
R E V I E W

Role of G Protein-Coupled Estrogen Receptor in 
Digestive System Carcinomas: A Minireview

This article was published in the following Dove Press journal: 
OncoTargets and Therapy

Yu-an Qiu 1 

Jianping Xiong2 

Tenghua Yu3

1Department of Critical Care Medicine, 
Jiangxi Cancer Hospital, Nanchang 
University Cancer Hospital, Nanchang, 
330029, People’s Republic of China; 
2Department of Oncology, The First 
Affiliated Hospital of Nanchang 
University, Nanchang, 330006, People’s 
Republic of China; 3Department of Breast 
Surgery, Jiangxi Cancer Hospital, 
Nanchang University Cancer Hospital, 
Nanchang, 330029, People’s Republic of 
China 

Abstract: Digestive system carcinomas are one of the leading causes of cancer-related 
deaths worldwide. G protein-coupled estrogen receptor (GPER), a novel estrogen receptor, 
has been recognized as an important mediator in numerous cancer types. Recently, the 
function and clinical significance of GPER in digestive system carcinomas has been 
a subject of interest. Increasing evidence has revealed that GPER plays an important role 
as a potential biomarker in digestive system carcinomas. This work summarizes the recent 
literature and focuses on the emerging functional role of GPER in digestive system carci-
nomas, including gastric cancer, hepatocellular carcinoma, pancreatic cancer, and colorectal 
cancer. The potential application of GPER in novel strategies for the diagnosis and treatment 
of digestive system carcinomas is discussed and highlighted. 
Keywords: GPER, digestive system carcinomas, prognostic indicator, therapeutic target

Introduction
Digestive system carcinomas have a high incidence and mortality in developing and 
developed countries and they constitute a heavy burden globally.1 Digestive tract 
cancers, such as gastric, esophageal, and liver cancers, are frequently diagnosed in 
China and are identified as the leading causes of cancer-related deaths.2 Early 
diagnosis and treatment could remarkably improve the prognosis of patients with 
digestive system carcinomas. However, due to the lack of useful biomarkers, 
patients with digestive system carcinomas are often diagnosed at an advanced 
stage, which is highly refractory to most systemic therapies. Therefore, to improve 
prognosis, novel effective biomarkers for early diagnosis in patients with such 
cancers must be identified.

GPER, formerly named as G protein-coupled receptor 30 (GPR30), is a member 
of G protein-coupled receptors (GPCRs), which belongs to the 7-transmembrane 
spanning G protein-coupled receptor family and mediates the rapid cellular 
responses to estrogen, involving second messengers, kinases, and ion channels.3–7 

GPER was identified and characterized from estrogen-induced activation of extra-
cellular signal-regulated kinase (ERK) 1/2 in classical nuclear estrogen receptor 
alpha/beta (ERα/β)-negative breast cancer SKBR3 cells.8 The gene encoding GPER 
is located on the human chromosomal 7p22.3 region, and it consists of three exons. 
Only the third exon encodes a full-length 375 amino acid protein with seven 
membrane segments, and the relative molecular weight of the protein is approxi-
mately 42 kDa. The understanding of the function of GPER has made significant 
advances in the identification of GPER-selective agonists and antagonists and the 
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use of GPER knockout mice.9–11 Studies have shown that 
GPER can be localized in the plasma membrane at the cell 
surface12 and intracellular membranes, such as the endo-
plasmic reticulum and Golgi apparatus.5 The nuclear loca-
lization of GPER has also been observed.13 GPER 
translocation has been shown to have a significant effect 
on resistance to chemotherapy in breast cancer.14

The contribution of GPER has been described in many 
physiological systems, such as the reproductive, nervous, 
endocrine, immune, and cardiovascular systems.15 Several 
studies have demonstrated that GPER mediates biological 
effects in various malignant tumors, including cancers of 
organs in which estrogen acts directly, such as breast, endo-
metrial, and ovarian cancers, as well as other estrogen- 
responsive organ cancers, such as lung, prostate, and adre-
nocortical cancers. Yu et al16 reported that GPER enhanced 
cell viability and motility in triple-negative breast cancer 
cells. Li et al17 found that autocrine motility factor/GPER/ 
protein-serine-threonine kinase (AKT) signaling promotes 
endometrial cancer progression. Yan et al18 showed that 
GPER is involved in the proliferation, migration, and inva-
sion of ovarian cancer cells. Conversely, GPER may act as 
a tumor suppressor in several cancer types, including lung 
cancer,19 prostate cancer,20 and adrenocortical carcinoma.21 

Due to the different research conditions and the complex 
interactions between multiple estrogen receptors, contradic-
tory results have been reported regarding the subcellular 
localization of GPER and its function, being described as 
both proliferative and pro-apoptotic in breast cancer.22 

Similarly, numerous studies have suggested that GPER 
has dual roles (antitumorigenic or protumorigenic) in the 
pathogenesis, progression, and metastasis of malignant 
tumors. The causes of this phenomenon remain to be 
investigated.

To date, the molecular mechanisms and clinical signif-
icance of GPER in digestive system carcinomas remain 
obscure. This review summarized the present state of 
knowledge about the role of GPER in digestive system 
carcinomas (Table 1), of which GPER may emerge as 
a novel potential prognostic indicator and therapeutic 
target.

GPER Ligands
There are five main types of GPER ligands: steroids (Table 2), 
selective estrogen receptor downregulators (SERDs)/ selective 
estrogen receptor modulators (SERMs), phytoestrogens, syn-
thetic estrogens, and synthetic compounds. Many studies have 
reported that the binding of estrogen (17β-estradiol, E2) to 

GPER exhibits high selectivity.4,15,23,24 In addition, other ster-
oids, including estrone and 17α-estradiol, exhibited very low 
affinities, whereas progesterone, cortisol, and testosterone did 
not bind to GPER.23 Furthermore, estriol has been reported to 
act as a GPER antagonist.25 Interestingly, among the thera-
peutic anti-estrogen agents, SERDs/SERMs, such as ICI 
182780 (fulvestrant), tamoxifen, and raloxifene, were also 
shown to act as agonists of GPER as opposed to their antag-
onistic action towards ERα/β.8,23,26,27 Many synthetic estro-
genic compounds, including pesticides, herbicides, and 
plasticizers (eg bisphenols, methoxychlor, alkylphenols, poly-
chlorinated biphenyls, dioxins, and phthalates) have been 
demonstrated to activate GPER.28,29 Some phytoestrogens, 
such as quercetin, genistein, daidzein, resveratrol, oleuropein, 
and hydroxytyrosol, also bind to GPER.30–33 Studies clarify-
ing the potential physiological and pathophysiological func-
tions of GPER are substantially facilitated by extremely high 
GPER-selective compounds sharing the scaffold domain of 
a tetrahydro-3H-cyclopenta-[c]quinoline, such as G1, G15, 
and G36, which serve as useful probes to stimulate (G1) or 
antagonize (G15 and G36) GPER signaling.9,10,34 Recently, 
based on a computational screen, a new compound, 2-cyclo-
hexyl-4-isopropyl-N-(4-methoxybenzyl) aniline (CIMBA) 
was designed and synthesized, which exhibits high selectivity 
and superior antagonism for GPER and reduces the formation 
of estrogen-induced cholesterol gallstones in female mice.35

GPER ligands may serve as novel pharmacological 
agents for treating human diseases.36 Recent preclinical 
studies have shown that chronic administration of G1 
could restore fat, glucose, and lipid homeostasis in 
mouse models.37 This observation indicates that chronic 
GPER signaling has potential implications for the role of 
GPER in cancer, as metabolic syndrome is an independent 
risk factor for cancer.38 G1 is currently undergoing Phase 
I clinical trials for its antitumor properties.39

Models explaining estrogen-induced carcinogenesis in 
breast and gynecological cancers have focused on the ER- 
dependent mechanisms of cellular proliferation and somatic 
mutations.40 However, a protective effect of estrogen has 
been suggested to explain the male predominance in cancers 
of the digestive tract, such as esophageal, gastric, and liver 
cancers.41,42 Soy and soy-based foods have been used as 
basic traditional ingredients in the diets of the Asian popu-
lation for thousands of years. Soy isoflavones such as daid-
zein and genistein are polyphenols with estrogenic 
properties.43 Soy intake has received wide attention because 
of its potential role in reducing the risk of gastrointestinal 
cancer.44–46 Bisphenol A (BPA) and phthalates, classified as 
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Table 1 Summary of the Role of GPER in Various Digestive System Malignancies

Types GPER 
Expression*

Function Ligand Signaling Pathways Study Objects Reference

GC Down- 

regulated

Predict good prognosis Non- 

specified

EMT Bioinformatics 

Clinical samples 

In vitro

[76]

Down- 

regulated

Increase cell death G1 ER stress Clinical 

In vitro 
In vivo

[77]

Up-regulated Predict poor prognosis Non- 

specified

Non-specified Bioinformatics [78]

HCC Non- 

specified

Regulate iron metabolism E2; G1 

ICI 

182720

GPR30/BMP6 In vitro 

In vivo

[85]

Non- 

specified

Antiviral E2; G1; 

G15 
tamoxifen

GPR30/MMP9 In vitro [86]

Non- 
specified

Mechanical reprogramming Tamoxifen GPER/RhoA/myosin In vitro [87]

Non- 
specified

Inhibit proliferation; Stimulate 
apoptosis

E2; G1 GPER/ERK In vitro [88]

Down- 
regulated

Regulate inflammatory responses G1 Non-specified Clinical samples 
In vitro 

In vivo

[69]

Up-regulated Promote tumor development E2 GPER/PI3K/AKT/mTOR Clinical samples 

In vivo

[89]

Non- 

specified

Increase miR-21 transcription DHEA; 

G1; G15 

ICI 
182720

GPER/ERK In vitro [90]

Non- 
specified

Up-regulate FASN; 
Increase cell growth

E2; G1 GPER/ERK/c-fos/AP-1 In vitro [92]

PDAC Non- 
specified

Sensitize cells to chemotherapy AXP107- 
11 

G1; G15

GPER/MAPK Bioinformatics 
In vitro 

In vivo

[96]

Non- 

specified

Inhibit mechanotransduction and 

invasion

G1 

G15

GPER/PKA/RhoA/myosin2 Bioinformatics 

In vitro

[97]

Non- 

specified

Induce tumor regression; 

Increase cell immunogenicity

G1 Non-specified Clinical samples 

In vitro 

In vivo

[72]

Non- 

specified

Reprogram the tumor 

Microenvironment; 
Increase apoptosis

Tamoxifen GPER/HIF-1α In vitro 

In vivo

[99]

Non- 
specified

Mechanically regulate the tumor 
microenvironment

Tamoxifen GPER/RhoA In vitro 
In vivo

[100]

(Continued)
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synthetic plasticizers, can exert endocrine disruption due to 
their weak estrogenic properties and increased risk of 
cancer.47,48 BPA exposure not only increases the risk of 
colon cancer, but also induces chemotherapy resistance,49 

which reflects its potential importance in digestive carcino-
mas. As such, a better understanding of the role of GPER in 
digestive system carcinomas may help to elucidate the 
potential mechanisms to improve prevention and manage-
ment of the disease.

GPER-Activated Signaling Pathways
As a classical GPCR, GPER exhibits the hallmarks of 
a plasma membrane receptor that manifests its actions 
through G protein-dependent cell signaling.50 GPER 
activation induces heterotrimeric G proteins, which 
then activate multiple downstream effectors, including 
adenylyl cyclase, resulting in cyclic adenosine mono-
phosphate (cAMP)/protein kinase A/cAMP response 
element binding protein production, an increase in 

Table 1 (Continued). 

Types GPER 
Expression*

Function Ligand Signaling Pathways Study Objects Reference

CRC Down- 

regulated

Inhibit proliferation; 

Induce cell cycle arrest; Increase the 
mitochondrial related apoptosis

G1 GPER/ROS/ERK1/2 GPER/ 

KKα/IκBα/NF-κB GPER/GSK- 
3β/NF-κB

Bioinformatics 

Clinical samples 
In vitro 

In vivo

[102]

Up-regulated 

(hypoxia)

Induce cell migration and proliferation 

(hypoxia); 

Suppress cell migration and 
proliferation (normoxia)

E2 GPER/HIF-1α 
GPER/VEGFA

Bioinformatics 

In vitro

[105]

Non- 
specified

Hydrolyze E1S E2; G1 
tamoxifen 

ICI 

182780

GPER/STS In vitro [106]

Up-regulated Augment proliferation; 

Predict poor outcomes

E2; G1; 

G15

Non-specified Bioinformatics 

In vitro 
In vivo

[107]

Non- 
specified

Up-regulate FASN; 
Increase cell growth

E2; G1 GPER/ERK/c-fos/AP-1 In vitro [92]

Note: *GPER expression levels in tumor tissues or cells compared to those in normal tissues and cells. 
Abbreviations: AXP107-11, a genistein analogue; CRC, colorectal cancer; DHEA, dehydroepiandrosterone; GC, gastric cancer; HCC, hepatocellular carcinoma; IκB, 
inhibitor of nuclear factor-κB; IKK, IkappaB kinase; MAPK, mitogen-activated protein kinases; mTOR, mammalian target of rapamycin; PDAC, pancreatic ductal adenocarci-
noma; PKA, protein kinase A; ROS, reactive oxygen species; VEGFA, vascular endothelial growth factor A.

Table 2 Summary of the Type of GPER Ligands

Steroid Hormones SERDs/SERMs Synthetic Estrogens Phytoestrogens Synthetic Compounds

17β-estradiol ICI182780 Bisphenols Quercetin G1

17α-estradiol Tamoxifen Methoxychlor Genistein G15

Estrone Raloxifene Alkylphenols Daidzein G36

Estriol Polychlorinated biphenyls Resveratrol CIMBA

Dioxins Oleuropein

Phthalates Hydroxytyrosol
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Src-like nonreceptor tyrosine kinases (Src) and sphin-
gosine kinase (SphK). The latter two signals induce the 
activation of matrix metalloproteinases (MMPs), which 
cleave pro-heparin-binding EGF-like growth factor 
(HB-EGF), liberating free HB-EGF, which in turn 
could transactivate epidermal growth factor receptors 
(EGFRs). EGFR activation appears to be involved in 
the activation of mitogen-activated protein kinases 
(MAPKs)/ERK pathway.51–54 EGFR activation also 
triggers phosphatidylinositol 3-kinases (PI3Ks)/AKT.55 

The additional downstream pathways reported to be 
activated by GPER include protein kinase C, calcium 
mobilization, and Hippo/Yes-associated protein 
signaling.56–58 The GPER-mediated signaling pathways 
are outlined in Figure 1.

GPER in Metabolic Syndrome, 
Clinical Targeted-Therapy, and the 
Immune System
Estrogen is an important modulator of metabolic disorders in 
both humans and animal models;59 thus, it is expected that 
GPER plays a vital role in metabolic regulation. Similar to 
the pathological features of a patient with metabolic syn-
drome, GPER knockout mice show a phenotype marked by 
vascular disease,60 impaired glucose tolerance,61,62 

dyslipidemia,62 and obesity.60 A large sample (38,940 cancer 
cases) meta-analysis showed that the presence of metabolic 
syndrome was associated with colorectal, liver, and stomach 
cancer in men and pancreatic cancer in women.63 From the 
perspective of GPER-mediated energy metabolic coupling 

Figure 1 Schematic diagram of the GPER signaling pathways. Once the binding of the agonist is generated, GPER can induce heterotrimeric G proteins, resulting in multiple 
downstream events, including AC/cAMP/PKA/CREB, Src, and SphK. MMP, activated by the latter two signals, may cleave pro-HB-EGF and liberate free HB-EGF, which in turn 
transactivates EGFR. Subsequently, EGFR activation appears to be involved in the activation of MAPK/ERK and PI3K/AKT pathways. Additionally, the additional signals 
activated by GPER include PLC/IP3/calcium mobilization, PKC, and Hippo/YAP signaling. 
Abbreviations: AC, adenylyl cyclase; CREB, cAMP response element binding protein; IP3, inositol triphosphate; MAPK, mitogen-activated protein kinases; PKA, protein 
kinase A; PKC, protein kinase C; PLC, phospholipase C; YAP, Yes-associated protein.
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(EMC) in clinical targeted therapy, cytoplasmic GPER trans-
location in cancer-associated fibroblasts mediates the cAMP/ 
PKA/CREB/glycolytic axis and confers breast tumor cells 
with Her-2-targeted therapy (herceptin) resistance.14 

Moreover, inhibition of EGFR by gefitinib reduces the 
expression of GPER and subsequently prevents E2-induced 
cell growth in triple-negative breast cancer cells.64

In the immune system, GPER is expressed in each 
population of immune cells, including peripheral B and 
T lymphocytes, monocytes, eosinophils, and neutrophils.65 

In addition, it regulates estrogenic effects on immune 
functions in humans and other species.66,67 The immuno-
modulatory effect of GPER has also been beneficial in 
immune-mediated diseases such as multiple sclerosis, 
liver fibrosis, and autoimmune encephalomyelitis by redu-
cing the levels of inflammatory cytokines and upregulating 
programmed death-1 (PD-1) on CD4+ Foxp3+ regulatory 
T cells.68–70 Systematically administered G1 was well 
tolerated in mice and markedly increased the efficacy of 
immune checkpoint blockade in melanoma and pancreatic 
cancer.71,72

GPER in Gastric Cancer (GC)
GC is the fourth most commonly diagnosed cancer among 
men and the fifth among women worldwide, with an 
estimated 951,600 new cases and 723,100 deaths in 
2012.73 In China, GC is the second leading cause of 
cancer-related deaths, with an estimated 498,000 deaths 
in 2015.2 The GC rates are approximately twice as high in 
men as in women,73 possibly due to the presence of estro-
gen in women. Gastrectomy and chemotherapy are cur-
rently the main therapeutic options for patients with GC.74 

The rate of early diagnosis of GC is dismal because it is 
symptom-free.75 Most patients present with advanced 
stage (locally advanced or metastatic) GC and have 
a poor prognosis. Therefore, identifying novel diagnostic 
and prognostic biomarkers and investigating specific ther-
apeutic targets for GC are urgently needed.

Tian et al76 demonstrated that GPER mRNA and pro-
tein levels were downregulated in GC tissues and cells, 
and the decreased expression of GPER protein was an 
independent risk factor for poor prognosis in patients 
with GC. Furthermore, bioinformatics data showed that 
GPER DNA promoter methylation may be involved in 
the reduced expression of GPER in GC and that GPER 
may act as a tumor suppressor through the regulation of 
the epithelial–mesenchymal transition (EMT) pathway.76 

Another study similarly indicated that GPER mRNA 

levels were significantly lower in GC tissues than in nor-
mal tissues, and a stage-dependent decrease was found in 
the GPER expression of GC on the basis of GPER fluor-
escence intensity in cancer stages I and II (45% and 30%) 
versus stages III and IV (25% and 20%, respectively).77 

The induction of pERK-dependent endoplasmic reticulum 
stress via GPER signaling may increase G1’s chemother-
apeutic effect in the GC cells.77 However, by contrast, 
a bioinformatics screening for hub genes associated with 
GC by Zheng et al indicated that GPER was highly 
expressed in GC tissues and that the overexpression of 
GPER was associated with poor survival.78

In conclusion, GPER is associated with GC prognosis. 
As a GPER agonist, G1 induced gastric cancer cell apop-
tosis. However, a study by Zheng et al provided incon-
sistent evidence.78 The possible reason is that this study 
only carried out clip data and a bioinformatics analysis and 
lacked clinical data and in vitro or in vivo experimental 
validation. Furthermore, the database and research tools 
used in this study were different from those used in 
a previous study. To our knowledge, few studies have 
focused on the role of GPER in GC. More investigations 
are required to determine whether GPER can be a potential 
prognostic biomarker and therapeutic target for GC in the 
future.

GPER in Hepatocellular Carcinoma 
(HCC)
Primary liver cancer (PLC) is an aggressive malignancy 
with a generally poor prognosis, with an estimated 
782,500 new cases and 745,500 deaths worldwide in 
2012.73 In China, PLC is the third leading cause of cancer- 
related deaths, with an estimated 422,100 deaths in 2015.2 

HCC, which represents approximately 90% of PLC, is 
generally caused by hepatitis B virus (HBV) and hepatitis 
C virus (HCV) infection and alcohol use.79,80 The HCC 
rates in men are usually 2–4 times higher than those in 
women, thus suggesting the vital role of sex hormones in 
HCC pathogenesis.81,82 A clinical study suggested 
a protective role of estrogen in HCC, as higher HCC 
morbidity and mortality were found in male patients.83 

However, the mechanisms involved in estrogen-mediated 
protection in HCC remain to be explored.

The role of GPER in HCC has been investigated in 
recent years. Hepcidin, a liver-derived iron regulatory 
protein, regulates iron absorption in the small intestine 
via internalization and degradation of ferroportin, an 
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exporter of iron.84 E2 and ICI 182,720 increased hepcidin 
expression in HepG2 cells through a GPER/bone morpho-
logic protein 6 (BMP6)-dependent mechanism, indicating 
that estrogen decreases iron absorption in the intestine.85 

This finding provides a new perspective for explaining the 
gender differences in iron storage in the body. Ulitzky 
et al86 reported that GPER activation downregulated 
HCV entry and spread by promoting occludin cleavage 
through MMP-9, thus providing a new insight into 
a novel antiviral effect. Cortes et al87 showed that tamox-
ifen mechanically deactivated hepatic stellate cells 
(HSCs), whose activation triggers and perpetuates liver 
fibrosis in HCC via the GPER/GTPase Ras homolog 
family member A (RhoA)/myosin axis. These results sug-
gest that GPER-mediated estrogen signaling is an option 
for the mechanical reprogramming of HSCs in the tumor 
microenvironment. Shen et al88 revealed that E2 and G1 
antagonized the oncogenic actions of leptin in HepG2 cells 
by inhibiting cell proliferation and stimulating cell apop-
tosis, which was partly associated with increased ERK 
activation mediated by GPER. Wei et al69 showed that 
GPER mRNA and protein levels were significantly lower 
in HCC tissues than in matched non-tumor tissues. 
Interestingly, modulating GPER expression did not affect 
the viability and proliferation of HCC cells in vitro.69 

Furthermore, GPER knockout in a diethylnitrosamine- 
induced mouse tumor model significantly facilitated liver 
tumorigenesis by promoting inflammation and fibrosis, 
thus revealing that GPER may inhibit HCC tumorigenesis 
by modulating inflammatory responses.69 However, 
Chaturantabut et al89 indicated that the activation of 
GPER promoted liver growth and tumor development via 
the PI3K/mammalian target of rapamycin signaling in 
zebrafish. They also found that human HCC samples had 
increased GPER expression levels compared to non-tumor 
tissues. Teng et al90 suggested that a rapid increase in 
microRNA-21, an oncomiR in HCC, transcription stimu-
lated by dehydroepiandrosterone in HepG2 cells involved 
GPER activation, which increased ERK1/2 and c-Src 
phosphorylation. Activation of lipid metabolism is present 
in many tumors. Fatty acid synthase (FASN) is necessary 
for cancer cell survival, growth, and migration.91 E2 and 
G1 upregulated FASN expression in HepG2 cells via 
GPER activation, which involved GPER/ERK/c-fos/acti-
vator protein 1 (AP-1) signaling.92

In summary, GPER may play a crucial role in HCC, 
suggesting its potential as a therapeutic target. However, 
the results of current studies illustrate the complexity of 

the role of GPER in HCC, including metabolism, anti-
virus, microenvironment, immunity, tumor growth, and 
epigenetic regulation. Genetic variability has been dis-
cussed as a cause of HCC development.93 Not surpris-
ingly, GPER may have bilateral effects on HCC 
proliferation in different species. In populations with dif-
ferent genetic backgrounds, diets, or possibly environmen-
tal factors, the GPER expression in HCC tissues in 
different studies may vary significantly. Whether GPER 
contributes to gender differences in HCC requires further 
exploration, especially in large sample clinical studies that 
include complete prognostic data.

GPER in Pancreatic Cancer (PDAC)
PDAC is one of the deadliest cancers and is poorly respon-
sive to current treatments. PDAC is projected to become 
the second leading cause of cancer-related deaths in the 
United States by 2030.94 In 2015, an estimated 90,100 new 
cases of PDAC and 79,400 deaths were reported in China.2 

Thus, finding new therapeutic targets to inhibit PDCA is 
urgently needed.

Andersson et al95 suggested that the use of hormone 
replacement therapy (HRT), in particular an estrogen- 
only regimen, was associated with a decreased risk of 
PDAC in women. A group revealed that high GPER 
expression in PDAC was indicative of improved survival, 
and a genistein analog sensitized PDAC patient-derived 
xenografts to chemotherapy through GPER activation.96 

Rice et al97 also found that high GPER expression was 
associated with improved survival and lengthened 
relapse-free time in PDAC. Furthermore, GPER activa-
tion represses cell proliferation, mechanotransduction, 
cell contractility, EMT, and basement membrane invasion 
in cancer cells via RhoA.97 Natale et al72 suggested that 
GPER activation in G1 decreased PDAC cell prolifera-
tion and increased tumor cell immunogenicity. In addi-
tion, G1 was well tolerated in mice, promoted tumor 
regression, enhanced the efficacy of programmed cell 
death protein-1 targeted immune therapy, and prolonged 
survival.72

PDAC is associated with severe tissue fibrosis or 
desmoplasia, which provides a distinct microenviron-
ment that regulates pancreatic tumor behavior, including 
its ability to progress and metastasize, as well as its 
resistance to drugs.98 Therefore, tumor stroma is not 
a bystander in PDAC evolution, and targeting the stro-
mal tissue may open up a promising option for PDAC 
therapy. Cortes et al99 demonstrated that tamoxifen 
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regulated peri-tumoral stromal remodeling and the fibro-
vascular tumor microenvironment in PDAC tissues via 
the GPER/hypoxia-inducible factor-1 alpha (HIF-1α) 
axis. Another study by Cortes et al indicated that tamox-
ifen suppressed myofibroblastic differentiation of pan-
creatic stellate cells via GPER/RhoA signaling and 
lowered collagen deposition and macrophage infiltration 
in the tumor microenvironment.100 These findings high-
light the potential of GPER as an effective mechanore-
gulator of the tumor microenvironment in PDAC.

In summary, the current evidence suggests that GPER 
may be an important cancer suppressor in PDAC. G1 and 
tamoxifen may provide novel avenues for PDAC thera-
peutics. Clinical trials are needed to verify the clinical 
utility of GPER as a useful prognostic indicator and ther-
apeutic target for PDAC.

GPER in Colorectal Cancer (CRC)
Colorectal cancer (CRC) is one of the most common 
cancer types worldwide.1 In China, an estimated 376,300 
(215,700 males; 160,600 females) new cases of CRC and 
191,000 (111,100 males; 80,000 females) deaths were 
reported in 2015.2 Although the incidence and mortality 
of women are lower than those of men, the role of estrogen 
in colorectal cancer remains controversial.101 Despite 
advances in multimodal therapies, the survival of patients 
with advanced CRC remains poor. Identifying reliable 
biomarkers is beneficial for improving the prognosis 
of CRC.

GPER expression in CRC tissues was significantly 
lower than that in matched adjacent normal tissues, and 
patients whose tumors expressed less GPER had a poor 
prognosis.102 In addition, GPER expression in CRC cells 
and clinical tissues is downregulated by DNA promoter 
methylation and histone H3 acetylation.102 The activation 
of GPER by G1 inhibits proliferation, induces cell cycle 
arrest, increases mitochondrial-related apoptosis, and ele-
vates endoplasmic reticulum stress in CRC cells via multi-
ple intracellular signaling pathways, including reactive 
oxygen species/ERK1/2, IkappaB kinase/inhibitor of 
nuclear factor-κB (NF-κB), and glycogen synthase 
kinase-3β (GSK-3β)/NF-κB.102 ERβ is the predominant 
estrogen receptor in normal colonic epithelium, and the 
decline in ERβ expression paralleled the dedifferentiation 
of malignant colon cells.103,104 Estrogen may have 
a protective effect depending on the expression of 
ERβ.103 Although ERβ is frequently lost in the hypoxic 
microenvironment as CRC malignancy progresses, 

hypoxia induces the expression of GPER in CRC 
cells.105 Bustos et al105 found that E2 treatment, through 
the action of GPER, suppressed CRC cell migration and 
proliferation in normoxia but enhanced them in hypoxia. 
This finding was consistent with the repression or 
enhancement of HIF-1α and vascular endothelial growth 
factor A expression under normoxic and hypoxic condi-
tions, respectively. It appears that the interpretation of the 
role of E2 in CRC progression is complicated by the 
relative expression levels of estrogen receptor isoforms 
and the action of GPER under varying ambient oxygen 
tension. A cohort study showed that GPER expression was 
associated with poor relapse-free survival in female 
patients with stage 3 and 4 CRC, but not in male patients 
with matched stages.105 Local estrogen may stimulate the 
development of CRC.70 GPER stimulation, through E2 
and G1, increased CRC steroid sulfatase (STS) activity, 
which could hydrolyze estrone sulfate (E1S) and promote 
CRC cell proliferation, suggesting that HRT (primarily 
consisting of E1S) may lead to undesired effects in patients 
with CRC.106,107 Tamoxifen and ICI 182780 also 
enhanced STS activity via GPER activation, indicating 
that these agents could play negative roles in CRC devel-
opment and progression.106 Additionally, GPER activation 
further upregulated FASN expression in colorectal LoVo 
cancer cells via ERK/c-fos/AP-1 signaling.92

The precise role of GPER in CRC is currently ill- 
defined, which may result from variations in cell and 
animal models under different experimental conditions 
and protocols. On the other hand, the complex cross-talk 
between GPER and the genomic actions of estrogen may 
lead to ambiguous results. In addition, the role of GPER in 
CRC may change depending in part on the aerobic/anoxic 
conditions of the local tumor microenvironment. Even so, 
GPER is a significant mediator of CRC progression. 
Further studies are required to explore the factors influen-
cing GPER exerting function in CRC.

Conclusion
Clinical and experimental data have shown that GPER 
signaling plays an important role in digestive system carci-
nomas. Taken together, GPER is involved in many cellular 
processes, including proliferation, apoptosis, migration, 
invasion, vascularization, inflammation, immunogenicity, 
microenvironment, cell cycle regulation, endoplasmic reti-
culum stress, EMT, estrogen metabolism, and fatty acid 
regulation in digestive system carcinomas. However, 
while being a well-established tumour suppressor in 
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pancreatic cancer, the role of GPER in other digestive 
system carcinomas is currently controversial. The possible 
reasons include the following: First, the role of GPER 
varies considerably at different stages of tumor develop-
ment. Second, the biological effect of GPER is closely 
related to oxygen levels in cancer cells. Third, GPER may 
show diverse mechanisms in different research objects and 
conditions. Fourth, the complexity of the physiological 
effects of estrogen and potential cross-talk among various 
steroid receptors may affect the accurate interpretation of 
GPER. Differentiating the molecular and phenotypic sub-
groups of individuals may be essential to pinpoint the con-
tributions of GPER in digestive system carcinomas. Further 
studies are needed to elucidate the relative molecular 
mechanisms and regulatory networks of GPER in digestive 
system carcinomas to develop prevention, diagnostic, and 
therapeutic strategies. Finally, the information related to the 
role of GPER in pancreatic cancer indicated that GPER may 
serve as an effective predictor and therapeutic target for this 
highly malignant disease.
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