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Abstract: Ovarian cancer is the most lethal gynecologic malignancy due to the late diagnoses 
at advanced stages, drug resistance and the high recurrence rate. Thus, there is an urgent need 
to develop new techniques to diagnose and monitor ovarian cancer patients. Fourier transform 
infrared (FTIR) spectroscopy has great potential in the diagnosis of this disease, as well as the 
real-time monitoring of cancer development and chemoresistance. As a noninvasive, simple 
and convenient technique, it can not only distinguish the molecular differences between normal 
and malignant tissues, but also be used to identify the characteristics of different types of 
ovarian cancer. FTIR spectroscopy is also widely used in monitoring cancer cells in response to 
antitumor drugs, distinguishing cells in different growth states, and identifying new synthetic 
drugs. In this paper, the applications of FTIR spectroscopy for ovarian cancer diagnosis and 
other works carried out so far are described in detail. 
Keywords: diagnosis, Fourier transform infrared spectroscopy, ovarian cancer, spectral 
feature, tumor monitoring

Introduction
The incidence of ovarian cancer is lower than that of cervical cancer and endome-
trial cancer of the gynecologic malignancies, but its mortality rate is the highest, 
accounting for 295,414 new diagnoses and 184,799 new deaths worldwide in 
2018.1,2 In developed regions, the number of new cases of ovarian cancer is more 
than that of cervical cancer.3–5 One of the main reasons for the high mortality rate is 
that there are no symptoms or the symptoms are mild and atypical for early-stage 
ovarian cancer, leading to difficulty in early detection and treatment;6,7 other 
reasons include drug resistance and difficulty with controlling and monitoring 
cancer metastasis and recurrence.8–10 Most of the patients are at advanced stages 
at the time of diagnosis, and the established treatment strategy is cytoreductive 
surgery followed by neoadjuvant platinum chemotherapy.11 Although the combina-
tion of poly(ADP-ribose) polymerase (PARP) inhibitors and/or drugs targeting 
homologous recombination deficiency improves the efficacy of platinum che-
motherapy, up to 80% of patients relapse, and the median progression-free survival 
is estimated to be approximately12–18 months.12 Therefore, it is necessary to 
develop new methods for diagnosing and monitoring ovarian cancer patients.

Fourier transform infrared (FTIR) spectroscopy is widely applied to the biomedical 
sample analysis.13,14 This technique is dependent on the absorption of infrared light 
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through vibrational transitions in covalent bonds, in which 
the intensities offer quantitative data and the frequencies 
indicate the properties and structure of the bonds. Here, 
FTIR spectroscopy was mainly used to detect the absorption 
modes in the mid-infrared region (4000–600 cm−1). The 
sharp bands in this region primarily come from the specific 
vibrations from biomolecules, such as proteins, nuclear 
acids, lipids and carbohydrates, which result in a highly 
distinct absorption pattern and spectral profile for each sam-
ple (Figure 1).15–17 FTIR spectroscopy is a simple, rapid and 
noninvasive measuring technique in which clear character-
istic wavebands can be used as spectral makers for a sample.

During the early stage of tumor occurrence or in the 
process of tumor deterioration, tissues and blood or other 
liquids from the body undergo changes in metabolism and 
in the composition and content of the main biomolecules 
that make up tissues and cells.18,19 However, these 
changes have not yet led to specific clinical symptoms or 

imaging changes. FTIR technology enables the capture of 
these tiny changes in precancerous lesions or during can-
cer progression through the biochemical and molecular 
information they provide.20 Molecular structure changes, 
particularly the secondary structure of proteins, are also 
available from the FTIR spectral analysis.21 Thus, these 
changes can be identified as cancer markers, enabling 
sensitive and specific distinction between normal and 
tumor tissues and the real-time monitoring of tumor pro-
gression. Other potential uses of FTIR spectroscopy for 
biomedical detection have been demonstrated in multiple 
areas, including distinguishing cell apoptosis from 
necrosis,22 monitoring cell growth and differentiation,23 

identifying stem cell differentiation phenotypes,24 and 
detecting and imaging cell organelles.25 The purpose of 
this review is to provide a description of the work carried 
out so far in the application of FTIR spectroscopy in 
ovarian cancer, the most lethal cancer in women.

Figure 1 Schematic illustration for the FTIR spectroscopy measurement flow. The main procedures include sample preparation, spectral acquisition and data analysis. 
Pretreatment of the samples depends on the sample type. The sample is then placed on a substrate, such as BaF2 slides, for IR spectroscopy. The representative IR spectrum 
is presented from an A2780 ovarian cancer cell line. The main absorption bands indicating cellular components are the asymmetric and symmetric vibrations (νasym CH3 and 
CH2) of fatty acyl moieties, ester C=O stretching of phospholipids, protein absorption bands (Amide I and Amide II), asymmetric and symmetric phosphodiester vibrations 
of nucleic acids (νasPO2

− and νsPO2
−), and C–O–C vibrations for sugars. Spectral features were extracted and the data analysis was complex according to the aim of the 

research. The schematic refers to previous studies.15–17
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The Application of FTIR 
Spectroscopy in the Diagnosis of 
Ovarian Cancer
Ovarian cancer is the third most common cancer in women 
with malignant tumors, and the incidence of ovarian can-
cer exceeds that of cervical cancer in developed 
populations.3 Current diagnostic methods for ovarian can-
cer include histopathological diagnosis, the measurement 
of biomarkers such as cancer antigen 125 (CA-125), and 
imaging techniques such as computed tomography (CT) 
and magnetic resonance imaging (MRI).26,27 However, 
histopathological examination has limitations, including 
complicated operation, time-consumption, and reliance 
on subjective judgment.28 CA-125 detection shows low 
specificity and sensitivity, and CA-125 levels also increase 
in other types of cancer, such as breast, endometrial and 
lung cancer, and fluctuate during the menstrual cycle of 
premenopausal women.29,30 CT and MRI are expensive 
and difficult to use in the diagnosis of early-stage ovarian 
cancer.31 New methods for early detection and prevention 
by molecular genomics are being rapidly developed. With 
the development of the personalized medicine era, next- 
generation sequencing has become more widely used to 
determine the precise genetic map of patients and to iden-
tify new mutations for new drug targets. For example, 
ovarian cancer patients with BRCA mutations or homolo-
gous recombination deficiency acquire therapeutic benefits 
from platinum drugs and PARP inhibitors, while immune 
checkpoint inhibitors are available for tumors with micro-
satellite instability.32 As a convenient, sensitive and rapid 
technique, FTIR spectroscopy has also been indicated to 
be valuable and widely used in multiple tumors, such as in 
the diagnosis of lung,33 breast,34 colorectal,35,36 cervical,37 

gastric,38 liver39 and thyroid tumors.40

The Diagnosis of Ovarian Cancer Using 
Tissue Samples
The study of the infrared spectrum in ovarian cancer diag-
nosis has been developed in recent years (Table 1). In 2007, 
Krishna et al41 used FTIR and Raman spectroscopy to 
analyze paraffin-embedded tissue samples of normal ovar-
ies, benign ovarian tumors and malignant ovarian neo-
plasms. They demonstrated that normal tissues showed 
significantly higher levels of protein and lower levels of 
DNA and lipids than cancer tissues, and benign tissues had 
higher levels of protein and lower levels of DNA and lipids 
than malignant tissues. Subsequently, Mehrotra et al42 

reported higher lipid and DNA content in frozen sections 
of cancer tissues than in normal tissues. Changes in the 
secondary structure of proteins in cancer tissues have also 
been observed. When identifying the heterogeneous sub-
types of 35 benign ovarian tumors, 30 borderline ovarian 
tumors and 106 cases of ovarian epithelial cancer (including 
serous, mucinous, clear cell and endometrioid ovarian can-
cers), Theophilou et al43 reported that the relative content of 
lipid/protein and nucleic acid/carbohydrate were higher in 
paraffin-fixed malignant tissues than in borderline and 
benign tissues. The ratio of the RNA/DNA absorption 
peaks was lower in malignant tissues than in normal and 
benign tissues. In 2018, Grzelak et al44 used synchrotron 
radiation-based FTIR spectroscopy (SR-FTIR) from 8 fro-
zen tissue samples of ovarian cancer patients and revealed 
increased content of lipids and DNA in the malignant cases. 
In addition, the protein content was also increased in malig-
nant tumors compared to borderline ovarian tumors. Our 
previous work investigated five ovarian cancer cell lines 
versus a normal epithelial cell line and was validated by 12 
frozen tissues from epithelial ovarian cancer patients.45 We 
observed an increased amount of protein in ovarian cancer 
cell lines and an altered secondary structure of protein. We 
also found that the ratio of 1454/1400 was lower in malig-
nant cells/tissues than in normal cells/tissues. Although the 
use of infrared spectroscopy technology for ovarian cancer 
diagnosis has not been widely studied, these results suggest 
that infrared spectroscopy can distinguish normal ovaries 
from benign, borderline and malignant tumors via the ana-
lysis of protein, nucleic acid and lipid content, as well as 
protein conformation. However, some of the results are 
diverse and controversial. This may be partially due to the 
different preparation processes for the samples (fresh, frozen 
or paraffin-fixed samples), the small sample size, and the 
complex characteristics of ovarian cancer tissues in these 
studies.

The Diagnosis of Ovarian Cancer Using 
Blood and Urine Samples
In addition to the infrared imaging of cancer cells and 
tissues, the spectral analysis of serum or plasma from 
patients can also be used to diagnose ovarian cancer. 
Gajjar et al46 demonstrated a 96.7% accuracy in diag-
nosing ovarian cancer (30 ovarian cancer patients vs 30 
normal controls) and an 81.7% accuracy in diagnosing 
endometrial cancer (30 endometrial cancer patients vs 
30 normal controls) using serum or plasma samples by 
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attenuated total reflection FTIR (ATR-FTIR) spectra 
coupled with a proposed classification method. 
Owens et al47 explored the spectral characteristics of 
serum and plasma in patients with ovarian cancer using 
both ATR-FTIR and Raman spectroscopy. The diagnos-
tic accuracy of the Raman spectrum was 74%, and that 
of the ATR-FTIR spectrum was 93.3%. Lima et al48 

further confirmed a 100% sensitivity and specificity for 
differentiating stage I from stages II–IV in ovarian 
cancer, a 94.0% sensitivity and specificity for diagnos-
ing serous and non-serous ovarian cancers, and a 100% 
sensitivity and specificity for distinguishing between 
patients under 60 years of age and those over 60 
years of age using plasma samples; the diagnostic 
accuracies for these categories were 91.6%, 93.0% 

and 96.0%, respectively, when the spectra from 
patients’ serum samples were used.

In a recent study, Paraskevaidi et al49 used ATR- 
FTIR spectroscopy to assess urine samples from patients 
with endometrial cancer (n = 10), patients with ovarian 
cancer (n = 10) and normal subjects (n = 10). The 
diagnostic accuracy was high for both cancers (endome-
trial: 95%; ovarian: 100%). These findings provide pre-
liminary evidences that infrared spectroscopy from 
blood and urine samples can potentially be a powerful 
tool for screening and diagnosing ovarian cancer. 
Another advantage is that as a non-destructive, label- 
free and sensitive technique, FTIR imaging, which relies 
on a minimal amount of blood and urine samples, shows 
no harm to ovarian cancer patients.

Table 1 Diagnosis of Ovarian Cancer Using Tissue Samples Included in the Review

Author Year Sample Preparation No. of 
Patients

Method Spectral Significance

Krishna 

et al41

2007 Normal, benign, 

and malignant 

ovarian tissues

Paraffin -fixed 24 FTIR and 

Raman 

spectroscopy

Normal vs malignant: higher protein 

content and lower DNA and lipid content

8 normal, 10 

benign, 6 

malignant

Benign vs malignant: higher protein content 

and lower DNA and lipid content

Mehrotra 
et al42

2010 Normal and 
ovarian cancer 

tissues

Frozen 
sections

12 FTIR 
spectroscopy

Malignant vs normal: higher content of 
DNA and lipids

Variations in protein secondary structures

Theophilou et al43 2015 Normal, 

borderline and 
malignant ovarian 

tissues

Paraffin -fixed 

sections

171 ATR-FTIR 

spectroscopy

Normal vs malignant: lower lipid/protein 

ratio, lower phosphate/carbohydrate ratio 
and higher RNA/DNA ratio

35 benign, 30 
borderline, 

106 malignant

Normal vs borderline: lower phosphate/ 
carbohydrate ratio and higher RNA/DNA 

ratio

Borderline vs malignant: lower lipid/protein 

ratio and lower phosphate/carbohydrate 

ratio

Normal and benign: similar

Grzelak 

et al44

2018 Borderline and 

malignant ovarian 

tissues

Frozen 

sections

8 SR-FTIR 

spectroscopy

Malignant vs borderline: higher content of 

proteins, DNA and lipids
1 borderline, 
7 malignant

Li et al45 2018 Normal and 
ovarian cancer 

cells/tissues

Frozen 
sections

12 FTIR 
spectroscopy

Malignant vs normal cell lines: higher 
content of proteins, variations in protein 

secondary structures 

Malignant vs normal tissues: lower content 
of DNA and lipids

6 cell lines
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The Diagnosis of Ovarian Cancer Using 
Distinctive Marker Groups
FTIR spectroscopy is powerful for analyzing functional 
groups within molecules. The methylation of cytokines 
in CpG islands has been demonstrated to induce ovarian 
cancer. FTIR spectroscopy can distinguish cells with 
high methylation levels from those with low methylation 
levels, an ability that may lead to the early diagnosis of 
ovarian cancer and the identification of demethylating 
anticancer drugs.50 This result also provides new 
insights for potential ovarian cancer diagnosis by detect-
ing the known molecular biomarkers screened by pre-
vious studies.

Comparison of FTIR Spectroscopy with 
Other Diagnostic Methods
As an assistive diagnostic technique, FTIR spectroscopy 
has been used in multiple cancers, including ovarian can-
cer, showing high specificity and accuracy. Thus, the effi-
cacy of the FTIR technique has been compared with 
widely used methods. Sindhuphak et al51 compared FTIR 
results with histological examinations on cervical cell 
samples from 108 abnormal and 167 normal cases of 
Thai women undergoing hysterectomy. According to the 
histological results, the FTIR results showed up to a 96.3% 
sensitivity and 96.4% specificity. When high definition 
(HD) and ultra-high definition (UHD) FTIR spectral data 
were compared with histopathological examination in 
a breast cancer mouse model, the two methods showed 
good consistency with respect to the localization of metas-
tases smaller than 1 mm. In addition, the infrared spectra 
can differentiate the types of malignant cells.52 These 
results show that spectral histopathology is in good agree-
ment with the histopathological diagnosis, and can provide 
more specific and in-depth interpretation.

Smolina et al53 demonstrated that FTIR data were in 
strong correlation with the gene expression mode in 
diverse breast cancer cell lines, indicating that the two 
methods exhibited consistent patterns of cell variations. 
Rymsza et al54 also observed that ATR-FTIR spectroscopy 
analysis was consistent with the results of PCR testing that 
amplified the L1 gene for human papillomavirus (HPV) 
detection in 41 patients undergoing gynecological exam-
ination. These results show that spectral detection and 
molecular detection have the same effectiveness in some 
aspects.

The Real-Time Monitoring of 
Tumor Development and 
Treatment Progress by FTIR 
Spectroscopy
FTIR Detection of Response to 
Chemotherapy
Real-time monitoring of ovarian cancer development and 
treatment process is still in the laboratory stage using cell 
lines. For example, infrared spectroscopy has preliminarily 
shown potential for the identification of chemoresistance. 
Zendehdel et al55 used FTIR spectroscopy to study two 
cisplatin-resistant ovarian cancer cell lines (OV2008-DDP 
(C13) and A2780-CP) and a cisplatin-sensitive cell line 
(A2780). They demonstrated that changes in the secondary 
structure of proteins and a transition to high wavenumbers 
related to CH2 stretching vibrations were the spectral 
characteristics of cisplatin resistance. The data provided 
primary evidence and research direction for the potential 
identification of resistance to cisplatin in the clinic.

Besides ovarian cancer, the application of FTIR for 
evaluating the response to chemotherapy in other cancers, 
such as breast cancer, using tissue samples has been 
described by Depciuch et al.56 They observed that the 
infrared spectra of breast tissues after chemotherapy were 
similar to those of healthy breast tissues, indicating a good 
treatment effect. The chemotherapy was ineffective when 
the spectra of breast tissues after chemotherapy were simi-
lar to those of cancerous tissues, indicating a useful 
approach for the detection of chemotherapy efficacy.57 

The same conclusion was seen in colorectal cancer.58

Further mechanisms underlying the chemotherapeutic 
drugs and DNA interaction can be studied using multiple 
experimental techniques, including FTIR spectroscopy. 
For example, after exposure to two cisplatin-like Pt/Pd- 
drugs, DNA was extracted from a human triple-negative 
breast cancer cell line and detected by ATR-FTIR. Batista 
et al found the main pharmacological targets and the DNA 
conformation changes after treatment with these drugs.59 

This may provide new insights into the mechanism of the 
chemotherapy drugs.

FTIR Detection of Response to Other 
Drugs
As for monitoring the responses to other antitumor drugs 
in ovarian cancer, Al-Jorani et al60 used ATR-FTIR to 
detect the effects of organoamidoplatinum (ii) complexes 
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on cellular metabolism in cisplatin-sensitive and cisplatin- 
resistant cell lines. Our previous work also used FTIR to 
monitor the dihydroartemisinin-induced growth inhibition 
effect in ovarian cancer cells and normal cells, showing an 
increase in the amount of lipids and nucleic acids in the 
growth inhibition cells (data unpublished).

Drug treatment can lead to molecular changes in tumor 
cells, resulting in the corresponding changes in molecular 
vibrations captured by FTIR. Gasparri et al61 monitored 
the cell apoptosis induced by camptothecin, a cytotoxic 
drug, in HL60 leukemia cells by ATR-FTIR and observed 
that the apoptotic maker was correlated with the absorp-
tion of nucleic acids (1200–900 cm−1). Plaimee et al62 

investigated the apoptotic effects of melatonin in 
a human lung cancer cell line SK-LU-1 by FTIR spectro-
scopy and revealed an increase in lipids and a decrease in 
nucleic acid/DNA. The secondary structure of protein was 
also changed in content and in the position of peaks. Zelig 
et al22 used FTIR to distinguish and characterize the dif-
ferent modes of cell death, such as apoptosis and necrosis, 
after exposure to different drugs. Therefore, these studies 
demonstrate FTIR spectroscopy as a useful tool for study-
ing drug responses.

FTIR Monitoring of Tumor Development
Besides capturing the responses to agents, spectral biomar-
kers can also monitor cancer progression in real time, 
including changes in the intensities and positions of the 
specific bands of proteins, lipids and nucleic acids during 
tumor metastasis.63 Although FTIR imaging has not been 
studied in monitoring ovarian cancer development to date, 
it has been used in other cancers that can be seen as 
a reference.

Yang et al64 established an in vitro 3D model exploring 
the mechanism of lung cancer cell metastasis. Cell inva-
sion was detected by FTIR technique. The authors found 
that compared with the spectra of non-invading cells, the 
band position assigned to amide A, I and II of the spectra 
of the invading cells changed. The band 1080 cm−1 can be 
an indicator for the invading cells. Tian et al65 used FTIR 
spectroscopy for the identification of lymph node metas-
tasis during surgery, and the sensitivity, specificity and 
accuracy were 94.7%, 90.1% and 91.3%, respectively. 
These studies provide new evidences for the evaluation 
of tumor metastasis, which might facilitate the stratifica-
tion of patients and adjustment of treatment strategies in 
time.

Applications of FTIR Spectroscopy 
in Other Areas
In addition to ovarian cancer, IR spectroscopy has been 
widely implemented in other biomedical and biological 
areas (Table 2). Multiple studies have focused on cancer 
investigation, such as brain,66 lung,67 and prostate 
cancer,68 as well as non-cancerous diseases; for exam-
ple, neurodegenerative disorders,69 nephropathy,70 

malaria,71 and osteoarthritis.72 Microbiology is also 
a major field that uses this technology for detecting 
and classifying microbes73–75 and identifying microbial 
colony heterogeneity.76 This technique has also been 
applied in other fields, such as food safety77 and envir-
onmental pollution.78 Implementation in other fields is 
helpful to the further understanding and development of 
IR spectroscopy in the diagnosis and monitoring of 
ovarian cancer.

Future Challenges and 
Considerations
Standardization of Spectral Detection and 
Analysis in Cancer Diagnosis
As mentioned above, various biological samples, including 
tissues, cellular materials and biological fluids, can be spec-
tral analyzed. Although still in the experimental stage, due to 
the sensitivity of spectral detections, it is also essential to 
have repeatability and reliability of the spectral data in large- 
scale studies or from different research groups, which will 
make the technology more convenient for clinical applica-
tions. For example, to reduce differences in personal opera-
tion, instruments, laboratories, and the environment (eg, 
temperature and humidity), it is not negligible to normalize 
the sample preparation procedure and develop 
a standardized spectrum analysis model.79

The preparation of these samples varies according to 
the type of samples. Fresh and snap-frozen tissues are 
preferred, as they have no contaminants. Formalin-fixed, 
paraffin-embedded (FFPE) treatment contributes to char-
acteristic peaks and hinders biological information. FFPE 
samples need to be thoroughly deparaffinized before 
analyzing.80 As water can interfere and cover the biologi-
cal information in the spectra, the internal instrument 
should be dried to lower the humidity, and samples should 
also be dried to avoid water interference.79 The biofluids 
can be centrifuged and the supernatant can be retained for 
further analysis if the cells in these fluids are not the focus 
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of the research. Anticoagulant (EDTA, citrate or heparin) 
should also be taken into account, as it may form unex-
pected peaks.81,82 It is also worth noting that repeated 
freezing and thawing should be avoided, as well as long- 
term storage, since these may lead to confounding factors 
for the spectral analysis.83 Thus, stable samples and 
a consistent preparation are crucial for obtaining reliable 
results. Additionally, five or more spectra should be col-
lected for each sample, and for heterogeneous samples, 
spectra should be collected to cover the whole sample as 
uniformly as possible. It is also recommended to collect 
three sample replicas.17,84 In addition to the investment of 
the instrument, spectral detection has the advantages of 
low cost and convenient preparation with a small sample 
amount.79

Before acquiring a high-quality spectrum, some of the 
instrument parameters, such as resolution, spectral range, 
aperture size, interferometer mirror velocity and co- 
additions should be adjusted to increase the signal-to- 
noise ratio.79 Each spectrum may be acquired within 2–5 
min under the instrument. A background spectrum should 
be acquired before each sample to reflect atmospheric 
changes. The spectra are subjected to a primary system 
to undergo a standardization model in which all the spectra 
data are first preprocessed in the same steps, followed by 
exploratory analysis, outlier detection, classification tech-
niques and data standardization; after these processes, the 
final model would be constructed.17,79 It may take 
a technician to perform the experimental procedures and 
an analytical chemist to construct the model. Thus, the 

Table 2 Examples of Applications of FTIR Spectroscopy in Other Areas

Sample Method Main Points Ref.

Cancer

Brain cancer ATR-FTIR 

spectroscopy

Using 1 µL serum per person, 3897 spectra from 433 patients, to discriminate cancer vs 

non-cancer, cancer severity and metastasis with high sensitivity and specificity

[66]

Lung cancer Infrared spectral 

histopathology

Classification of cancer vs non-cancer, cancerous vs necrotic tissue, lung cancer subtypes 

with high accuracy using FFPE tissue sections

[67]

Prostate cancer ATR-FTIR or Raman 
spectroscopy

Discriminating 156 prostate tissues from different years to indicate a trans-generational 
phenotypic change

[68]

Non-cancerous 
disease

Neurodegenerative 
disorders

ATR-FTIR 
spectroscopy

Using blood plasma samples from 347 patients and 202 controls to diagnosis various 
neurodegenerative diseases with high sensitivity and specificity

[69]

Nephropathy FTIR spectroscopy Prediction of nephropathy using FFPE tissue sections [70]

Malaria ATR-FTIR 

spectroscopy

Quantification of malaria parasitemia, glucose and urea using whole dried blood samples [71]

Osteoarthritis Near infrared 

spectroscopy

Distinguishing mild and advanced cartilage degeneration with high sensitivity [72]

Microbiology

Scrapie FTIR spectroscopy Distinguishing normal and scrapie-infected animals and their clinical stage [73]

Enterococci ATR-FTIR 
spectroscopy

Phenotypic identification and discrimination of clinically relevant enterococcal species using 
60 clinical isolated samples

[75]

Other areas

Food safety Near infrared 

spectroscopy

Food safety surveillance and control [77]

Environmental 

pollution

ATR-FTIR 

spectroscopy

Detecting levels of organochlorine pesticides in the brain of wild birds [78]
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spectra collected from different conditions can be standar-
dized into a chemometric model using this computational- 
based analysis, making a practical spectral analysis model 
available for routine detection and clinical application in 
the future, especially in cancer diagnosis.

Application in Ovarian Cancer Diagnosis
Currently, few studies have screened ovarian cancer by 
FTIR spectral profile. Although there are some common 
insights in the above-mentioned studies, some results are 
conflicting; for example, regarding the differences in pro-
tein content between cancer tissues and normal tissues. 
Another limitation of the previous studies is the relatively 
small sample size. Therefore, more work needs to be done 
to support the diagnosis of ovarian cancer by FTIR 
spectroscopy.

1. It is necessary to perform more comprehensive stu-
dies by FTIR spectroscopy in larger cohorts in order 
to establish a data bank of spectral features and 
summarize the accurate cancer markers for the pos-
sible discrimination of ovarian cancer.

2. The data bank may include diversified samples: 
blood, urine and ascitic fluid samples; tissue samples 
from healthy and tumor tissues with heterogeneous 
subtypes of ovarian cancer and different developmen-
tal and treatment stages.85 Of course, standardized 
operating procedures should be followed.

3. The notable spectral features include the band posi-
tions and intensities at 3000–2800 cm−1 (lipids), 
1800–1700 cm−1 (phospholipids), 1700–1500 cm−1 

(amide I and amide II groups in proteins) and 
1200–900 cm−1 (nucleic acids)17 or their relative 
intensity ratios; the secondary structure of protein; 
and specific intensity ratios, such as the ratios of 
2925/2958 (lipid saturation level), 3013/2958 (lipid 
unsaturation level)86 and 1454/1400. Our previous 
study demonstrated a higher 1454/1400 band inten-
sity ratio in normal cells than in ovarian cancer 
cells.45 We also revealed a higher 1454/1400 ratio 
in cells exhibiting drug-induced growth inhibition,87 

indicating that this ratio may be a spectral marker 
for detecting the effects of drugs or identifying cells 
with different growth characteristics. However, this 
conclusion needs further verification.

4. An understanding of the combination of various diag-
nostic methods will be critical for the development of 
early detection and therapeutic interventions for 

ovarian cancer patients. For example, the employ-
ment of other/multiple techniques, such as conven-
tional biochemical assays or 3D models for suspected 
changes in the biomolecules, could supplement the 
findings of the FTIR detection, leading to a more 
accurate diagnosis or real-time monitoring during 
treatment.

Other Applications of FTIR Spectroscopy
The advantage of FTIR imaging is its capability of captur-
ing tiny differences in detailed cell signatures.84 FTIR can 
be used in a wide range of biomedical fields. In addition to 
monitoring cell growth and drug responses as mentioned 
above, subcellular differentiation and organelle localiza-
tion can also be performed using spectral features; for 
example, in MCF-7 breast cancer cells.25 Further work 
using FTIR is required for multiple studies on the biomo-
lecular changes of cancer cells in response to different 
drugs in different conditions and the biodistribution and 
discrimination of subcellular organelles.

Conclusion
Currently, FTIR imaging has specifically attracted substan-
tial attention as a tool for cancer diagnosis and real-time 
monitoring of tumor development and therapy. In addition, 
new studies are expected, including those on cell growth 
and differentiation, subcellular processes, cell responses to 
drugs, and the assessment and identification of synthetic 
drugs. Overall, FTIR spectroscopy has great potential in 
ovarian cancer diagnosis and other clinical aspects of 
ovarian cancer in the future.
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