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Abstract: Chronic pain is a complicated condition which causes substantial physical, 
emotional, and financial impacts on individuals and society. However, due to high cost, 
lack of efficacy and safety problems, current treatments are insufficient. There is a clear 
unmet medical need for safe, nonaddictive and effective therapies in the management of pain. 
Epoxy-fatty acids (EpFAs), which are natural signaling molecules, play key roles in media-
tion of both inflammatory and neuropathic pain sensation. However, their molecular mechan-
isms of action remain largely unknown. Soluble epoxide hydrolase (sEH) rapidly converts 
EpFAs into less bioactive fatty acid diols in vivo; therefore, inhibition of sEH is an emerging 
therapeutic target to enhance the beneficial effect of natural EpFAs. In this review, we will 
discuss sEH inhibition as an analgesic strategy for pain management and the underlying 
molecular mechanisms. 
Keywords:  epoxy fatty acids, chronic pain, molecular mechanisms

Introduction
Pain is a critical signal and a survival mechanism, but enhanced and persistent pain 
is an unpleasant sensation and emotional experience which has a profound impact 
on individuals and society.1,2 There are approximately 100 million Americans 
suffering from chronic pain, with an associated $560–635 billion yearly cost in 
direct medical expenses and lost productivity.3 In 2016, approximately 20% of US 
adults had chronic pain (approximately 50 million), and 8% of US adults (approxi-
mately 20 million) had high-impact chronic pain according to the Centers of 
Disease Control and Prevention (CDC).4 Opioids are major pharmaceutical treat-
ments available to control pain; however, they have serious side effects, leading to 
increasing risks for abuse and overdose-related deaths.5 We need additional analge-
sic agents that can be integrated into multimodal pain control strategies.6 Therefore, 
pain management research has become one of the top priorities in the US and 
developing new therapeutic approaches for pain management that are both effective 
and safe is practically important for our society.

The natural purpose of pain is to protect body from damage or potentially 
damaging situation.7 However, chronic pain is not always related to tissue damage 
and does not always serve a protective function.8 Based on the biological and 
physiological processes involved, pain is classified as either nociceptive, neuro-
pathic, or inflammatory.9 Nociceptive pain can be triggered by exposure to extreme 
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heat, cold or noxious pressure.10 Neuropathic pain, which 
is caused by a lesion or disease of the somatosensory 
nervous system may occur spontaneously in the absence 
of stimuli or be evoked by sensory stimuli inducing hyper-
algesia and allodynia.11 Inflammation is characterized by 
redness, heat, swelling, pain or hypersensitivity, and loss 
of function usually occurs subsequent to injury and 
involves the release of cytokines and immune cell 
infiltration.12 Since different forms of pain involve a vari-
ety of distinct biological processes, a better understanding 
of the molecular mechanisms underlying the pain is key 
for the development of more effective and safe therapies in 
the near future.

Eicosanoids are the metabolites of arachidonic acid 
(ARA) and related unsaturated fatty acids produced by 
three oxidative pathways, cyclooxygenase (COX), lipoxy-
genase (LOX), and cytochrome P450 (CYP450). They are 
important lipid signaling molecules involved notably in the 
regulation of inflammation and pain.13–15 While the COX 
and LOX pathways are well studied, the CYP450 is less 
understood and is at the center of this review. In this pathway, 
polyunsaturated fatty acids (PUFAs) including linoleic acid 
(LA), α-linolenic acid (ALA), dihomo-γ-linolenic acid 
(DGLA), arachidonic acid (ARA), eicosapentaenoic acid 

(EPA), docosahexaenoic acid (DHA), and others are meta-
bolized by CYP monooxygenases, especially CYP2C and 
CYP2J isoforms, to form a mixture of monohydroxy-fatty 
acids (hydroxyeicosatetraenoic acids (HETEs) from ARA) 
and epoxy-fatty acids (EpFAs; such as epoxy-eicosatrienoic 
acids (EETs) from ARA) with diverse biological actions, 
especially in inflammatory related diseases (Figure 1).13,16– 

18 In this review, we will discuss the roles of CYP450 and 
their metabolites in the pathology of chronic pain and the 
underlying mechanisms of action of these metabolites.

Soluble Epoxide Hydrolase and Pain
The Effect of Epoxy-fatty Acids in Pain 
Model
The EpFAs, especially EETs, which function primarily as 
both autocrine and paracrine signaling molecules, have 
well described beneficial effects on multiple cardiovascu-
lar diseases, the renal system, angiogenesis, inflammation, 
and cancer.19–21 Using an animal model of inflammatory 
pain, the total oxylipin concentrations were measured both 
in the spinal cord and brain of rats after base hydrolysis of 
the lipid esters. EpFAs, especially from ARA and DHA, 
but neither the parent fatty acid nor the corresponding 

Figure 1 (A) Metabolism of ARA by COX, LOX, and CYP enzymes leads to formation of oxylipin metabolites. The structure of the sEHI TPPU is shown. (B) The CYP/sEH 
pathway that produces epoxy-fatty acids and corresponding diols. For simplicity, only one regioisomer of the epoxides and diols are shown here.  
Abbreviations: ARA, arachidonic acid; COX, cyclooxygenase; LOX, lipoxygenase; CYP, cytochromes P450; EETs, epoxyeicosatrienoic acid; HETEs, hydroxyeicosatetrae-
noic acids; DHETs, dihydroxy-eicosatrienoic acids; LA, linoleic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; EpOMEs, epoxy-octadecenoic acid; EEQs, 
epoxy-eicosatetraenoic acid; EDPs, epoxy-docosapentaenoic acid; DiHOMEs, dihydroxy-octadecenoic acid; DiHETEs, dihydroxyicosa-tetraenoic acid; DiHDPEs, dihydroxy- 
docosapentaenoic acid.
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diols, selectively modulate nociceptive pathophysiology, 
and spinal administration of epoxy-docosapentaenoic 
acids (EpDPE) reduces both mechanical and thermal 
pains associated with inflammation, supporting an impor-
tant function of EpFAs in modulating nociceptive 
signaling.22 Additional studies showed that EpFAs are 
effective in both inflammatory and neuropathic pain mod-
els, suggesting them as potential novel therapeutics for 
pain management.23–25 However, in vivo, the EpFAs are 
rapidly metabolized by soluble epoxide hydrolase (sEH) to 
generate the corresponding and less-bioactive, even pro- 
inflammatory, dihydroxy-eicosatrienoic acids (DHETs) 
(Figure 1B).26–29 Therefore, sEH inhibitors (sEHIs) were 
developed to increase in vivo EpFAs levels, and thus 
reduce blood pressure, improve insulin sensitivity, and 
decrease inflammation.28,30–33 The sEH is considered an 
emerging therapeutic target for enhancing the beneficial 
function of EpFAs in numerous diseases, including cardi-
ovascular diseases, inflammatory bowel diseases, hyper-
tension, and metabolic disorders, which have inflammation 
as a common underlying cause.28,30–33

The Effect of sEHIs in Pain Model
In an inflammatory pain model induced with intraplantar 
injection of 10 μg lipopolysaccharides (LPS) in one hind 
paw of rats, using an sEHI 1-trifluoromethoxyphenyl-3-(1- 
acetylpiperidin-4-yl)-urea (TPAU) through intraplantar 
injection significantly blocked inflammatory pain in a 
dose-dependent manner.24 Moreover, an sEH metabolite 
12,13-dihydroxy-9Z-octadecenoic acid (12,13-DiHOME) 
was increased in peripheral nervous tissue during acute 
zymosan- and complete Freund’s adjuvant (CFA)-induced 
inflammatory pain.34 In this CFA-induced inflammatory 
pain model, oral administration of 1-trifluoromethoxyphe-
nyl-3-(1-propionylpiperidin-4-yl (TPPU) reduces 12.13- 
DiHOME concentrations and reduces zymosan- and 
CFA-induced thermal hyperalgesia in vivo.34 These results 
showed the analgesia effect of sEHIs in inflammatory pain. 
In addition, compared to the traditional nonsteroidal anti- 
inflammatory drug celecoxib, sEHIs are superior and have 
better efficacy in both diabetic neuropathy and inflamma-
tory pain models.35

Wagner et al. demonstrated that compared with gaba-
pentin, subcutaneously injection of the sEHI trans-4-[4-(3- 
trifluoromethoxyphenyl-1-ureido)-cyclohexyloxy]-benzoic 
acid (t-TUCB) elicited a similar degree of withdrawal 
threshold improvement without the same degree of spon-
taneous locomotion decline in mice with neuropathic 

pain.36 In diabetic Akita mice (Ins2Akita or Ins2C96Y), 
which progress naturally and are more similar to the 
human disease state than chemical ablation of beta islet 
cells. The results showed t-TUCB is an analgesic in dia-
betic neuropathy, and this effect is related to sexual 
dimorphism since the female mice are less susceptible to 
the diabetic phenotype.37 These results indicate the sEHI 
has analgesic effects with limited side effects in diabetic 
neuropathy pain.

Synergistic Effect of sEHI with Other 
Pharmaceutical Inhibitors in Pain
Besides potent effects from sEHI itself, recent research 
showed combinations of sEHI and other enzyme inhibitors 
might achieve greater analgesic efficacy therapeutically. For 
example, the combination treatment of nonsteroidal anti- 
inflammatory drugs (NSAIDs) and the sEHI 12-(3-adaman-
tan-1-yl-ureido)dodecanoic acid n-butyl ester (AUDA-nBE) 
produced significantly beneficial effects for alleviating LPS- 
induced inflammatory pain in mice.38 The NSAIDs and sEHI 
combination therapy also reduced COX-2 protein expression 
and shifted oxylipin metabolomic profiles,38 suggesting that 
this therapy has efficacy in decreasing inflammation but also 
decreased side effects of NSAIDs in cardiovascular and 
gastrointestinal tract complications.38–40 A COX-2/sEH 
dual inhibitor, 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphe-
nyl)-ureido]-propyl}-pyrazol-1-yl)-benzenesulfonamide 
(PTUPB) exhibited antiallodynic activity that was more 
effective than the same dose of either a COX-2 inhibitor 
(celecoxib) or a sEH inhibitor t-AUCB alone, as well as co- 
administration of both inhibitors in a nociceptive behavioral 
assay.41 In addition, fatty acid amide hydrolase (FAAH) is 
another enzyme catalyzing the hydrolysis of bioactive lipid 
mediators—fatty acid ethanolamides (FAEs). Previous 
results demonstrated combinations of a sEHI, TPPU, and 
FAAH inhibitor, URB937, showed high antihyperalgesia 
activity in two pain models: carrageenan-induced hyperalge-
sia in mice and streptozocin-induced allodynia in rats, 
revealing a possible functional crosstalk between FAEs and 
EpFAs in regulating pain responses.42 Moreover, phospho-
diesterase-4 (PDE-4)-targeted therapies have shown promise 
for treating patients with a variety of autoimmune diseases.43 

Co-inhibition of sEH and PDE-4, greatly increases the level 
of EpFAs and is thus more efficient at reducing acute pain 
perception.44 A novel PDE-4/sEH dual inhibitor N-(4-meth-
oxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-car-
boxamide (MPPA) at 3 mg/kg (oral administration) reduced 
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LPS-induced inflammatory pain. MPPA also does not alter 
self-motivated exploration of rats with inflammatory pain 
or the withdrawal latency in control rats, suggesting that 
MPPA has good efficacy together with limited off-target 
effects.45

The Underlying Mechanisms of 
sEHI/EpFAs in Pain Management
Cyclic Adenosine Monophosphate 
(cAMP) Signaling Pathway in Pain
Cyclic adenosine 3′,5′-monophosphate (cAMP) was the 
first identified second messenger and plays a fundamental 
role in many cellular responses to hormones and 
neurotransmitters.46–48 The intracellular levels of cAMP 
are regulated by the balance between two enzymes: ade-
nylyl cyclase (AC), which catalyzes cAMP formation from 
ATP,49 and cyclic nucleotide phosphodiesterase (PDE) that 
degrades intracellular cyclic nucleotides.50 PDE inhibitors 
have been shown as therapeutic approach to neuroprotec-
tion, repair, and cardiovascular system.51,52 Rolipram, a 
selective PDE-4 inhibitor and theophylline, a nonspecific 
PDE inhibitor exerted dose-dependent analgesic and anti- 
inflammatory effect against acetic acid-induced writhing in 
mice and carrageenan-induced paw edema in rats.53

Rolipram induced artificially elevated cAMP in healthy 
mice, while co-administration with the sEHI 1-trifluoro-
methoxyphenyl-3-(1-acetylpiperidin-4-yl) urea (TPAU) 
largely blunted pain-related behavior, which indicate the 
analgesic effect of sEH inhibitor and PDE-4 inhibitor.44 

These results indicate the analgesic effect of sEHIs is 
dependent on cAMP. In another study, EETs or sEHI 
lead to antihyperalgesia and was correlated to upregulation 
of, steroidogenic acute regulatory protein (StARD1), a 
carrier protein which assists neuro-steroid production.54 

In summary, these results further give mechanistic evi-
dence showing the analgesic effect of sEHIs through 
cAMP signaling pathway (Figure 2).

PPARs Signaling in Pain
Peroxisome proliferator-activated receptors (PPARs) are 
ligand-activated transcription factors belonging to a nuclear 
hormone receptor superfamily, which contains three iso-
forms: PPARα, PPARβ/δ and PPARγ.55,56 The three PPARs 
share a high homology but differ in tissue distribution and 
ligand specificity.57 PPARs primary function as important 
fatty acid sensors which not only regulate lipid, carbohy-
drates, and amino acid metabolism, but also play key roles 
in various pathophysiology processes.55 Extensive research 
showed PPARs may also involve in the control of the 

Figure 2 The effect of sEH inhibition and EpFAs on cAMP-PPAR signaling pathways.  
Abbreviations: GPCR, G-protein-coupled receptors; PPAR, peroxisome proliferator-activated receptor gamma; EpFAs, epoxy fatty acids; ATP, adenosine triphosphate; cAMP, 
cyclic adenosine monophosphate; PKA, protein kinase A; PDE, phosphodiesterase; RXR, retinoid X receptor; PPRE, peroxisome proliferator hormone response elements.
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nociceptive response and neuropathic pain.58,59 There is evi-
dence showing cAMP is the major stimulator of PPAR activ-
ity and cAMP signaling pathway modulates PPAR function, 
possibly by transactivation,60,61 suggesting the link between 
cAMP and PPAR signaling pathways. Interestingly PPAR 
agonists are potent inducers of the sEH message and protein.

A relevant study on PPARs and pain investigated the 
activation of PPAR in the rat spinal cord following subcu-
taneous injection of CFA into a hind paw.62 The results 
showed only the PPARα isoform was activated using elec-
trophoretic mobility-shift assay (EMSA) method. LoVerme 
et al. showed in mice that PPARα agonists suppress pain 
behaviors induced by tissue injury, nerve damage, or 
inflammation.63 In addition, PPARα–/– female mice are 
hypersensitive to the cold, mechanical allodynia, and heat 
hyperalgesia,64 suggesting genetic ablation of PPARα is 
involved in neuropathic and visceral nociception.64 

Leukotriene B4, a potent agent that initiates, coordinates, 
and amplifies the inflammatory response, is an activating 
ligand for the transcription factor PPARα.65 These results 
suggest the critical role of PPARα in the control of nocicep-
tion and inflammation. Thus, further studies of combined 
effects on sEHI and PPARα agonist in pain preclinical 
models are needed and development of this novel class of 
compounds could represent a useful new pharmacological 
approach for the pain relief.

PPARγ is another subtype of PPAR, which is present in 
several tissues and cell types.66 Intrathecally administered 
PPARγ agonists dose-dependently decreased mechanical 
and cold hypersensitivity in the rats,58 demonstrating the 
important role of PPARγ in the neuropathic pain. Further 
studies demonstrated that activation of PPARγ has bene-
ficial effects of modification of astrocyte metabolism and 
mitochondrial function which are important in 
inflammation.67,68 In addition, the PPARγ agonist, rosigli-
tazone, attenuated CFA-induced inflammatory pain 
through induction of heme oxygenase (HO)-1, leading to 
the differentiation of pro-inflammatory M1 macrophages 
to anti-inflammatory M2 phenotype.69 In an angiotensin-II 
(AngII) induced cardiac hypertrophy model, sEH is upre-
gulated by AngII. Rosiglitazone is a potent sEH inducer 
and the protective role of PPARγ activation in AngII- 
induced cardiac hypertrophy is partially through downre-
gulating sEH.70,71 Thus, the beneficial actions of rosiglita-
zone should be enhanced and some of its side effects 
reduced by co-administration with sEHI since the com-
bined administration of both pharmacological agents rosi-
glitazone and the sEH inhibitor t-AUCB led to synergistic 

improvement of vascular function and reduced fibrotic 
kidney damage.72

EETs, together with the sEHI 12-(3-adamantan-1-yl- 
ureido) dodecanoic acid (AUDA), increased PPARγ tran-
scription activity in endothelial cells and 3T3-L1 preadi-
pocytes and PPARγ antagonist GW9662 abolished the 
EET/AUDA-mediated anti-inflammatory effect, indicating 
PPARγ is an effector of EETs.73 Further study demon-
strated that dual PPARγ/sEH inhibitor RB394 showed the 
ability to blunt diabetic complications such as hyperten-
sion, insulin resistance, hyperlipidemia, and kidney injury 
in metabolic syndrome modeled in obese spontaneously 
hypertensive (SHROB) rats and obese diabetic Zucker 
fatty/spontaneously hypertensive heart failure F1 hybrid 
(ZSF1) rats.74 Another study showed the dual inhibitor 
RB394 or combination of sEHI and PPARγ agonist sig-
nificantly prevented renal fibrosis development by prevent-
ing renal inflammation and oxidative stress.75 Interestingly 
the sEHI will of course counter the sEHI induction and 
other possible deleterious side effects of high dose PPARγ 
agonists.76 Kim et al. demonstrated that sEHI t-TUCB 
could promote anti-inflammatory effects in ureteral 
obstruction in mice, the mechanism is mainly through 
increased levels of EETs and inhibition the PPARγ 
reduction.77 Altogether, these results indicate that PPARγ 
is an important effector in the anti-inflammatory effect of 
sEHI, while more evidence is still needed for the mechan-
ism study of sEHI in the pain management through PPAR 
signaling pathways (Figure 2).

The Transient Receptor Potential (TRP) 
Superfamily in Pain
The superfamily of TRP channels play critical roles in the 
responses to the major classes of external stimuli, includ-
ing light, sound, chemicals, temperature, and touch.78 

Mutations in several TRP genes have been implicated in 
pain pathological states.79 Most TRPs are nonselective 
cation channels, only a few are highly Ca2+ selective, or 
permeable for highly hydrated Mg2+ ions.79

Transient receptor potential ankyrin 1 (TRPA1) is the 
most well-studied pain regulator among TRP superfamily, 
which is one of the Ca2+-permeable cation ion channels 
involved in the transduction of potentially harmful stimuli 
and in amplification of nociceptive transmission in their 
central terminals.80–83 Studies revealed TRPA1 is a poten-
tial target in pain relief. A TRPA1 selective antagonist 
significantly reduced mechanical hyperalgesia evaluated 
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by the von Frey assay and completely inhibited the nox-
ious cold hyperalgesia in CFA induced persistent inflam-
mation in mice.80 Furthermore, TRPA1 also plays key 
roles in the inflammatory pain, neuropathic pain and 
migraine.84 Both genetic deletion of Trpa1 and pharmaco-
logical inhibition of TRPA1 abrogated pain-like behaviors 
in mice.85

In addition to TRPA1, transient receptor potential cation 
channel subfamily V member 1 (TRPV1) is another Ca2+ 

permeant nonselective member of TRP family which has 
been implicated in a variety of cellular and physiological 
processes, including noxious physical and chemical stimuli 
detection, making it one of the promising targets for pain- 
relieving drugs.86,87 TRPV1−/− mice showed no vanilloid- 
evoked pain behavior in the detection of painful heat and 
showed little thermal hypersensitivity in the inflammation, 
and TRPV1−/− mice showed an attenuated fever in response 
to LPS.88,89 These results conclude TRPV1 is essential in 
the inflammatory thermal hyperalgesia, nociception, and 
pain sensation. Finally, several TRPV1 agonists such as 
JNJ-39,439,335, NEO6860, and ABT-102 have been in 
clinical trials targeting pain relief.90–92 Altogether, these 
results suggest examination of TRPV1 as a mechanistic 
target for pain treatment.

sEH was shown to regulate pain via TRP channels. The 
sEH enzyme has been reported as co-localized with 
TRPV1 in the primary trigeminal ganglion neurons 
(TGNs).93 Pretreatment with 10 μM EETs antagonist 
14.15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) attenu-
ated the calcitonin gene-related peptide (CGRP) release, 
which is a marker of neurogenic inflammation.93 The 
CGRP release is induced by TRPV1 agonist capsaicin or 
K+, but sEHI AUDA did not have this effect,93 suggesting 
that there are inadequate levels of EETs released to be 
stabilized by AUDA. These data suggest EETs may act as 
intracellular regulators of neuropeptide release, which may 
have important clinical implications for treatment of neu-
rogenic inflammation. Further investigation into the ther-
apeutic potential of sEHI through TRP channels is needed.

Endoplasmic Reticulum (ER) Stress 
Signaling Pathway in Pain
The endoplasmic reticulum (ER) is an organelle in which 
newly synthesized secretory and transmembrane proteins 
are assembled and folded into their correct tertiary 
structures.94 However, protein misfolding caused by var-
ious stimuli and gene mutations, leads to the disruption of 

ER function and activation of ER stress signaling pathway. 
Eukaryotic cells have developed an evolutionarily con-
served adaptive mechanism called unfolded protein 
response (UPR), whose purpose is to clear unfolded pro-
teins, promote proper folding by increased chaperones and 
reduced protein synthesis, and restore ER homeostasis.95 

The UPR influences cellular metabolism through diverse 
mechanisms, including calcium and lipid transfer, which 
are key involvement in the pathogenesis of diseases, 
including pain, neurodegeneration, and cardiovascular 
disease.96–98 When unfolded proteins accumulate in the 
ER, the N-terminus in the lumen of the ER chaperone 
Grp78 releases transmembrane ER proteins involved in 
inducing the UPR to prevent their aggregation. However, 
when misfolded proteins accumulate, Grp78 releases, 
allowing aggregation of these transmembrane signaling 
proteins, launching and activating the UPR.99 The UPR 
is distinguished by the action of three signaling proteins 
named IRE1α (inositol-requiring protein-1α), PERK (pro-
tein kinase RNA (PKR)-like ER kinase), and ATF6 (acti-
vating transcription factor 6).95

The ER stress signaling pathway has been demon-
strated as playing key roles in the pathogenesis of pain. 
The IRE1α–unspliced X-box-binding protein 1 (XBP1) 
axis operates as a crucial mediator of eicosanoid metabo-
lism and prostaglandin synthesis in myeloid immune cells 
by promoting the expression of both COX-2 and micro-
somal prostaglandin E synthase-1 (mPGES-1), and genetic 
ablation or pharmacological inhibition of this pathway 
diminishes pain-related behaviors in mice.100 Other 
research showed that an IRE1α small interfering RNA 
(siRNA) improved the neurological morphology and 
reduced diabetic peripheral neuropathy (DPN) in rats.101 

It also rescued ER stress-related apoptosis in the sciatic 
nerve,101 indicating IRE1α–XBP1 signaling may be help-
ful for the improvement of pain management. In addition, 
Lupachyk et al. examined the role of ER stress signaling in 
the development of peripheral neuropathy in streptozoto-
cin (STZ)-induced diabetic rodents and found two structu-
rally dissimilar chemical chaperones (trimethylamine 
oxide [TMAO] and 4-phenylbutyric acid [4-PBA]), 
which can counteract ER stress by promoting normal 
protein folding, significantly suppressed ER stress marker 
proteins whose upregulation was induced by STZ,102,103 

reduced thermal and mechanical responses, and enhanced 
sensitivity to touch with diabetes.103 They also observed 
the neuropathic effects of CCAAT-enhancer-binding pro-
teins (C/EBP) homologous protein (CHOP), one of the 
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components of the ER stress-mediated apoptosis pathway 
in the DPN.104 The results showed genetic ablation of 
CHOP showed attenuation of motor and sensory nerve 
conduction velocity deficits, thermal hypoalgesia, and 
intraepidermal nerve fiber loss, while diabetes-induced 
mechanical hypoalgesia and tactile allodynia remained at 
similar levels in both CHOP−/− and wild-type mice,102 

suggesting different aspects of ER stress and the UPR 
were targeted in diabetic neuropathy.

Numerous studies showed sEH is a physiological modu-
lator of ER stress signaling involved in many disorders.105–107 

Thus, the sEH enzyme is a nonchannel, non-neurotransmitter 
therapeutic and well characterized target for pain.108 Both pain 
and ER stress markers are elevated in peripheral nervous 
system of type I diabetic rats. Further results showed TPPU, 
a widely used potent sEH inhibitor, blocks pain-related beha-
vior and suppresses markers of the ER stress signaling path-
way (p-PERK, p-IRE1α, and cleaved-ATF6).108,109 In 
addition, TPPU reversed the tunicamycin (Tm) induced ER 
stress response and pain-related behaviors both alone and 
synergistically together with chemical chaperon 4-PBA.108 

This observation suggests a beneficial drug interaction 

among chemical chaperones and sEHI. Another sEHI 
t-TUCB, attenuated neuropathic pain without the same degree 
of spontaneous locomotion that is observed with gabapentin.36 

Altogether, these results indicate dosing with sEHI represents 
an analgesic strategy for pain relief through the ER stress 
signaling pathway (Figure 3).

Interaction and Complementarities of the 
Three Mechanistic Pathways
There is evidence showing an interaction among cAMP- 
PPAR, TRP channels and ER stress signaling pathways. 
These include ER stress regulated uncoupling protein 1 
(UCP1) expression via PPARγ suppression in beige 
adipocytes,110 and UCP1 increased by both PPARγ stimu-
lation and cAMP activation through their ability to stimu-
late the expression of the peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha (PGC1α).111 In Zn- 
induced lipolysis, Zn exposure evoked ER stress and dys-
regulation of Ca2+ homeostasis, and then activated cAMP/ 
protein kinase A (PKA) pathway resulting in hepatic 
lipolysis,112 highlighting the importance of the ER 
stress–cAMP/PKA axis in Zn-induced lipolysis. 

Figure 3 The effect of sEH inhibition and EpFAs on Endoplasmic Reticulum (ER) stress signaling pathways.  
Abbreviations: ER, endoplasmic reticulum; PERK, protein kinase R (PKR)-like endoplasmic reticulum kinase; GRP78, glucose-regulated protein; eIF2α, eukaryotic initiation 
factor 2α; ATF4, activating transcription factor 4; ATF6, activating transcription factor 6; IRE1α, inositol-requiring enzyme 1α; XBP1-U, un-spliced X-box-binding protein 1; 
XBP1-S, spliced X-box-binding protein 1; EpFAs, epoxide fatty acids; UPR, unfolded protein response.
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However, there is no research about the interaction of 
these signaling pathways in pain research, illustrating 
additional studies are needed to explore the link between 
these signaling pathways in the pain biology and the 
putative role of EpFAs.

Preclinical Research and Clinical 
Trials of sEHIs
Currently, several preclinical studies are evaluating the 
effects of sEHIs in the pain management in animals. 
TPPU, an potent sEHI, has multimodal analgesics effects 
in a rat chronic pain model without changing the motor 
control and functioning in control animals.113 There are 
also several reports evaluating the sEHIs in the pain man-
agement in veterinary medicine. In a chronic laminitic 
horses, sEH activity in the digital laminae is significantly 
higher (P= 0.01) than in healthy horses,114 and treatment 
with the sEHI t-TUCB for 10 days significantly reduced 
the forelimb lifts and the pain scores compared with base-
line (P= 0.04).114 A follow-up study showed that no 
adverse effects were detected on clinical and laboratory 
examinations during and after t-TUCB administration. No 
new episodes of laminitis have been noted up to the 120 
days following treatment.115 Consistent with these studies, 
in another randomized controlled trial which used LPS- 
induced inflammatory joint pain in adult mares, treatment 

of 1 mg/kg t-TUCB lowered the pain, lameness and tactile 
allodynia, further demonstrating the analgesia effect of 
t-TUCB.116 Additionally, administration of t-TUCB orally 
for five days significantly reduced pain at a dose of 5 mg/ 
kg in aged dogs with natural arthritis.117 Together, sEHI 
have already shown efficacy for inflammatory and neuro-
pathic pain in rodents, with no apparent adverse or addic-
tive effects, as well as relieving natural-onset pathological 
pain in horses and dogs (Table 1). Since horses and dogs 
are sensitive to side effects of NSAIDs and COXIBs, the 
well-established synergism of sEH inhibitors with these 
drugs and their reduction of side effects offers an attractive 
drug combination in veterinary medicine.

In human, 1-(1-acetypiperidin-4-yl)-3-adamantanylurea 
(APAU), a potent and selective sEHI, has been in clinical 
development targeting hypertension and type 2 diabetes, and 
was well tolerated, no dose-related adverse events were 
observed during either study in healthy subjects.118 The 
sEHI GSK2256294 (chemical name: 1R,3S)-N-[[4-cyano- 
2-(trifluoromethyl)phenyl]methyl]-3-[[4-methyl-6-(methyla-
mino)-1,3,5-triazin-2-yl]amino]-cyclohexanecarboxamide 
was well-tolerated and demonstrated sustained inhibition of 
sEH activity on COPD human patients.119 Recently a new 
class of oral non-narcotic analgesics based on inhibition of 
the sEH, EC5026 (chemical name: (S)-1-[3-fluoro-4-(tri-
fluoromethoxy)phenyl]-3-{1-(2-methylbutanoyl] piperidin- 

Table 1 Preclinical Studies of Soluble Epoxide Hydrolase Inhibitors in Pain Model

No. Seh Inhibitor Species Routes Dose Model Reference

1 TPPU Rat Oral gavage 3 mg/kg Streptozocin induced neuropathic pain model Wagner et al. 2020113

2 t-TUCB Horse Intravenously 0.1 mg/kg Chronic laminitis Guedes et al. 2017114

3 t-TUCB Mares Intravenously 1 mg/kg LPS-indued inflammatory radiocarpal synovitis Guedes et al .2018116

4 t-TUCB Dogs Orally 5 mg/kg Canine osteoarthritis McReynolds et al. 2019117
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4-yl}urea), has finished the Phase 1a clinical trial, showing 
no adverse effect on healthy volunteers.120 EC5026 is devel-
oped to treat neuropathic pain and should enter a Phase 2 
clinical trial soon.

Conclusion
Currently, a large population in the US suffer with chronic 
pain, due to lack of efficacy, high expense, and safety pro-
blems, making chronic pain a serious health problem. It is 
important to identify novel therapeutic targets for chronic 
pain, to develop effective and safe methods for chronic pain 
treatment. Substantial studies have shown the EpFAs play 
essential roles in the pathology of inflammation and chronic 
pain, and our review further discusses the underlying mole-
cular mechanisms of EpFAs/sEHI actions as an analgesic 
strategy for pain management. Recently several clinical trials 
of sEH inhibitors aiming at different diseases including 
chronic pain, hypertension, and COPD, emphasizing the 
importance of sEH as a promising therapeutic target. While 
more mechanisms need to be explored, inhibition of sEH to 
stabilize the beneficial effect of EpFAs is a potent and safe 
approach for pain management.
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