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Background: Liver hepatocellular carcinoma (HCC) is the third most common cause of 
death by cancer and has a high mortality world-widely. Approximately 75–85% of primary 
liver cancers are caused by HCC. Uncovering novel genes with prognostic significance 
would shed light on improving the HCC patient’s outcome.
Objective: In this research, we aim to identify novel prognostic biomarkers in hepatocel-
lular carcinoma.
Methods: Integrated proteomics and bioinformatics analysis were performed to investigate 
the expression landscape of prognostic biomarkers in 24 paired HCC patients.
Results: As a result, eight key genes related to prognosis, including ACADS, HSD17B13, 
PON3, AMDHD1, CYP2C8, CYP4A11, SLC27A5, CYP2E1, were identified by comparing 
the weighted gene co-expression network analysis (WGCNA), proteomic differentially 
expressed genes (DEGs), proteomic turquoise module, The Cancer Genome Atlas (TCGA) 
cohort DEGs of HCC. Furthermore, we trained and validated eight pivotal genes integrating 
these independent clinical variables into a nomogram with superior accuracy in predicting 
progression events, and their lower expression was associated with a higher stage/risk score. 
The Gene Set Enrichment Analysis (GSEA) further revealed that these key genes showed 
enrichment in the HCC regulatory pathway.
Conclusion: All in all, we found that these eight genes might be the novel potential 
prognostic biomarkers for HCC and also provide promising insights into the pathogenesis 
of HCC at the molecular level.
Keywords: hepatocellular carcinoma, HCC, proteomics, bioinformatics analysis, prognosis, 
biomarkers

Introduction
Liver hepatocellular carcinoma (HCC) has been extensively studied as one of 
the most common and devastating malignancies.1–3 Approximately 75–85% 
of primary liver cancers are caused by HCC and it is the third leading cause 
of death by cancer globally.4 The unclear molecular mechanism led to the poor 
progression of the HCC. Although numerous studies have a focus on the 
molecular understanding and treatment strategy of the HCC, patient survival 
remains at a dismally low rate which less than 8 months.5,6 It is important to 
uncover novel genes with prognostic significance that shed light on improving 
the HCC patient’s outcome. Therefore, exploring new targets for early diagnosis 
and treatment of HCC is of great meaning.
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A single gene or protein or any biomolecule is not 
responsible for any disorder or disease. However, 
a collection of genes coordinating with each other leads to 
disease occurrence. The weighted gene co-expression net-
work analysis (WGCNA) was widely performed as an ana-
lysis method for large-scale data sets and find highly relevant 
gene modules, which are used to construct a free-scale gene 
co-expression network.7,8 Related module detection helps in 
integrating various networks with varied molecular profiles 
to identify candidate biomarkers or therapeutic targets in 
many diseases,9 such as depressive order10 and chronic kid-
ney disease.11 Lau et al established an unfolding gene–gene 
relationship network based on differentially regulated genes 
of HCC.12 In the current, network-based analysis has been 
widely employed to characterize specific physiological func-
tions, signaling and metabolic networks, and genes with 
clinical significance in HCC.13

In this study, we aimed to profile a collection of novel genes 
as potential biomarkers for the diagnosis of HCC. We identi-
fied eight pivotal genes of HCC by the WGCNA, Protein- 
Protein Interaction (PPI), proteomic DEGs, TCGA cohort 
DEGs and TCGA cohort KM of HCC. The proposed algorithm 
was used in the development of module detection study speci-
fically for co-expression network in HCC. An integrated meth-
odological description highlights protein correlated to identify 
key genes for HCC, strengthening the experimental validation 
and drug therapeutics to diagnose and prognosis of HCC.

Methods
Patients and Tissue Samples
A total of 24 pairs of HCC and corresponding adjacent 
non-tumor specimens used for proteomics examination 
were simultaneously obtained from 24 HCC patients in 
Nanfang Hospital, Southern Medical University. All clin-
ical samples in vitro were stored at -80 °C. Patients were 
not subjected to any neoadjuvant therapy before surgery. 
And the patients’ information was obtained from medical 
charts and follow-up. Informed consent was obtained from 
each patient. The study was approved by the Protection of 
Human Subjects Committee of Nanfang Hospital 
(approval no. NFEC-201801-K4). We obeyed the princi-
ples of the 1983 Declaration of Helsinki. All experiments 
in this paper obeyed this principle.

Data Independent Acquisition Proteomics
All the samples were lysed in 8 M urea-containing pro-
tease and phosphatase inhibitors (ThermoFisher Scientific, 

MA, USA). Protein concentration was determined by 
Bradford protein assay. Trypsin (Promega, Madison, WI) 
was added to digest the proteins at 37°C. DIA was per-
formed with 45 isolation windows, and each window over-
lapped 1 m/z, total cycle time was 3.98 s. The DIA data 
were processed and analyzed by Spectronaut 
X (Biognosys, Schlieren, Switzerland) with default set-
tings. The retention time prediction type was set to 
dynamic iRT. Spectronaut X determined the data extrac-
tion and the ideal extraction window dynamically depend-
ing on iRT calibration and gradient stability. FDR cutoff 
on precursor and protein level was lower than 1%. Decoy 
generation was set to mutated apply a random number of 
amino acid position swamps (min=2, max=length/2). 
Otherwise, all the selected fragment ions passing the filters 
were used for quantification.

Data Acquisition
Data were obtained from the following approaches: RNA 
sequencing data and clinical information (including gen-
der, age, stage, clinical stage, pathological grade, tumor 
pathology subtype, overall survival time) for HCC data 
type and corresponding clinical features of 40 normal 
samples and 372 cancer samples were obtained from 
TCGA database (http://portal.gdc.cancer.gov).14

Differentially Expressed Genes (DEGs) 
Screening
In R 3.6.1 (R Foundation for Statistical Computing, 
Vienna, Austria), the optimal cutoff values for overall 
survival analysis of stromal score by maxstat package 
were used as the grouping criterion.15 Sequencing data 
were normalized and analyzed for differences. In order to 
reduce the false-positive rate, log2 |fold change (FC)| was 
corrected by the “ashr” method.16 |FC| > 2 and P < 0.05 
were used as the screening criteria for DEGs.

Construction of Protein-Protein 
Interaction (PPI) Network
The genes related to clinical progression were imported into 
the STRING online database (https://string-db.org),17 and 
a PPI network was constructed with a mutual score greater 
than 0.4 as a threshold. The plug-in in Cytoscape v3.6.1 was 
used to screen the top 30 genes in the network as the central 
genes using five algorithms: betweenness, closeness, 
degree, Edge Percolated Component (EPC), and Maximal 
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Clique Centrality (MCC).18,19 The genes obtained by var-
ious algorithms were intersected to obtain the hub genes.

Functional Enrichment Analysis
Gene Ontology (GO) analysis is to describe the biolo-
gical and molecular functions of genes and to describe 
different levels and dimensions of cellular 
components.20,21 Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis can bring together 
genes that are highly similar in sequence and perform 
the same function.22 DAVID (https://david.ncifcrf.gov) 
provides a comprehensive set of functional annotation 
tools for investigators to understand the biological 
meaning behind a large list of genes.23 DEGs in the 
key module were put into DAVID for GO and KEGG 
analysis. P < 0.05 was set as the screening criteria for 
analysis results.

Weighted Gene Co-Expression 
Networks and Their Modules
A co-expression network targeting DEGs was estab-
lished by using the R package Weighted gene co- 
expression networks and their modules (WGCNA) 
(version 1.68).24 WGCNA is a freely accessible 
R software package (version R 3.6.0), developed for 
the construction of weighted gene co-expression net-
works. Rather than focus only on differential gene 
expression, WGCNA uses information from the gen-
ome to identify a set of genes of interest and converts 
the association of thousands of genes with phenotypes 
into associations between several gene sets and pheno-
types, eliminating the problem of multiple hypothesis 
test correction. The parameter β is a soft-thresholding 
power parameter that strengthens strong correlations 
and penalizes weak correlations between genes. 
A hierarchical clustering tree was constructed with 
different branches of the tree representing different 
gene modules. The adjacency matrix was transformed 
into a topological overlap matrix (TOM). Genes were 
divided into different gene modules based on the TOM- 
based dissimilarity measure.

Gene Set Enrichment Analysis (GSEA)
The GSEA was used to screen the significantly changed 
pathways.25 Pre-ranked GSEA was performed with 
1000 permutations. The P-value was calculated by family- 

wise error rate (FWER), which is a robust method for 
multiples testing.26 The GSEA plots were visualized by 
limma R package.27

Statistical Analysis
Unpaired Student’s t-test was employed to perform the 
two-group comparison. t-test was utilized to analyze 
the difference between the T and P groups. A p-value 
<0.05 as well as |fold change| >2 was used to filter 
DEGs.

Results
Identification of DEGs Associated with 
the HCC and GO/KEGG Analysis
To identify the DEGs of HCC, we subjected sample 
from 24 pairs of samples including coupled HCC and 
adjacent non-tumorous tissues. As seen in Figure 1A, 
the heatmaps showed that 185 proteomic DEGs were 
significantly differentially expressed in carcinoma com-
pared with adjacent non-tumor tissues (|FC|>2, 
p<0.05). What's more, 77 proteomic DEGs were sig-
nificantly upregulated and 108 were downregulated. To 
analyze the biological functions of the highly signifi-
cant module of 161 DEGs systematically, we con-
structed a PPI network based on STRING database 
and was visualized by Cytoscape 3.4.0 (Figure 1B). 
The PPI complex was filtered to obtain 152 nodes 
and 586 pairs of PPI relationships. Thereafter, to detect 
the fundamental function of DEGs, GO term and 
KEGG pathway enrichment analysis were performed. 
The results revealed that the red module was mainly 
enriched in the small molecule catabolic (GO: 
0044282, P = 6.73e–19) and participated in the retinol 
metabolism pathway (hsa00830, P = 2.82e–15) 
(Figure 2).

Construction of a Weighted Gene 
Co-Expression Network
To decipher the biological network of HCC, co-expression 
modules of genes and the relationship between modules 
and pathogenesis of LIHC were performed by WGCNA 
analysis. As seen in Figure 3A, sample clustering was 
performed to detect variation and outliers of all data sets 
and no outlier was identified, indicating that all of the 
samples were used for the next step analysis. In the next 
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step, we choose β = 7 as the soft threshold to construct 
a scale-free network (R2 = 0.950) (Figure 3B). The den-
sely interconnected gene modules were identified based on 
average linkage hierarchical clustering on all data sets 
using the matrix above (Figure 3C). Visualization of the 
eigengene network representing the relationships among 
the modules and the clinical trait weight are shown in 
Figure 3D and E. The results revealed that DEGs could 
be divided into six modules (blue, brown, green, turquoise, 
yellow, grey) based on their overall functions. Among 
these six modules, the turquoise, yellow, and green mod-
ules showed positive correlations and blue and brown 
modules showed negative correlations. One module 
labelled with turquoise was significantly co-expressed 
(p = 4e–12) (Figure 3F), suggesting its important function 
of genes for HCC process in the module.

Identification of Pivotal Genes and 
Correlation Analysis with Clinical 
Characteristics
In the next step, we compared the proteomic DEGs, proteo-
mic turquoise module, TCGA cohort DEGs and TCGA 
cohort KM of HCC. The results showed that eight common 
pivotal genes were identified (Figure 4A), including 
ACADS, HSD17B13, PON3, AMDHD1, CYP2C8, 
CYP4A11, SLC27A5, CYP2E1. We selected these eight 
genes with a hazard ratio (HR) <1 as the hub genes. We 
used these genes to build a prognostic prediction model. In 
addition, the module signature with other independent clin-
ical variables integrated to establish a comprehensive model 
for monitoring progression in HCC (Table 1). We then 
choose seven independent risk features into our model 
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Figure 1 DEGs identification and Construction of the PPI network. (A) The heatmap of DEGs between the LIHC and adjacent non-tumorous tissues. (B) Protein-protein 
interaction (PPI) network of 185 common DEGs. Upregulated DEGs were labeled in red and down-regulated were labeled in blue; p-value and fold change were log- 
transformed, and applied as the bolder with and node fill color; topological degree was used as the criteria for node size.
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consisting of age, tumor grade, pathological T stage, platelet 
count, weight, gender, stage and risk score for univariate 
(Figure 4B). The multivariate analysis showed that the HP 
of risk score, T stage and pathological T stage were greater 
than 1 (Figure 4C). The results suggesting that their higher 
expression was associated with a lower stage/risk score.

Risk Score Analysis and KEGG Analysis 
for the Validation of Prognostic Model
Based on the median risk score, HCC samples were 
divided into low-risk (n =136) and high-risk groups 

(n=136). The distribution of risk score and survival status 
are shown in Figure 5A and B. The transcriptome data of 
372 HCC patients were selected for the gene set enrich-
ment analysis (GSEA) procedure using the model nomo-
gram scores as the reference phenotype. We found that 
DNA replication, spliceosome, the cell cycle, the cellular 
senescence and microRNAs in cancer were upregulated in 
the high-risk group. However, the carbon metabolism, 
neuroactive ligand–receptor interaction, peroxisome, 
PPAR signal pathways and complement and coagulation 
cascades were downregulated in the low-risk group 
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Figure 2 Functional analysis of common DEGs. (A) The top 10 significantly enriched GO-biological processes of the 185 DEGs; (B) The top 10 significantly enriched GO- 
cellular component of the 185 DEGs; (C) The top 10 significantly enriched GO-molecular function of the 185 DEGs; (D) The top 10 significantly enriched KEGG pathway 
enrichment analysis of the 185 DEGs.
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A B

C D

E F

Figure 3 WGCNA analysis of the LIHC proteome profiling. (A) Samples clustering were conducted to detect outliers between the LIHC and adjacent non-tumorous 
tissues; (B) Analysis of the scale-free topology model fit index for soft threshold powers (β); (C) Cluster dendrogram was generated by hierarchical clustering to show the 
modules of highly interconnected groups of genes between LIHC and adjacent non-tumorous tissues; (D) Interactive relationship analysis of co-expression genes. The light 
color indicates topological overlap, while the darker color indicates a high topological overlap. (E) The heatmap shows the eigengene adjacency. (F) Heatmap of the 
correlation between module eigengenes and clinical traits. P-value is shown in each color cell coded by the correlation between modules and traits (red indicates positive 
correlation; blue indicates negative correlation).
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(Figure 5C). All of these aberrant pathways were enriched 
for hallmarks of malignant tumors with a false discovery 
rate (FDR) of <0.05.

Discussion
Cancer is increasingly a global problem, and primary 
liver carcinoma is the second top leading cancer with 
high mortality worldwide.28,29 As one of the main 
histological types of primary liver carcinoma, HCC 
accounts for approximately 90% of pathogenesis30 

and leading to a much lower 5-year survival.31 

Hence, it is significant to develop uncovering novel 
diagnostic and prognostic biomarkers of HCC, which 
would shed light on improving the HCC patient’s out-
come. Up to now, some biomarkers have been verified 
to provide insights into disease outcomes. Lin et al 
elevated α-Fetoprotein (AFP) levels are useful prog-
nostic factors for patients with hepatocellular 
carcinoma.32 Lee et al Identified that gamma-carboxy 
prothrombin (DCP) levels can predict prognosis in 
patients with HCC.33 However, due to the high hetero-
geneity of HCC, more prognosis biomarkers need to be 
discovered.

In our study, a comprehensive analysis of DEGs 
was conducted in 24 pairs of HCC tissues and adjacent 
tissues using WGCNA. Firstly, we established protein- 
protein networks to find 77 upregulated proteomic 

DEGs and 108 downregulated proteomic DEGs by cal-
culating the degree in Cytoscape. Then, GO term and 
KEGG pathway enrichment analysis were performed 
and found that red module was mainly enriched in 
the small molecule catabolic and participated in the 
retinol metabolism pathway, which has been reported 
that was closely related to liver disease.34–36 Then the 
WGCNA analysis was performed to identify co- 
expression gene modules, verified the relationship 
between the gene network and phenotype, and found 
out key genes in the network. A module is defined as 
a group of genes that have separate function than other 
groups for a better understanding of molecular mechan-
isms of HCC. The expression levels of these key genes 
showed obvious differences among the significant mod-
ules. In the blue modules, these genes were signifi-
cantly downregulated in HCC tissues, while 
upregulated in the green, turquoise and yellow module. 
Furthermore, the module labelled with turquoise was 
significantly co-expressed (P = 4e–12), suggesting its 
important function of genes for HCC process in the 
module.

Accordingly, we trained and validated eight pivotal 
genes related to prognosis, including ACADS, 
HSD17B13, PON3, AMDHD1, CYP2C8, CYP4A11, 
SLC27A5, CYP2E1. These genes were identified by 
the proteomic DEGs, WGCNA, PPI networks, TCGA 
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Figure 4 Construction and assessment of pivotal genes for predicting progression. (A) The common genes between our DEGs, proteomic turquoise module, TCGA cohort 
DEGs and TCGA cohort KM of LIHC. (B) Univariate-Cox regression analysis for screening appropriate and significant features into final nomogram model (C) Multivariate- 
Cox regression analysis for screening appropriate and significant features into final nomogram model.
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cohort DEGs and TCGA cohort KM of HCC. It was 
reported that DNA methylation plays a key role in 
regulating ACADS which made it a potential therapeu-
tic target for treating HCC.37 HSD17B13 is a kind of 
genetic variants in retinol metabolism, which is asso-
ciated with liver injury progression.38 Lu et al found 
that HSD17B13 was a tumor suppressive gene that 
inhibits HCC cell glycolysis as revealed by glucose 
utilization, lactate production, and extracellular acidifi-
cation ratio.39 PON3 is a member of Paraoxonase 
(PON) proteins primarily expressed in the liver, its 
expression and specific activities were found to nega-
tively correlate with several inflammatory disorders 
and served as a prognostic predictor in HCC.40 Song 
et al identified AMDHD1 was as a novel tissue-specific 
gene in human and mouse liver tissues.41 CYP2C8, 
CYP4A11 and CYP2E1 are members of cytochrome 
P450 family which related iron ion binding and 

oxidoreductase activity and functioned in drug metabo-
lism in the liver.42–44 Elevating cytochrome P450 gene 
expression has been linked to the aggravation of var-
ious cancers and affects various regulated 
metabolites.45 Zhu et al found that the expression 
levels of SLC27A5 responsible for the rate-limiting 
steps of fatty acid uptake.46 Gao et al firstly found 
that SLC27A5 expression is downregulated in HCC 
by DNA hypermethylation, and reduced SCL27A5 
expression contributes to tumor progression and poor 
prognosis.47 Taken together, our findings indicate that 
the eight common genes in the turquoise modules are 
closely associated with the development of HCC and 
contribute to a common biological function of deci-
phering the biological network of HCC, including the 
growth, development and progression of HCC.

Furthermore, the prognostic signature with other 
independent clinical variables was integrated to estab-
lish a comprehensive model for monitoring progression 
in HCC. The univariate and multivariate analysis has 
shown that the HP of risk score, T stage and patholo-
gical T stage were greater than 1, indicating that these 
genes (ACADS, HSD17B13, PON3, AMDHD1, 
CYP2C8, CYP4A11, SLC27A5, CYP2E1) may be 
potentially new biomarkers to identify at-risk HCC 
patients when further validated. The higher expression 
was associated with a lower stage/risk score. A GSEA- 
based assessment of co-expression gene modules was 
conducted given the clinical significance of HCC, we 
sought to investigate the potential relationships among 
the co-expression gene modules with other clinical 
features. We found that DNA replication, spliceosome, 
the cell cycle, the cellular senescence and microRNAs 
in cancer were upregulated in the high-risk group, 
which are related to HCC tumor procession.48 The 
above results revealed that these genes might be the 
novel potential prognostic biomarkers for HCC.

Conclusion
In conclusion, we found novel biomarker genes 
(ACADS, HSD17B13, PON3, AMDHD1, CYP2C8, 
CYP4A11, SLC27A5, CYP2E1) to predict the prog-
nosis of HCC using integrated proteomics and bioin-
formatics. Functional analysis of these key genes 
showed enrichment in the HCC regulatory pathway. 
Furthermore, the higher expression of these genes was 
associated with a lower stage/risk score of HCC. 
Therefore, these genes could be potential prognostic 

Table 1 Clinical Features of the Patients with LIHC

Risk Score

Characteristics n No. of 
Patients (%)

Low High p

Age 370 0.038
<60 169 (45.7) 75 94

≥60 201 (54.3) 111 90

Grade 366 0

G1-G2 232 (63.4) 142 90

G3-G4 134 (11.2) 41 93

T 368 0.003

T1-T2 275 (74.7) 149 126
T3-T4 93 (25.3) 34 59

Platelet 304 0.039
Low 153 (50.3) 93 60

High 151 (49.7) 74 77

Weight 344 0.023

Low 175 (50.9) 79 96

High 169 (49.1) 97 72

Gender 371 0.005
Female 121 (32.6) 48 73

Male 250 (67.4) 138 112

Status 370 0.017

Alive 240 (64.9) 131 109

Dead 130 (35.1) 54 76

Stage 347 0.002

i–ii 257 (74.1) 141 116
iii–iv 90 (25.9) 32 58
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biomarkers for HCC. Further biological and basic stu-
dies are needed to validate our findings.
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FDR, false discovery rate.
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