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Abstract: The transcription factor runt-related protein 2 (RUNX2) has an important impact 
on the transformation of bone marrow mesenchymal stem cells to osteoblasts. Further studies 
have shown that RUNX2 plays a key role in the invasion and metastasis of cancers. RUNX2 
is a “key” molecule in the regulatory network comprised of multiple signaling pathways 
upstream and its target downstream molecules. Due to the complex regulatory mechanisms 
of RUNX2, the specific mechanism underlying the occurrence, development and prognosis 
of malignant tumors has not been fully understood. Currently, RUNX2 as a promising 
therapeutic target for cancers has become a research hotspot. Herein, we reviewed the current 
literature on the modulatory functions and mechanisms of RUNX2 in the development of 
malignant tumors, aiming to explore its potential clinical application in the diagnosis, 
prognosis and treatment of tumors. 
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Introduction
In mammals, RUNX represents a family of three transcription factors, which share 
a common DNA binding domain-Runt domain, homologous to the Drosophila Runt 
gene. RUNX family members (including RUNX1, RUNX2 and RUNX3) combine 
with core-binding factor β to form heterodimers that enhance their ability to bind to 
DNA, and participate in subsequent transcriptional regulation.1,2 The transcription 
factor RUNX2 is closely related to the differentiation of human osteoblasts and the 
maturation of chondrocytes by regulating multiple signaling pathways and tran-
scriptional activation of a series of downstream molecules.3,4 (figure 1, figure 2, 
figure 3, table 1Current researches have confirmed that RUNX2 is closely related to 
the proliferation, invasion and bone metastasis of multiple cancers such as osteo-
sarcoma, breast cancer (BC), prostate cancer, gastric cancer and colorectal cancer. 
This article summarizes the research progress of RUNX2 in malignant tumors, 
which focuses on the involvement of signaling pathways miRNAs regulations, 
histone modification and so on.

The Transcription Factor RUNX2 and Malignant 
Tumors
RUNX2 and Breast Cancer
BC is one of the common malignant tumors in women. RUNX2 plays a vital role 
in BC development. RUNX2 and estradiol have opposite effects on BC.5 Previous 
studies have found that estrogen can trigger BC progression in situ, while presents 
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anti-metastatic properties. Its mode of action is opposite to 
RUNX2. Overexpression of RUNX2 in BC cell line 
MCF7 induces epithelial-mesenchymal transition (EMT), 
which relies on signaling pathways of TGF β and Wnt.6 

The high nuclear expression level of RUNX2 is related to 
the state of human epidermal growth factor receptor type 2 
(HER2) in BC cells, and the poor prognosis is correlated 
with high RUNX2 expression level and negative HER2 
expression in BC patients.7

Micro ribonucleic acid (miRNAs) can control gene 
expressions at the post-transcriptional level, and act as 
oncogene or tumor suppressor in BC. miRNAs directly8 

or indirectly affect the expression of RUNX2 in BC cells 
by controlling different signaling pathways, such as 
PI3K/AKT, NF-κB, Wnt/β-catenin, TGF-β, BMP, Notch 
and Hedgehog (Figure 1).9–17 miRNAs can regulate these 
signaling pathways by targeting their molecular signaling 
components. Reduced expression levels of tumor- 
suppressive miRNAs and increased expression levels of 
oncogenic miRNAs can activate the signal transduction 
pathways, subsequently up-regulating the expression 
level of RUNX2. The enhanced expression level of 
RUNX2 stimulates the expressions of metastatic marker 
genes such as vascular endothelial growth factor (VEGF), 

Figure 1 Direct or indirect regulation of RUNX2 by miRNAs via the targeting of signaling pathways in BC. In BC, the miRNAs marked in red color play an oncogenic role, 
their expression levels are down-regulated; the miRNAs marked in black color act as tumor suppressor genes, their expression levels are up-regulated.
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metalloproteinase 2 (MMP-2), osteopontin (OPN), bisul-
fite sequencing PCR (BSP), parathyroid hormone-related 
peptide (PTHrP) and receptor activator of nuclear factor 
κB ligand (RANKL), thus promoting bone metastasis, 
increasing BC cell proliferation, and ultimately leading 
to poor prognosis of BC.18

With the increase of whole-genome acetylation level, 
histone deacetylase inhibitor (HDACi) promotes delocaliza-
tion of bromodomain-containing protein 4 (BRD4) from 
active Enhancers (ENHs) to other sites and reduces the 
expression of highly expressed genes; JQ1 inhibits RUNX2 
by blocking the recruitment of BRD4 to the RUNX2 promo-
ter and ENHs; It is also speculated that HDACi and bromo-
domain and extraterminal inhibitors (BETi) synergistically 
inhibit RUNX2 and other cancer driver genes, supporting the 
rational combined use of these drugs in cancer treatment.19,20

RUNX2 has an important impact on osteogenesis 
and BC-mediated bone metastasis. It also plays a critical 
role in osteolytic lesions. BC cells with a lack of RUNX2 
expression suppress osteoblasts differentiation and 
increase osteoclast differentiation.21 RANKL expression 
is positively correlated with connective tissue growth fac-
tor (CTGF) in BC tissues and the expression levels of 
RANKL and CTGF are higher in bone metastasis tissues 
than in other sites. CTGF also promotes the recruitment of 
RUNX2 to the RANKL promoter, thereby increasing the 
production of RANKL in tumor cells, and subsequently 
stimulating osteoclastogenesis.22 In BC cells, RUNX2 is 
implicated in an adhesion-dependent mechanism of bone 
tropism and bone colonization, which is a potential target 
for predicting and treating bone metastasis of BC.23 In the 
process of BC metastasis, cancer cells promote survival 

Figure 2 PI3K/AKT-dominated signaling pathway regulates RUNX2 in PCa.

Figure 3 Simulation diagram of RUNX2ʹ s regulation mechanism in malignant tumors. The dotted line indicates that further research is required.
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under nutrient starvation by autophagy. In addition, 
RUNX2 promotes autophagy through α-tubulin acetylation 
and autophagic vesicle transport. Therefore, the levels of 
LC3B and RUNX2 can be used to predict metastasis of 
Bethesda categories (BCs).24

The mechanism of RUNX2 underlying BC is relatively 
thorough, which provides reference for the study of other 
malignant tumors.

RUNX2 and Osteosarcoma
Osteosarcoma is a malignant bone tumor, which occurs 
more commonly in adolescents or children under the age 
of 20. RUNX2 has the potential to regulate osteoblast 
differentiation and carcinogenesis, and it exerts an impor-
tant impact on the development and progression of osteo-
sarcoma. RUNX2 is overexpressed in human 
osteosarcoma tissues, especially in tumors that respond 
poorly to chemotherapy.25 Increasing number of studies 
have confirmed that miRNAs and long non-coding RNAs 
(lncRNAs) are aberrantly expressed in osteosarcoma and 
can directly or indirectly participate in the regulation of 
RUNX2 expression. The potential diagnostic and thera-
peutic values of the differentially expressed miRNAs and 
lncRNAs by targeting RUNX2 are extremely important 
in the clinic (Table 1).26–34 For example, miR-150 is 
suggested as the therapeutic target of osteosarcoma due 
to its anti-tumor function in promoting chemotherapy 
sensitivity and inhibiting tumor cell proliferation via 
RUNX2. In details, the results of luciferase reporter 
assay demonstrated that RUNX2 is a direct target of 
miR-150 and miR-150-RUNX2 axis affects the chemical 
sensitivity of osteosarcoma cells by regulating the 
expression levels of apoptosis proteins such as increasing 
the expression levels of cleaved caspase-3 and cleaved 

caspase-8 while reducing the expression levels of cleaved 
caspase-3 and cleaved caspase-8.27 With the deepening of 
research, the regulatory signaling pathways, potential 
targets and corresponding drugs related to RUNX2 are 
emerging research hotspot against osteosarcoma.35–37

RUNX2 and Prostate Cancer
Prostate cancer (PCa) is a heterogeneous disease at both 
the genetic and clinical levels. At present, it is divided into 
different genotypes and treatment methods were applied 
based on a large amount of clinical data. The molecular 
mechanism remains to be clarified.38 Through RUNX2 
immunohistochemical staining analysis on PCa tissues, it 
was found that patients with the positive RUNX2 staining 
had higher PSA levels, higher Gleason grades, and stron-
ger metastatic ability than the negative staining ones.39 

Overexpression of RUNX2 is related to the up-regulation 
of matrix metalloproteinases, bone resorption factors and 
the enhanced metastasis of PCa cells to bone.40 The 
increased RUNX2 protein level is related to the decrease 
of phosphatase and tensin homolog (PTEN) protein 
expression. The expression of RUNX2 is down-regulated 
in PCa cells by interacting with Forkhead Box O1 
(FOXO1). Correspondingly, FOXO1/PTEN expression is 
decreased in patients with bone metastasis, while RUNX2 
expression is increased, suggesting the potential value of 
FOXO1 in the metastasis of PCa to bone.41 Further studies 
have confirmed that PTEN deletion promotes the activa-
tion of the AKT-RUNX2-OCN-GPRC6A-CREB signal 
axis and further induces the expressions of cytochrome 
P450 family 1 subfamily A1 (CYP1A1) and CYP17A1 
in PCa cells and intratumoral androgen synthesis (IAS).42 

An important target of the PI3K/AKT signaling pathway is 
FOXO1 protein that can be phosphorylated directly by 

Table 1 Regulation of RUNX2 Expression by miRNAs and lncRNAs in Osteosarcoma

No. miRNA (s) or lncRNAs Interaction Site Role Signaling Pathway References

1 miR-150 Directly Tumor Suppressor Apoptosis proteins [7]

2 LncRNA TUG1 Directly Oncogene - [8]

3 miR-338-3p Indirectly Tumor Suppressor MAPK [9]

4 LncRNA SNHG20 Directly Tumor Suppressor Mitochondrial apoptosis [10]

5 miR-340 Indirectly Tumor Suppressor Notch [11]

6 miR-302B Directly Tumor Suppressor - [12–14]

miR-203
miR-205
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AKT leading to translocation of FOXO1 from the cyto-
plasm to the nucleus. This not only impairs FOXO1 activ-
ities on transactivation of downstream target genes, but 
also abolishes its transcriptional activity-independent inhi-
bitory effect on other targets such as androgen receptor 
(AR), extracellular regulated protein kinases (ERK) and 
RUNX2 (Figure 2). Additionally, miR-466 inhibits tumor 
growth and bone metastasis in PCa by direct regulation of 
RUNX2 expression.43

Furthermore, RUNX2 S319 phosphorylation plays an 
important role in the development of PCa; P-S319-Runx2 
is a marker for more aggressive metastatic disease in 
a patient population, which has an exclusively nuclear 
localization and is regulated by both RAS/MAPK and 
PI3K/AKT signaling pathways.44 Therefore, based on the 
conventional signaling pathways research, the research of 
histone modification function of RUNX2 should be paid 
more attention, and it may be used as a potential target for 
the diagnosis and treatment of prostate cancer.

RUNX2 and Colorectal Cancer
Colorectal cancer (CRC) is a common malignant tumor in 
the digestive system. Most CRC-related deaths are attrib-
uted to liver metastases. Researches have shown that 
RUNX2 is closely related to Duke staging, liver metastasis 
and ERβ, and is an independent factor in the prognosis of 
colon cancer patients.45 OPN in CT26 CRC cells is regu-
lated by RUNX2 and ETS-1. Therefore, inhibiting these 
transcription factors could result in a significant down- 
regulation of the osteopontin transfer proteins.46 RUNX2, 
OPN and MMP-7 are highly expressed in CC531 colon 
cancer cells metastases explanted from the liver, while the 
expressions are reduced and/or disappeared in cell culture 
in vitro. The opposite expression profiles of Hoxc8, OPN 
and RUNX2 indicate that these genes may be regulated in 
a feedback loop way. Transforming Growth Factor β-1 
(TGFβ-1) induces the overexpression of OPN and 
RUNX2 in hepatocytes, but does not show the same effect 
on hepatocytes co-cultured with CC531 cells.47 Small 
nucleolar RNA host gene 3 (SNHG3) binding to miR- 
539 up-regulates RUNX2 expression, which promotes the 
growth and metastasis of CRC. SNHG3 may be a potential 
target for CRC treatment.48 RNA-metastasis-associated 
lung adenocarcinoma transcript 1 (MALAT1) binding to 
miR-15 family members affects the expression of LRP6, 
thereby enhancing β-catenin signaling and leading to an 
increase in the transcription level of the downstream target 
gene RUNX2. Moreover, MALAT1 can also bind to the 

splicing factor proline/glutamine-rich (SFPQ) protein, con-
tributing to dissociation of the SFPQ/polypyrimidine tract 
binding protein-2 (PTBP2) dimer, the release of PTBP2 
and the increase of RUNX2 expression by interplaying 
with the IRES domain of the corresponding mRNA 
5ʹUTR region.49

Our previous studies indicate that miR-455 inhibits the 
progression of CRC via RAF. Plasmacytoma variant trans-
location 1 (PVT1) silencing can inhibit the progression of 
CRC by miR-455 in vivo. RUNX2 increases the expres-
sion level of PVT1 in CRC, while miR-455 inhibits 
RUNX2 expression, which forms a feedback loop between 
RUNX2/PVT1/miR-455. In conclusion, the RUNX2/ 
PVT1/miR-455/RAF-1 axis has been considered 
a potential target for CRC treatment.50,51

RUNX2 and Gastric Cancer
Gastric cancer (GC) remains to be one of the world’s 
leading malignant tumors of the digestive system. Half of 
the new affected cases occurred in East Asia, including 
China, Japan and South Korea. RUNX2 in GC tissue is 
related to the degree of differentiation, depth of invasion, 
and lymph node metastasis. RUNX2 is one of the inde-
pendent prognostic factors for patients with GC. RUNX2 
enhances transcription and promotes the progression of 
GC by directly binding to CXCR4.52 In GC patients, 
RUNX2 plays a regulatory role by interacting with 
lncRNAs under certain conditions. The expression levels 
of lncRNA EPEL and RUNX2 are up-regulated in GC. 
Overexpression of lncRNA EPEL leads to the up- 
regulation of RUNX2 expression, while overexpression 
of RUNX2 does not affect EPEL expression. Thence, 
lncRNA EPEL may be regulated by the interaction with 
RUNX2.53 MiR-539 as a tumor suppressor inhibits GC 
progression by targeting RUNX2.54 JQ1 can inhibit the 
progression of GC by down-regulating chromatin accessi-
bility and inactivating the RUNX2/Nidogen 1 (NID1) sig-
naling pathway. In addition, NID1 may be a new 
therapeutic target for GC.55

RUNX2 and Lung Cancer
Non-small cell lung cancer (NSCLC) accounts for nearly 
80% of lung cancers. The expression level of RUNX2 in 
NSCLC is significantly correlated with tumor size, stage 
and lymph node metastasis. RUNX2 is an independent risk 
factor in NSCLC.56 Besides, the co-expression network of 
RUNX2 in lung squamous cell carcinoma (LUSC) reveals 
that the complex interactions between RUNX2 and 45 co- 
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expressed genes, which are involved in extracellular 
matrix-receptor interactions, local adhesion, protein diges-
tion and absorption, human papillomavirus infection and 
PI3K/AKT signaling pathway, etc.57 In lung adenocarci-
noma, RUNX2 transcriptionally regulated its potential tar-
get genes are involved in cell cycle-related proteins and 
MAPK signaling pathways, providing a new perspective 
for targeted drug development and drug resistance 
research.58 WW domain-containing oxidoreductase 
(WWOX) is a tumor suppressor gene.59 Overexpression 
of WWOX in highly aggressive H1299 lung cancer cells 
suppresses cell motility and invasiveness, and inhibits the 
expressions of RUNX2 and its target gene MMP-9.60 

BMP-2 induces lung cancer migration through increasing 
the activation of ERK and p38 and up-regulating Runx2 
and Snail expressions. ERK-RUNX2-Snail and p38- 
RUNX2-Snail can induce lung cancer cell migration and 
EMT. It is also shown that RUNX2 can increase the 
expression of Snail to regulate the early metastatic events 
of lung cancer.61 In addition, miR-218 and lncRNA H19 
directly or indirectly regulate RUNX2 in lung cancer.62,63

RUNX2 and Other Cancers
Malignant melanoma is highly aggressive and resistant to 
chemotherapy. RUNX2 is overexpressed in melanoma 
cells, and its expression is related to the process of pro-
liferation and migration.64 The RUNT domain in RUNX2 
is responsible for the proliferation and migration of 
melanoma.65 The RUNT domain increases the angiogenic 
properties of melanoma cells. Proteomic analysis allows us 
to point out that the RUNT domain is involved in the 
process of neovascularization.66 RUNT domain promotes 
bone metastasis of melanoma cells through the complex 
interactions with genes involved in bone remodeling 
through the ERK/p-ERK and AKT/p-AKT pathways.67 

All these findings indicate that the RUNT domain is 
involved in melanoma metastasis and cell migration. 
RUNX2 can reactivate the MAPK and PI3K/AKT path-
ways, thereby endowing melanoma cells with high meta-
static potential.68

In patients with thyroid cancer, the expression level 
of RUNX2 was higher in patients with microcalcifica-
tion, compared with those without microcalcification.69 

RUNX2 promotes bone homing and bone metastasis by 
interacting with its target genes such as Stromal Sell- 
Derived Factor 1 (SDF1), CXCR7 and BSP.70 Thyroid 
hormone receptor β, (TRβ) modulating RUNX2 expres-
sion is a signal axis shared by thyroid cancer and BC. 

TRβ directly interacts with the proximal promoter of 
RUNX2 through the thyroid hormone response element, 
resulting in the reduced RUNX2 promoter activity.71 As 
a cis-regulatory element, RAIN promotes carcinogenic 
characteristics in thyroid and BC cells, promoting the 
expression of RUNX2 through two patterns, including 
binding to WD repeat domain 5 (WDR5) and facilitating 
its positioning on RUNX2 promoter; and changing the 
transcription status of the RUNX2 locus and promoting 
transcription initiation. RAIN acts as a bait for the nega-
tive elongation factor (NELF) complex to inhibit its 
inhibitory effect on transcription elongation.72 Ectopic 
expression of miR-218 inhibits the development of papil-
lary thyroid cancer by targeting RUNX2 to inactivate the 
PTEN/PI3K/AKT pathway.73

Transcription Factor RUNX2 and 
Cancer Stem Cells in Some Cancers
The theory of cancer stem cells (CSCs) suggests that there 
is a group of “stem” cell populations with self-renewal, 
multidirectional differentiation, multi-drug resistance to 
radiotherapy and chemotherapy, and invasion and 
metastasis.74 CSCs were first found in hematological 
malignant tumors, and then many CSCs or tumor stem 
cell-like cells have been identified and isolated from solid 
tumors, such as BC, PCa, colon cancer, etc.75–77 CSCs are 
usually hidden in the cancer nest, in a static state, in 
which DNA replication is not active, cells can escape 
DNA damage induced by chemotherapeutic drugs, 
enhance the ability to repair, and maintain the stable 
inheritance of genes. CD44 is one of the most commonly 
used markers for identifying CSCs. Essentially, cell-cell 
adhesion proteins have an important impact on tumor 
invasion and metastasis.78 These biological characteris-
tics of CSCs are controlled by complex intracellular and 
extracellular regulatory networks. RUNX2 is closely 
related to the biological behavior of malignant tumors, 
and tumor stem cells are the root causes of the malignant 
behavior of tumors. There are a few related studies. BMP- 
2 can induce bone formation and restrain CSCs in the 
human osteosarcoma OS99-1 cell line, accompanied by 
the accumulation of RUNX2 and Osx.79 The function of 
RUNX2 begins with breast stem cells that differentiated 
into progenitor cells which develop into luminal and basal 
breast lineages. RUNX2 can promote the activity of 
CD44+/CD24−/low BC stem cells and regulate the malig-
nant phenotype of BC.80 The prostate cancer stem cells 

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                             

Cancer Management and Research 2021:13 2544

Zhao et al                                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


are characterized by high expression of CD49f and 
RUNX2, low expression of CD44, CD133 and 
Androgen Receptor.81

Outlook
In recent years, RUNX2 as a specific transcription factor in 
malignant tumors has attracted much attention, and its related 
molecular pathways have been put forward as research hot-
spots. Current research mainly focuses on its upstream sig-
naling pathways and the regulation of miRNAs, and the 
researches of its downstream mechanisms are relatively few 
(Figure 3). Its research on and histone modifications has also 
begun to take shape and has excellent research value. At the 
same time, combined with the regulatory characteristics of 
the RUNX family in malignant tumors, both RUNX1 and 
RUNX3 can regulate the differentiation and activity of 
immune cells. Combined with rare reports in previous stu-
dies, we believe that RUNX2 has a unique mechanism in 
regulating the tumor microenvironment (TME), which can 
not only reshape the microenvironment also regulate the 
activity of immune cells, leading to tumor immune escape. 
With the in-depth study of RUNX2-related regulatory 
mechanisms, RUNX2 is expected to become a new thera-
peutic target and contribute to the development of new drugs 
and the improvement of clinical efficacy.
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