. Sphingolipid meta-
bolism and energy metabolism (TCA cycle) were the 
top-two altered pathways, and might be involved in the 
pathogenesis of asthma. Moreover, 2-hydroxybutanoic 
acid displayed good diagnostic performance in distin-
guishing asthma patients from healthy individuals.

Abbreviations
ROC, receiver-operating characteristic; GC-MS, gas chro-
matography-mass spectrometry; AUC, area under the 
ROC curve; PCA, principal-component analysis; OPLS- 
DA, orthogonal projections to latent structure–discrimi-
nant analysis; VIP, variable importance for projection.
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