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Objective: To investigate the predictive performance of different machine learning models 
for the discrimination of low and high nuclear grade clear cell renal cell carcinoma (ccRCC) 
by using multiphase computed tomography (CT)-based radiomic features.
Materials and Methods: A total of 137 consecutive patients with pathologically proven 
ccRCC (including 96 low-grade [grade 1 or 2] and 41 high-grade [grade 3 or 4] ccRCC) from 
January 2011 to January 2019 were enrolled in this retrospective study. Target region of 
interest (ROI) delineation followed by texture extraction was performed on a representative 
slice with the largest section of the tumor on the four-phase (unenhanced phase [UP], 
corticomedullary phase [CMP], nephrographic phase [NP] and excretory phase [EP]) CT 
images. Fifteen concatenations of the four-phase features were fed into 176 classification 
models (built with 8 classifiers and 22 feature selection methods), the classification perfor-
mances of the 2640 resultant discriminative models were compared, and the top-ranked 
features were analyzed.
Results: Image features extracted from the unenhanced phase (UP) CT images demonstrated 
a dominant classification performance over features from the other three phases. The 
discriminative model “Bagging + CMIM” achieved the highest classification AUC of 0.75. 
The top-ranked features from the UP included one shape-based feature and five first-order 
statistical features.
Conclusion: Image features extracted from the UP are more effective than other CT phases 
in differentiating low and high nuclear grade ccRCC based on machine learning–based 
classification modeling.
Keywords: clear cell renal cell carcinoma, Fuhrman nuclear grade, computed tomography, 
machine learning, classification

Introduction
Renal cell carcinoma (RCC) is the most common primary malignant tumor of the 
kidney in adults, accounting for approximately 90–95% of renal tumors, with clear 
cell renal cell carcinoma (ccRCC) being the predominant subtype that portends 
a worse prognosis than other subtypes.1 Histopathologic grade has been shown to 
be an independent prognostic factor of survival2–4 and is critical in selecting 
individualized treatment strategies, such as radical nephrectomy (RN) for aggres-
sive RCC cases, partial nephrectomy (PN) for non-aggressive cases, or more 
conservative ablation or active surveillance for selective patients who have exten-
sive comorbidities or are unwilling to undergo surgery.5,6 To date, several systems 
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have been employed to grade RCC, where the Fuhrman 
grading system7 is the most widely used and highly recom-
mended grading scheme.8

For evaluating the ccRCC Fuhrman nuclear grade, 
preoperative percutaneous biopsy of renal mass is contro-
versial because although it is the optimal alternative due to 
the high spatial and temporal heterogeneity of ccRCC, it is 
an invasive approach and has potential sampling bias.9 

Several pioneer investigative efforts have been made to 
predict the Fuhrman grade of ccRCC by analyzing mor-
phological or/and dynamic contrast-enhanced medical 
imaging features based on conventional CT, dual-energy 
spectral CT,10–15 CT/MR perfusion16,17 or diffusion- 
weighted imaging (DWI).18,19 However, most of these 
aforementioned strategies are limited by the subjective 
preference of features, leading to unsatisfactory discrimi-
native efficacy and model generalization capability.

Recently, radiomics has emerged as a promising noninva-
sive biomarker in assessing histopathological characterization 
and predicting biological aggressiveness in oncology. Several 
investigations have been reported in quantitatively analyzing 
CT-based radiomic features in an attempt to differentiate low 
and high Fuhrman nuclear grades.20–27 However, these 
reviewed studies are confined by the limitations that either 
texture features were usually extracted from a single CT 
phase or classification modeling was built upon a randomly 
selected classifier. To the best of our knowledge, no compre-
hensive investigations have been reported in determining 
which phase(s), classifier(s) or their possible combinations 
could be more discriminative.

The purpose of this study was to investigate the discrimi-
native power of different classification models built with 
assorted combinations of classifiers and feature selection 
approaches in differentiating low vs high Fuhrman grades. 
Features were extracted from unenhanced renal CT images 
and different postcontrast-enhanced CT phases, alone or in 
combination. The top-ranked features discriminating low vs 
high Fuhrman grade were extracted and analyzed.

Materials and Methods
Patients
This study was approved by the Ethics Committee of 
Guangzhou First People’s Hospital and Nanfang Hospital 
and complied with the Declaration of Helsinki. The patient 
consent to review their medical records was waived because 
our study was a retrospective non-interventive study, which did 
not harm patients. The data were obtained through an 

electronic search of the picture archiving and communication 
system (PACS) from January 2011 to January 2019. The 
inclusion criteria were as follows: 1) patients with pathologi-
cally proven ccRCC and with defined Fuhrman grade; and 2) 
patients who had undergone preoperative four-phase contrast- 
enhanced CT (CECT) scans. The exclusion criteria were as 
follows: 1) patients with purely cystic ccRCC; 2) ccRCC with-
out Fuhrman grade; and 3) prominent artifacts on CT.

Fuhrman Stage and Image Acquisition
To improve the reproducibility of pathologists and reduce 
the intra/inter-observer variability, the traditional 4-tier 
Fuhrman grading system was re-categorized into 
a simplified Fuhrman grading system with low-grade 
(grades 1 and 2) and high-grade (grades 3 and 4). 
Fuhrman grading was accomplished by a subspecialized 
genitourinary pathologist (W.S. Ding) with 8 years of 
diagnostic experience.

Preoperative CECT images were obtained on multi-
ple scanners: Toshiba Aquilion One, Siemens Somatom 
Definition, GE HiSpeed 16 and Philips Brilliance 64. 
The acquisition parameters were as follows: tube vol-
tage, 120–140 kV; automated tube current modulation 
and varied milliampere-second settings; and recon-
struction slice thickness, 5 mm. All patients were 
injected with nonionic intravenous contrast material 
via the antecubital vein with mechanical power injec-
tors according to their weight (1 mL/kg body weight, 
with a maximum of 150 mL). All patients underwent 
preoperative four-phase CT scans: Phase 1, unenhanced 
(UP); Phase 2, postcontrast corticomedullary phase 
(CMP), Phase 3, postcontrast nephrographic phase 
(NP); and Phase 4, postcontrast excretory phase (EP).

Feature Extraction and Representation
All CT images retrieved from PACS were stored in anon-
ymized DICOM format. ITK-SNAP software (http://www. 
itksnap.org) was used for the delineation of the target 
region of interest (ROI) on the CT slice with the largest 
cross-sectional area of the tumor in phases 1~4 for tumor 
segmentation. A lesion ROI was first delineated on the 
CMP and then applied to the other three phases with 
a slight adjustment to acquire the tailored ROIs for each 
phase. This procedure was conducted by two investigators 
(J. L. Wu and R. M. Yang with 4 and 15 years of experi-
ence in radiological diagnosis, respectively) together with-
out prior knowledge of the lesion pathology.
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Texture feature extraction was accomplished (with 
Pyradiomics28) on the delineated ROIs in each phase. The 
extracted features from each phase included 102 candidate 
features, which could be categorized into three subtypes, 
including shape features, first-order statistical features (histo-
gram analysis), and second-order statistical features (or “tex-
ture features”). The features extracted from each of the four 
phases were termed F1

pha, F2
pha, F3

pha, and F4
pha (each with 102 

features). The concatenation of features from any two phases 
were termed F1;2

pha, F1;3
pha, F1;4

pha, F2;3
pha, F2;4

pha, and F3;4
pha (each with 

204 features), and the concatenation of features from any three 
phases were termed F1;2;3

pha , F1;2;4
pha , F1;3;4

pha , and F2;3;4
pha (each with 

306 features). Similarly, the concatenated features from all four 
phases were termed F1;2;3;4

pha (with 408 features). Discriminative 
capabilities were compared using the above 15 types of fea-
tures as input for a specific discrimination model.

Modeling and Comparisons
In this study, we built particular discrimination models based 
on a feature selection strategy from a pool of 22 feature selec-
tion methods, as well as a classifier from a pool of eight 
classification algorithms (refer to Table S1 in the 
Supplement), thus resulting in a total of 176 different discri-
mination models. The 15 types of features were fed into each of 
the 176 discriminative models, resulting in 2640 (15 x 176) 
combinations in total to be compared. We evaluated each of 
these models with five-fold cross-validation, in each of which 
an optimal subset of features (a fixed size of 20 features was 
empirically selected to balance both sample size and feature 
numbers) was first estimated by a specific feature selection 
method, and these prescreened features were further fed into 
a classifier for discrimination modeling. To ease the data 
imbalance of the patient cohort, the synthetic minority over-
sampling technique (SMOTE)29 was used to oversample the 
minority high-grade ccRCC feature group by introducing syn-
thetic feature samples. The discriminative powers of the 

models were quantified by the area under the receiver operat-
ing characteristic (ROC) curve (AUC).

Statistical Analysis
The randomized frequency matching method was employed 
for adjusting tumor sizes, specifically, the tumor sizes in the 
two groups were first, respectively, ranked in a descending 
order; then, a case with a particular tumor size was selected 
in one group, and its counterpart in the other group was 
randomly selected among those cases with a similar tumor 
size. Continuous variables are reported as the means (±stan-
dard deviations), and categorical variables are reported as 
numbers (proportions). The normality of the data distribution 
was assessed for continuous variables (Kolmogorov–Smirnov 
test for >50 patients and Shapiro–Wilk test for ≤50 patients). 
Comparisons between groups were performed using the fol-
lowing statistical tests: the chi-square test for categorical vari-
ables, independent t-test for normally distributed continuous 
variables, and the Mann–Whitney U-test for nonnormally dis-
tributed continuous variables. Discriminative comparisons 
between the 15 types of features were conducted using the 
independent samples Kruskal–Wallis test with Bonferroni cor-
rection for adjusting the significance level in pairwise 
comparisons.

All statistical analyses were performed using SPSS version 
20 (IBM Corporation, Armonk, NY, USA). A two-tailed sig-
nificance level of p < 0.05 was considered statistically 
significant.

Results
Demographics
This study comprised 96 low-grade [grade 1 (n=15, 10.9%) 
and 2 (n=81, 59.1%)] ccRCC patients and 41 high-grade 
[grade 3 (n=32, 23.4%) and 4 (n=9, 6.6%)] ccRCC patients 
who met the selection criteria and had complete imaging 
examinations. The patient characteristics of the two groups 
and the whole data set are provided in Table 1. There were 

Table 1 Demographics and Characteristics of the Study Population

Characteristics Low-Grade (n=96) High-Grade (n=41) p value

Patient age (mean ± SD, year) 53.9±11.8 58.1±12.9 0.062a

Sex 0.976b

Male (n/%) 70(72.9) 30(73.1)

Female (n/%) 26(27.1) 11(26.9)

Lesion diameter (mean ± SD, cm) 5.49±2.38 5.80±2.76 0.512a

Note: The data are described as the mean ± SD or frequency (%). aIndependent t-test; bChi-square test. A p value less than 0.05 was considered statistically significant.
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no significant differences in patient age, sex or lesion diameter 
between the two groups (p > 0.05).

Discriminative Capabilities of Different 
Feature Types
The 15 feature types were compared by being fed to each of the 
176 discrimination models. The feature type with the highest 
AUC among the 15 feature types was marked with a dedicated 
color and shown as a color map, while the number of times this 
feature was ranked as the best feature type was also counted 
(Figure 1). We can see that Phase 1 (F1

pha) had the most (62 
times) best-performing features, followed by F1;3

pha (39 times). 

Other leading phases were F1;4
pha (22 times) and F1;2

pha (21 times). 
It seems that those combinations including features from Phase 

1 (F1
pha) generally had a better discriminative performance, 

suggesting that Phase 1 was a superior feature representation 
for ccRCC Fuhrman grade classification.

The boxplot of the AUC distributions for all 15 feature 
types is illustrated in Figure 2. The superiority of Phase 1 over 
the other phases can also be verified by statistical comparisons. 
The models built on F1

pha performed significantly better than 
the other 14 feature types, while the phase combinations 

including Phase 1, eg, F1;2
pha, F1;3

pha, and F1;4
pha, significantly out-

performed the combinations without Phase 1, eg, F2;3
pha, F2;4

pha, 

F3;4
pha and F2;3;4

pha . Similarly, F1;2;3
pha , F1;2;4

pha , F1;3;4
pha and F1;2;3;4

pha 

achieved significantly better performance outcomes than 

F2;3
pha, F2;4

pha, F3;4
pha and F2;3;4

pha .

Figure 1 Each colored circle represents a specific discriminative model (176 models in total) with different combinations of classifier and feature selection methods. 
A dedicated color is assigned to each circle with respect to the feature type that has the highest AUC value among all the 15 feature types for the corresponding 
discriminative model.
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Key Feature Analysis
The AUC values achieved by all 176 discriminative models 
using features from Phase1 F1

pha are shown as a heatmap in 
Figure 3. The highest AUC of 0.75 was achieved by the 
discriminative model with the combination of the classifier 
“Bagging” and the feature selection method “CMIM”. In the 
five-fold cross-validation, the feature selection method 
embedded in each discriminative model selected 20 key 
features for further classification. We counted the number 
of times each feature in F1

pha was selected as the top-20 

features (only for those models with AUCs >0.6), and the 
corresponding percentage is summarized and shown as a pie 
chart in Figure 4. The top-10 most frequently selected fea-
tures in F1

pha are highlighted in Figure 4, including five shape 
features and five first-order statistical features. No texture 
features were among the top-10 features.

The top-10 most frequently selected features are sum-
marized in Table 2. All the top-5 first-order statistical fea-
tures (four with p<10−3 and one with p<10−2) and one shape 
feature (elongation, with p=0.023) were statistically 

Figure 2 Boxplots of the AUC distributions for all the 15 feature types. The boxes run from the 25th percentile to the 75th percentile; the two ends of the whiskers 
represent the 5% and 95% percentiles of the data, and the horizontal line and the square in the box represent the median and mean values, respectively. The diamonds 
represent outliers. The letters above each box indicate whether a statistically significant difference (by Kruskal–Wallis test with Bonferroni correction) exists between any 
two feature types. No common letters indicate that the two feature types are significantly different.

Figure 3 A heatmap representation of the AUC values obtained by the 176 discriminative models (F_pha^1 as feature input) built with different combinations of classifiers 
and feature selection methods.
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significant features. We estimated the capability of using the 
mean of the mean feature values of the two groups (ie, “M” 
in Table 2) as the threshold to differentiate the two groups. It 
was observed that the top-5 first-order statistical features, ie, 
the 10th percentile, the 90th percentile, the mean, the median 
and the root mean squared, demonstrated discriminative 
capabilities in which ~60% of the high-grade group (~40% 
of the low-grade group) had larger feature values, while 
comparatively ~60% of the low-grade group (~40% of the 
high-grade group) had smaller feature values.

Discussion
The originality of this multicenter retrospective study is 
that it comprehensively explores the optimal source of CT 
images from multiple CT phases (unenhanced phase and 
three dynamic enhanced phases) and the most ideal dis-
criminative scheme among different classification models 
for the differentiation of low and high Fuhrman nuclear 
grade ccRCC. After thorough comparisons, the discrimi-
native model composed of “CMIM” and “Bagging” 
yielded satisfactory performance with radiomics features 

extracted from the unenhanced phase (UP). Additionally, 
the shape- and first-order-based features were found to be 
more prominent over the texture features.

In terms of radiomics analysis-based predictions of the 
Fuhrman grade of ccRCC, most of the previous radiomics- 
based studies focused on features extracted from a single 
dynamic enhanced CT phase20,23 or multiple postcontrast 
CT phases without including the UP and the excretory 
phase [EP].22,25,26 Only two previous investigations 
included the UP, eg, Lin et al21 reported that they 
employed a machine learning model based on three- 
phase [precontrast phase (PCP, equal to UP in our study), 
CMP and NP] CT images and claimed to achieve superior 
diagnostic performance to those based on single-phase CT 
images in differentiating low- from high-grade ccRCC. 
Kocak’s study24 acknowledged the role of the UP, and 
they stated that machine learning-based unenhanced CT 
texture analysis could be a promising noninvasive method 
with favorable accuracy. Our finding is consistent with the 
previous study, such that the UP phase seems to be more 
suitable for texture analysis in differentiating the nuclear 

Figure 4 A pie chart showing the number of times (%) the features in F_pha^1 were selected into the top-20 features in the five-fold cross-validation of all discriminative 
models with AUCs >0.6. The most frequent 10 features are highlighted with underlined font.
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grade. This may be ascribed to the theoretical ground that 
there is no direct association between the Furhman nuclear 
grade and microscopic tumor vascularity.

In addition, several previous studies25,30 have demon-
strated that tumor size was associated with the Fuhrman 
grade of ccRCC such that larger tumors tend to be scored 
with higher grades. Tumor size is readily accessible in 
clinics; however, small (<4 cm) ccRCCs are still occasionally 
detected in our routine clinical practices. In this study, we 
intentionally excluded this factor for unbiased evaluation 
while recruiting the validation patient cohort by matching 
the sizes (as well as other factors such as age and sex, see 
Table 1) of the two groups, since we sought to confirm 
whether hidden image patterns other than the tumor size 
exists and can be utilized for nuclear grades stratification. It 
would be more meaningful to predict the ccRCCs grades 
regardless of its tumor size but purely depending on the CT 
radiomics features barely captured by the naked eye. This 
strict inclusion criterion for patient enrollment might par-
tially explain the relatively lower accuracies witnessed in 
the current study when compared with those reported 
results25,26 where tumor sizes were not paired.

It was also interesting to find that the top-10 features were 
shape-based features (n=5) and first-order features (n=5). 
The shape-based features were consistent in all four different 
CT phases, and only the elongation feature exhibited 
a statistically meaningful difference (p=0.023) between the 
two groups, where the low-grade group showed higher 
values than the high-grade group, indicating that tumors in 
the low-grade group tended to be more circle-like (non- 
elongated). For the first-order features, all five top-10 fea-
tures, ie, the 10th percentile, 90th percentile, mean, median, 
and root mean squared, in the high-grade group had signifi-
cantly higher values (all p<10−3). This finding suggested that 
the CT HUs, notably the high-intensity HUs (eg, the 90th 
percentile, with p<10−4), were critical in differentiating low- 
grade vs high-grade HUs. Interestingly, this macroscopic 
phenotype coincided with the microscopic nuclear grading 
based on the nucleus size and prominence of the high-density 
nucleolus in the tumor cells.7 Nuclear grading also depends 
on the assessment of the morphological nuclear characteris-
tics; however, at the macro scale, this microscopic hetero-
geneity might not necessarily be reflected in CT 
morphologically but instead is more likely to be presented 
as CT image intensity fluctuations.

We found that no texture features were high-scored as 
the top-10 features in this study, although previous inves-
tigations have shown potential in some texture features, 

eg, entropy was claimed to be a good biomarker in differ-
entiating low-grade vs high-grade.22,23,26 However, these 
results were not conclusive but instead contradictory in 
these pioneer studies, eg, Shu et al26 and Deng et al23 both 
found that high entropy is associated with high-grade renal 
cancer; in contrast, Feng et al22 claimed that the entropy of 
low-grade tumors is higher than that of high-grade tumors. 
We speculate that this inconsistency may be attributed to 
various internal heterogenetic histological components (eg, 
intratumoral necrosis and vasculature) of ccRCC that 
might be disproportionately distributed between the low- 
and high-grade ccRCC cases from the abovementioned 
studies.

There were several limitations that need to be 
acknowledged for this retrospective study. First, the 
enrolled patient cohort was relatively small, and an 
independent testing set was not available. We did not 
reserve an independent testing set from the whole 
patient cohort because of the small sample size. 
Subdividing the patient data into a training/validation 
set and an independent testing set would further dete-
riorate the data scarcity problem since fewer data 
would be reserved for training. This study investigated 
which phasic CT features are more suitable for nuclear 
grading modeling; though building a classification 
model with possibly high classification accuracy was 
not our intention, evaluation on a larger patient scale is 
of greater interest and would definitely further confirm 
the findings here. Second, the radiomics features were 
only extracted from a representative axial slice rather 
than from the three-dimensional (3D) whole tumor. The 
3D volumetric analysis may theoretically include more 
tumor information; however, it is also time-consuming, 
and manual identification of all volumetric tumor slices 
may potentially increase the measurement errors. 
Third, Fuhrman grading was employed in this study 
instead of the WHO/International Society of Urologic 
Pathology (ISUP) grading system, which is currently 
widely used and has a stricter magnification require-
ment for pathological image quality, eg, requiring 400× 
magnification for scoring Grade 1 and 2. However, 
some of the collected digital pathological images in 
this study were only with low magnification, and their 
corresponding original histological sections were either 
lost during patient data sources preservation and relo-
cation, or were not accessible since the patient data 
were collected from the other institution. We have 
reevaluated all the ccRCC cases that had pathological 
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images qualified for both the Fuhrman and WHO/ISUP 
systems and found consistent grading results for most 
(129/137, 94%) of the cases.

Conclusion
In conclusion, the current comprehensive study demon-
strated the feasibility of applying machine learning-based 
quantitative CT texture analysis in the differential diagno-
sis of low-grade from high-grade ccRCC. Of all four 
dynamic enhanced CT phases, radiomics features 
extracted from the UP contribute most to differentiation, 
and one shape-based and five first-order-based features of 
the top-10 features from the UP may be used as potential 
quantitative imaging biomarkers.

Acknowledgment(s)
We gratefully acknowledge all the members of Guangzhou 
First People’s Hospital, for continuous assistance.

Funding
This study has received funding from the National Natural 
Science Foundation of China (81971574, 81874216), the 
National Key Research and Development Program of 
China (2017YFC0112900), the Natural Science 
Foundation of Guangdong Province, P.R. China 
(2018A030313282), the Fundamental Research Funds for 
the Central Universities, SCUT (2018MS23), the 
Guangzhou Science and Technology Project, P.R. China 
(202002030268), Medical Science and Technology 
Research Project of Guangdong Province (A2019465).

Disclosure
The authors report no conflicts of interest in this work.

References
1. Leibovich BC, Lohse CM, Crispen PL, et al. Histological subtype is an 

independent predictor of outcome for patients with renal cell 
carcinoma. J Urol. 2010;183(4):1309–1316. doi:10.1016/j. 
juro.2009.12.035

2. Rioux-Leclercq N, Karakiewicz PI, Trinh QD, et al. Prognostic ability 
of simplified nuclear grading of renal cell carcinoma. Am Cancer Soc. 
2007;109(5):868–874. doi:10.1002/cncr.22463

3. Novara G, Martignoni G, Artibani W, Ficarra V. Grading systems in 
renal cell carcinoma. J Urol. 2007;177(2):430–436. doi:10.1016/j. 
juro.2006.09.034

4. Zisman A, Pantuck AJ, Dorey F, et al. Improved prognostication of 
renal cell carcinoma using an integrated staging system. J Clin Oncol. 
2001;19(6):1649–1657. doi:10.1200/JCO.2001.19.6.1649

5. Ljungberg B, Bensalah K, Canfield S, et al. EAU guidelines on renal 
cell carcinoma: 2014 update. Eur Urol. 2015;67(5):913–924. 
doi:10.1016/j.eururo.2015.01.005

6. Silverman SG, Israel GM, Trinh QD. Incompletely characterized 
incidental renal masses: emerging data support conservative 
management. Radiology. 2015;275(1):28–42. doi:10.1148/ 
radiol.14141144

7. Fuhrman SA, Lasky LC, Limas C. Prognostic significance of mor-
phologic parameters in renal cell carcinoma. Am J Surg Pathol. 
1982;6(7):655–664. doi:10.1097/00000478-198210000-00007

8. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 
2009;373(9669):1119–1132. doi:10.1016/S0140-6736(09)60229-4

9. Lane BR, Samplaski MK, Herts BR, Zhou M, Novick AC, 
Campbell SC. Renal mass biopsy–a renaissance? J Urol. 2008;179 
(1):20–27. doi:10.1016/j.juro.2007.08.124

10. Coy H, Young JR, Pantuck AJ, et al. Association of tumor grade, 
enhancement on multiphasic CT and microvessel density in patients 
with clear cell renal cell carcinoma. Abdom Radiol. 2019;44 
(1):180–189. doi:10.1007/s00261-018-1688-8

11. Zhu YH, Wang X, Zhang J, Chen YH, Kong W, Huang YR. Low 
enhancement on multiphase contrast-enhanced CT images: an inde-
pendent predictor of the presence of high tumor grade of clear cell 
renal cell carcinoma. AJR Am J Roentgenol. 2014;203(3):W295–300. 
doi:10.2214/AJR.13.12297

12. Wei J, Zhao J, Zhang X, et al. Analysis of dual energy spectral CT 
and pathological grading of clear cell renal cell carcinoma (ccRCC). 
PLoS One. 2018;13(5):e0195699. doi:10.1371/journal.pone.0195699

13. Zhang X, Wang Y, Yang L, et al. Delayed enhancement of the 
peritumoural cortex in clear cell renal cell carcinoma: correlation 
with Fuhrman grade. Clin Radiol. 2018;73(11):982.e1–982.e7. 
doi:10.1016/j.crad.2018.06.010

14. Oh S, Sung DJ, Yang KS, et al. Correlation of CT imaging features 
and tumor size with Fuhrman grade of clear cell renal cell carcinoma. 
Acta Radiol. 2017;58(3):376–384. doi:10.1177/0284185116649795

15. Choi SY, Sung DJ, Yang KS, et al. Small (<4 cm) clear cell renal cell 
carcinoma: correlation between CT findings and histologic grade. Abdom 
Radiol. 2016;41(6):1160–1169. doi:10.1007/s00261-016-0732-9

16. Chen C, Kang Q, Wei Q, et al. Correlation between CT perfusion 
parameters and Fuhrman grade in pTlb renal cell carcinoma. Abdom 
Radiol (NY). 2017;42(5):1464–1471. doi:10.1007/s00261-016-1009-z

17. Palmowski M, Schifferdecker I, Zwick S, et al. Tumor perfusion 
assessed by dynamic contrast-enhanced MRI correlates to the grading 
of renal cell carcinoma: initial results. Eur J Radiol. 2010;74(3): 
e176–80. doi:10.1016/j.ejrad.2009.05.042

18. Woo S, Suh CH, Kim SY, Cho JY, Kim SH. Diagnostic performance 
of DWI for differentiating high- from low-grade clear cell renal cell 
carcinoma: a systematic review and meta-analysis. AJR Am 
J Roentgenol. 2017;209(6):W374–W381. doi:10.2214/ 
AJR.17.18283

19. Mytsyk Y, Dutka I, Borys Y, et al. Renal cell carcinoma: applicability 
of the apparent coefficient of the diffusion-weighted estimated by 
MRI for improving their differential diagnosis, histologic subtyping, 
and differentiation grade. Int Urol Nephrol. 2017;49(2):215–224. 
doi:10.1007/s11255-016-1460-3

20. Bektas CT, Kocak B, Yardimci AH, et al. Clear cell renal cell 
carcinoma: machine learning-based quantitative computed tomo-
graphy texture analysis for prediction of Fuhrman nuclear grade. 
Eur Radiol. 2019;29(3):1153–1163. doi:10.1007/s00330-018-5698- 
2

21. Lin F, Cui E, Lei Y, Luo L. CT-based machine learning model to predict 
the Fuhrman nuclear grade of clear cell renal cell carcinoma. Abdom 
Radiol. 2019;44(7):2528–2534. doi:10.1007/s00261-019-01992-7

22. Feng Z, Shen Q, Li Y, Hu Z. CT texture analysis: a potential tool for 
predicting the Fuhrman grade of clear-cell renal carcinoma. Cancer 
Imaging. 2019;19(1):6. doi:10.1186/s40644-019-0195-7

23. Deng Y, Soule E, Samuel A, et al. CT texture analysis in the 
differentiation of major renal cell carcinoma subtypes and correlation 
with Fuhrman grade. Eur Radiol. 2019;29(12):6922–6929. 
doi:10.1007/s00330-019-06260-2

Cancer Management and Research 2021:13                                                                               submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
1007

Dovepress                                                                                                                                                               Lai et al

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1016/j.juro.2009.12.035
https://doi.org/10.1016/j.juro.2009.12.035
https://doi.org/10.1002/cncr.22463
https://doi.org/10.1016/j.juro.2006.09.034
https://doi.org/10.1016/j.juro.2006.09.034
https://doi.org/10.1200/JCO.2001.19.6.1649
https://doi.org/10.1016/j.eururo.2015.01.005
https://doi.org/10.1148/radiol.14141144
https://doi.org/10.1148/radiol.14141144
https://doi.org/10.1097/00000478-198210000-00007
https://doi.org/10.1016/S0140-6736(09)60229-4
https://doi.org/10.1016/j.juro.2007.08.124
https://doi.org/10.1007/s00261-018-1688-8
https://doi.org/10.2214/AJR.13.12297
https://doi.org/10.1371/journal.pone.0195699
https://doi.org/10.1016/j.crad.2018.06.010
https://doi.org/10.1177/0284185116649795
https://doi.org/10.1007/s00261-016-0732-9
https://doi.org/10.1007/s00261-016-1009-z
https://doi.org/10.1016/j.ejrad.2009.05.042
https://doi.org/10.2214/AJR.17.18283
https://doi.org/10.2214/AJR.17.18283
https://doi.org/10.1007/s11255-016-1460-3
https://doi.org/10.1007/s00330-018-5698-2
https://doi.org/10.1007/s00330-018-5698-2
https://doi.org/10.1007/s00261-019-01992-7
https://doi.org/10.1186/s40644-019-0195-7
https://doi.org/10.1007/s00330-019-06260-2
http://www.dovepress.com
http://www.dovepress.com


24. Kocak B, Durmaz ES, Ates E, Kaya OK, Kilickesmez O. 
Unenhanced CT texture analysis of clear cell renal cell carcinomas: 
a machine learning-based study for predicting histopathologic nuclear 
grade. AJR Am J Roentgenol. 2019;W1–W8. doi:10.2214/ 
AJR.18.20742

25. Ding J, Xing Z, Jiang Z, et al. CT-based radiomic model predicts high 
grade of clear cell renal cell carcinoma. Eur J Radiol. 
2018;103:51–56. doi:10.1016/j.ejrad.2018.04.013

26. Shu J, Tang Y, Cui J, et al. Clear cell renal cell carcinoma: CT-based 
radiomics features for the prediction of Fuhrman grade. Eur J Radiol. 
2018;109:8–12. doi:10.1016/j.ejrad.2018.10.005

27. Huhdanpaa H, Hwang D, Cen S, et al. CT prediction of the Fuhrman 
grade of clear cell renal cell carcinoma (RCC): towards the develop-
ment of computer-assisted diagnostic method. Abdom Imaging. 
2015;40(8):3168–3174. doi:10.1007/s00261-015-0531-8

28. van Griethuysen J, Fedorov A, Parmar C, et al. Computational radio-
mics system to decode the radiographic phenotype. Cancer Res. 
2017;77(21):e104–e107. doi:10.1158/0008-5472.CAN-17-0339

29. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: syn-
thetic minority over-sampling technique. J Artif Intell Res. 2002;16 
(16):321–357. doi:10.1613/jair.953

30. Ishigami K, Leite LV, Pakalniskis MG, Lee DK, Holanda DG, 
Kuehn DM. Tumor grade of clear cell renal cell carcinoma assessed 
by contrast-enhanced computed tomography. Springerplus. 2014;3 
(1):694. doi:10.1186/2193-1801-3-694

Cancer Management and Research                                                                                                   Dovepress 

Publish your work in this journal 
Cancer Management and Research is an international, peer-reviewed 
open access journal focusing on cancer research and the optimal use of 
preventative and integrated treatment interventions to achieve improved 
outcomes, enhanced survival and quality of life for the cancer patient. 

The manuscript management system is completely online and includes 
a very quick and fair peer-review system, which is all easy to use. 
Visit http://www.dovepress.com/testimonials.php to read real quotes 
from published authors.  

Submit your manuscript here: https://www.dovepress.com/cancer-management-and-research-journal

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                             

Cancer Management and Research 2021:13 1008

Lai et al                                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.2214/AJR.18.20742
https://doi.org/10.2214/AJR.18.20742
https://doi.org/10.1016/j.ejrad.2018.04.013
https://doi.org/10.1016/j.ejrad.2018.10.005
https://doi.org/10.1007/s00261-015-0531-8
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1613/jair.953
https://doi.org/10.1186/2193-1801-3-694
http://www.dovepress.com
http://www.dovepress.com/testimonials.php
http://www.dovepress.com
http://www.dovepress.com

	Introduction
	Materials and Methods
	Patients
	Fuhrman Stage and Image Acquisition
	Feature Extraction and Representation
	Modeling and Comparisons
	Statistical Analysis

	Results
	Demographics
	Discriminative Capabilities of Different Feature Types
	Key Feature Analysis

	Discussion
	Conclusion
	Acknowledgment(s)
	Funding
	Disclosure
	References

