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Purpose: This study aimed to establish and evaluate the usefulness of a simple, practical, 
and easy-to-promote machine learning model based on ultrasound imaging features for 
diagnosing breast cancer (BC).
Materials and Methods: Logistic regression, random forest, extra trees, support vector, 
multilayer perceptron, and XG Boost models were developed. The modeling data set of 1345 
cases was from a tertiary class A hospital in China. The external validation data set of 1965 
cases were from 3 tertiary class A hospitals and 2 primary hospitals. The area under the 
receiver operating characteristic curve (AUC) was used as the main evaluation index, and 
pathological biopsy was used as the gold standard for evaluating each model. Diagnostic 
capability was also compared with that of clinicians.
Results: Among the six models, the logistic model showed superior diagnostic efficiency, 
with an AUC of 0.771 and 0.906 and Brier scores of 0.181 and 0.165 in the test and 
validation sets, respectively. The AUCs of the clinician diagnosis and the logistic model 
were 0.913 and 0.906. Their AUCs in the tertiary class A hospitals were 0.915 and 0.915, 
respectively, and were 0.894 and 0.873 in primary hospitals, respectively.
Conclusion: The externally validated logical model can be used to distinguish between 
malignant and benign breast lesions in ultrasound images. Compared with clinician diag-
nosis, the logistic model has better diagnostic efficiency, making it potentially useful to assist 
in screening, particularly in lower level medical institutions.
Trial Registration: http://www.clinicaltrials.gov. ClinicalTrials.gov ID: NCT03080623.
Keywords: breast cancer, machine learning, diagnostic accuracy, patient stratification, 
screening modalities, ultrasound imaging

Introduction
Breast cancer (BC) is the most common malignancy among women worldwide.1 

However, most BC patients in China are diagnosed at the advanced stage.2 BC screening 
for early diagnosis is crucial for improving treatment efficacy and survival.3 BC screen-
ing currently includes breast self-examination, mammography, ultrasonography, exfolia-
tive cytology, carcinoembryonic antigen, and a carbohydrate antigen 153 test.4 However, 
these traditional methods have limited application value in early diagnosis due to their 
lack of sensitivity and/or specificity. The emergence of new biomarkers, such as 
MicroRNAs,5–9 lipocalin-1,10 APC gene promoter aberrant methylation,11 14-3-3 
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sigma (σ) promoter methylation,12 and circulating tumor 
DNA, makes early BC screening promising.13,14 A recent 
study on the diagnostic accuracy of seven BC markers found 
that miRNA has better diagnostic accuracy than do other 
markers.5 However, although liquid biopsy for tracking new 
markers is promising, it is not suitable for large-scale screen-
ing in areas with scarce medical resources because of its 
invasiveness and cost. In Beijing, the primary method of BC 
screening is breast ultrasound imaging examination. However, 
given that the accuracy of conventional ultrasound imaging is 
highly dependent on the clinicians’ expertise and experience, 
the results of BC screening and diagnosis in primary hospitals 
are suboptimal.

In oncology, machine learning models play an impor-
tant role in developing new auxiliary tools for 
clinicians.15–17 Therefore, a model for diagnosing breast 
lesions based on the characteristics of large samples of 
ultrasound images may be helpful for lowering subjectiv-
ity and improving the accuracy of screening. Computer- 
aided recognition methods based on technologies such as 
image segmentation and machine learning have been 
found to improve the diagnosis of BC.18–23 However, 
these advanced auxiliary screening technologies and the 
use of artificial intelligence medical ultrasound equipment 
are still in the early phase of development.

This study aimed to establish a simple, practical, and 
easy-to-promote clinical model for BC diagnosis and eval-
uate its usefulness in primary hospitals. Towards this goal, 
we screened out meaningful predictors based on the data 
collected by tertiary class A hospitals and established 
diagnostic models. Population data, including from pri-
mary hospitals, were used as an external verification data 
set to validate the effectiveness of the model and explore 
its applicability and clinical potential. We ultimately aimed 
to extend the BC screening experience of skilled clinicians 
to lower level medical institutions in the form of predictive 
models, so as to improve the overall quality of screening 
across the country.

Patients and Methods
Data Sets
The modeling data set was a cumulative collection of data 
from 1345 patients admitted to a tertiary class A hospital 
(Beijing Cancer Hospital) between November 2010 and 
May 2016. We used the automated breast ultrasound 
screening (ABUS) in this study. Data on ultrasound find-
ings and histopathological diagnosis were collected. For 

early tumor detection, we selected T1 BC patients. T1 was 
defined as tumor lesions smaller than 2 cm, and thus the 
maximum diameter of the ultrasound image of the lesion 
was set to be less than 2 cm. Two-dimensional images 
were collected, and the coronal image was reconstructed. 
After re-evaluation by professional clinicians from Beijing 
People’s Hospital, the cases with consistent findings were 
selected as the final modeling data set. In total, data from 
1125 patients were included; of them, 732 patients had 
malignant tumors.

Given that our model was aimed to assist clinicians in 
primary hospitals in tumor screening, we included some 
primary hospitals in the selection of the external validation 
set to test the generalizability of the model. The external 
validation data set was from 3 tertiary class A hospitals 
(Beijing Cancer Hospital, Beijing People’s Hospital, 
Fourth Hospital of Hebei Medical University) and 2 pri-
mary hospitals (Beijing Shunyi District Maternity and 
Child Health Hospital, and Beijing Haidian District 
Maternity and Child Health Hospital). The data were 
cumulatively collected from August 2017 to 
December 2019 and comprised pathological results of 
1981 biopsy (n=1094) or follow-up (n=890) cases. After 
data cleaning, 1965 cases were included in the verification 
data set.

The dependent variable of the machine model was the 
diagnosis result (benign or malignant) of biopsy cases with 
pathological biopsy classification or follow-up cases with 
disease classification. The independent variable was the 
expert group and modeling working group classification 
from Peking University Cancer Hospital and Peking 
University People’s Hospital. This working group 
extracted and clarified the definitions of ultrasound ima-
ging terminology based on the interpretation of ultrasound 
images in a blinded manner. We have previously published 
relevant literature24 using the full model strategy, logistic 
model strategy, and random forest model strategy to screen 
independent variables and establish models (Table 1).

The external validation data set comprised only part of 
the screening independent variables that need to be vali-
dated based on the previous models. The identifiable infor-
mation of the boundary was classified into 4 features when 
the boundary was not identifiable. The specific variable 
assignments are shown in Table 2.

This study was approved by the Ethics Committee of 
Beijing Cancer Hospital (Approval Number: 2016KT14) 
in Beijing, China and was conducted according to the 
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tenets of the Declaration of Helsinki. All patients provided 
written informed consent to participate.

Model Development
The data set was divided into a modeling data set and an 
external verification dataset. We selected 75% of the sam-
ples from the modeling data set as the training set. The 
variable selection, one-hot encoding, and basic model 
were assembled into a pipeline, which was entered into 
the grid search, using the 10-fold cross validation techni-
que. In this technique, the data set was divided 10 folds, 
and each fold was used for internal verification. The 
remaining 90% was used for the training of the develop-
ment model. The hyperparameter adjustment was used for 
establishing the model. Otherwise, we validated the mod-
els with the remaining 25% of the samples and external 
validation data sets. Cross-validation and hyperparameter 
adjustments for internal validation are considered robust 
methods of model evaluation before external validation on 

a separate data set. This could maximize the potential 
performance of machine learning models.

We validated each model through an external verifica-
tion data set. The discriminative capability of each model 
was validated using the area under the receiver operating 
characteristic (ROC) curve. Meanwhile, the Brier score 
was calculated to quantify the calibration degree of the 
model, and a calibration degree scatter diagram was cre-
ated thereafter. We then evaluated the consistency of the 
actual observations and models according to the compar-
ison between the scattered point distribution and the refer-
ence line.

The verification data were stratified according to pri-
mary hospitals and tertiary class A hospitals to compare 
between each model and the results determined by 
clinicians.

Statistical Analysis
Raw data were cleaned using SAS v.9.4 (SAS Institute, 
Cary, NC), and a single factor analysis was performed. 

Table 1 AUC of the Two Models in Our Previous Study24

Strategies Logistic Regression (95% CI) Random Forest (95% CI)

Full models 0.7812 (0.7325–0.8298) 0. 7878(0.7392–0.8365)

Logistic 0.7727 (0.7227–0.8227) 0. 7757 (0.7258–0.8255)

Random forest 0.7880 (0.7395–0.8364) 0. 7868 (0.7377–0.8359)

Table 2 Variable Assignment

Variables Name Value

Breast left/right zyc 0-left, 1-right

Direction FX 0- parallel, 1-unparallel

Margins blur bqxcd1 0-identifiable, 1-non-identifiable but no blur, 2-non-identifiable and blurred

Margins angulation bqxcd2 0-identifiable, 1-non-identifiable but no angulation, 2-non-identifiable and angled

Margins microlobulation bqxcd3 0-identifiable, 1-non-identifiable but no microlobulation, 2-non-identifiable and microlobulated

Margin burr bqxcd4 0-identifiable, 1-non-identifiable but no burr, 2-non-identifiable and burr

Posterior echoes hfhs 0-no change, 1-enhanced, 2- attenuated (include mixed)

Surrounding tissue edema shuiz 0-no, 1-yes

Benign vs malignant End 0- benign, 1-malignant

Clinicians biras 0-benign tendency (follow-up), 1- malignant tendency (biopsy)

Biopsy results Path 0- benign, 1-malignant

Follow-up results Path3 0- benign, 1-malignant
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The categorical independent and dependent variables were 
evaluated using chi-square test. P values less than 0.05 on 
both sides were considered statistically significant. The 
verification process was mainly based on the “sklearn” 
package (version 0.22.2.post1) of Python (version 3.7.7). 
The model’s discriminative capability was evaluated 
according to the area under the curve (AUC). The AUC 
value ranges from 0.5 to 1, and the closer the AUC is to 1, 
the better the discriminative capability of the model. An 
AUC of 0.5 indicates that the model is not predictive and 
has no practical application. We evaluated the model cali-
bration using the Brier score and calibration curve. The 
Brier score is calculated using the formula (Y-p)2, where 
Y is the actually observed outcome variable (0 or 1), and 
p is the predicted probability based on the prediction 
model. The Brier score ranges from 0 to 0.25, and the 
smaller the score, the better the calibration of the model. 
A Brier score of 0.25 indicates that the model has no 
predictive capability.

Results
Basic Information
The modeling data set included data from 732 cases of 
malignant tumors (65.07%) and 393 cases of benign 
tumors (34.93%). Meanwhile, the validation data set 
included data from 498 cases of malignant tumors 
(25.34%) and 1467 cases of benign tumors (74.66%). 
With respect to clinician findings in the validation data 
set, 1354 follow-up cases (68.91%) and 611 biopsy 
cases (31.09%) were determined to be malignant, 
respectively. Pathological examination of the biopsy 
cases revealed 498 malignant tumors (45.69%) and 592 
benign tumors (54.31%). All follow-up cases were 
benign tumors (100%) on pathological examination. 
Comparison of the predictive variables between the 
modeling data set and validation data set showed 
a significant difference in the distribution of these pre-
dictors (P<0.001, Table 3).

Table 3 Comparison Between the Modeling Data Set and the Validation Data Set

Variables Modeling Data Set (n=1125) Validation Data Set (n=1965) χ2 P

Zyc Left, n (%) 0 (0.00%) 942 (47.94%) – –

Right, n (%) 0 (0.00%) 1023 (52.06%)

FX Parallel 826 (73.42%) 1566 (79.69%) 16.096 0.000

Unparallel 299 (26.58%) 399 (20.31%)

Bqxcd1 Identifiable 160 (14.22%) 1074 (54.66%) 609.309 0.000

Non-identifiable but no blur 80 (7.11%) 240 (12.21%)

Non-identifiable and blurred 885 (78.67%) 651 (33.13%)

Bqxcd2 Identifiable 160 (14.22%) 1073 (54.61%) 504.371 0.000

Non-identifiable but no angulation 525 (46.67%) 401 (20.41%)
Non-identifiable and angled 440 (39.11%) 491 (24.99%)

Bqxcd3 Identifiable 160 (14.22%) 1073 (54.61%) 629.396 0.000
Non-identifiable but no microlobulation 363 (32.27%) 574 (29.21%)

Non-identifiable and microlobulated 602 (53.51%) 318 (16.18%)

Bqxcd4 Identifiable 160 (14.22%) 1074 (54.66%) 497.430 0.000

Non-identifiable but no burr 720 (64.00%) 717 (36.49%)

Non-identifiable and burr 245 (21.78%) 174 (8.85%)

hfhs No change 687 (61.07%) 1549 (78.83%) 114.225 0.000

Enhanced 198 (17.60%) 204 (10.38%)
Attenuated (including mixed) 240 (21.33%) 212 (10.79%)

shuiz No 1079 (95.91%) 1823 (92.77%) 12.326 0.000
Yes 46 (4.09%) 142 (7.23%)

End Benign 393 (34.93%) 1467 (74.66%) 471.132 0.000
Malignant 732 (65.07%) 498 (25.34%)

Note: The values are presented in n (%).
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Comparison Between Benign and 
Malignant Tumors
Univariate analysis of the independent variables in the vali-
dation data set identified seven predictors, namely, direction, 
margin blur, margin angulation, margin microlobulation, 
margin burr, posterior echoes, and surrounding tissue 
edema. Further, their distribution was significantly different 
between the benign and malignant groups (P<0.001, Table 
4). Representative ultrasound images showing malignant 
breast lesions are shown in Figure 1.

Discriminative Capability of the Machine 
Learning Models
The degree of discrimination was used to evaluate the dis-
criminative and ranking capabilities of the model, which 
indicate the model’s capability to distinguish between indi-
viduals with and without the end-point events. In the internal 
verification, there were no significant differences in the 
results of several models after hyperparameter adjustment. 
The multilayer perceptron model performed best, with an 
AUC (95% CI) of 0.775 (0.719–0.832). In the external 

verification, the logistic regression model performed best 
after hyperparameter adjustment, with an AUC (95% CI) of 
0.906 (0.892–0.921). The model performance in the verifica-
tion set was generally better than that in the test set. The 
indicators of each model are shown in Table 5, and the ROC 
curves are shown in Figure 2.

Calibration of the Machine Learning 
Models
Compared with discrimination, calibration pays more atten-
tion to the accuracy of the absolute risk prediction value of 
the model, that is, the consistency between the probability of 
the outcome predicted by the model and the probability of the 
actual outcome. In the internal verification, the Brier scores 
of the logistic regression, random forest, extra trees, support 
vector, multilayer perceptron, and XGBoost were 0.181, 
0.189, 0.196, 0.199, 0.177, and 0.179, respectively. In the 
external verification, logistic regression, random forest, extra 
trees, support vector, multilayer perceptron, and XGBoost 
were 0.165, 0.163, 0.170, 0.178, 0.146, and 0.161, respec-
tively. The calibration curves are shown in Figure 3.

Table 4 Comparison Between the Benign and Malignant Groups in the Validation Set

Variables Benign (n=1467) Malignant (n=498) χ2 P-value

Zyc Left 1352 (92.16%) 214 (42.97%) 555.895 0.000
Right 115 (7.84%) 284 (57.03%)

FX Parallel 1040 (70.89%) 34 (6.83%) 656.956 0.000
Unparallel 152 (10.36%) 88 (17.67%)

Bqxcd1 Identifiable 275 (18.75%) 376 (75.50%)

Non-identifiable but no blur 1040 (70.89%) 33 (6.63%) 657.869 0.000

Non-identifiable and blurred 232 (15.81%) 169 (33.94%)

Bqxcd2 Identifiable 195 (13.29%) 296 (59.44%)

Non-identifiable but no angulation 1040 (70.89%) 33 (6.63%) 679.549 0.000
Non-identifiable and angled 323 (22.02%) 251 (50.40%)

Bqxcd3 Identifiable 104 (7.09%) 214 (42.97%)
Non-identifiable but no microlobulation 1040 (70.89%) 34 (6.83%) 808.091 0.000

Non-identifiable and microlobulated 415 (28.29%) 302 (60.64%)

Bqxcd4 Identifiable 12 (0.82%) 162 (32.53%)

Non-identifiable but no burr 1271 (86.64%) 278 (55.82%) 231.661 0.000

Non-identifiable and burr 116 (7.91%) 88 (17.67%)

hfhs No change 80 (5.45%) 132 (26.51%)

Enhanced 1440 (98.16%) 383 (76.91%) 250.462 0.000
Attenuated (include mixed) 27 (1.84%) 115 (23.09%)

Note: The values are presented in n (%).
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Comparison of Outcomes Between 
Clinician and Models
We compared the predicted outcome of the models with 
those determined by clinicians according to the center 
stratification (Table 6). Overall, clinician diagnosis 
showed a higher accuracy than did model diagnosis. 
The clinician diagnosis had an accuracy of 0.906; sen-
sitivity, 0.928; specificity, 0.898; and AUC, 0.913. 
Meanwhile, the accuracy of clinician diagnosis in pri-
mary hospitals was 0.905; the AUC was 0.894, respec-
tively. The accuracy of clinician diagnosis in the tertiary 
class A hospitals was 0.906; the AUC was 0.915. When 
comparing clinician diagnosis between primary and ter-
tiary class A hospitals, the sensitivity was higher in the 
tertiary class A hospitals, while the accuracy, specificity, 
and AUC were lower than those in the primary 

hospitals. Further, we found that each model had 
a better predictive performance among patients in pri-
mary hospitals than those in tertiary class A hospitals 
(Logistic regression model AUC: 0.915 vs 0.873, Table 
7). The performance of the logistic regression model is 
shown in Table 8.

Model Risk Probability Distribution
Our models enabled the prediction of BC and can thus be 
used by clinicians to make appropriate patient manage-
ment decisions. As shown in Figure 4, the predictive 
capability of the models ranged from 0.2 to 0.4. We 
analyzed the model prediction probabilities according to 
1%, 2%, 5%, 10%, 50%, 90%, 95%, 98%, and 99% and 
applied the logistic model in the clinic for preliminary 
evaluation of BC (Table 9).

Figure 1 Representative ultrasound images showing malignant breast lesions. (A) A hypoechoic malignant lesion with irregular shape, calcification (thick arrow), and not 
circumscribed margin thin arrow). (B) A hypoechoic lesion with an oval shape, circumscribed margins (thin arrow), and enhancement posterior features (thick arrow). (C) 
A heterogeneous, hypoechoic structural disordered area with irregular shape and parallel orientation characteristic.
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Discussion
Breast Cancer Screening Deficits
The increasing incidence of BC, which is primarily related to 
overdiagnosis and treatment, and the possibility of cancer 
omissions indicate the need for changes in BC screening 
procedures. Harkness’s review provides a detailed overview 
of risk-based BC screening strategies for women.25 Most 
cancer screening strategies primarily use mammography. 
However, its sensitivity in women with dense breast tissue 
is only 47.8–64.4%,26 limiting its benefit in this population. 
ABUS examination is an important screening method due to 
its safety and relatively low cost, especially in women with 

dense breast tissue. However, it is limited by its reliance on 
operators and high recall rates. High-level evidence on sup-
plemental ultrasound is currently scarce.27 In a previous 
population-based cancer screening program in China, the 
overall proportion of positive ultrasound examinations was 
only 13.51% for high-risk women with BC.28

Advantages of Our Study
Many studies have reported advances in BC prediction 
models.29–33 However, previous predictive models based on 
the features of conventional ultrasound images of breast 
tumors provided limited value due to the small sample size 

Table 5 Performance Evaluation of the Different Models

Model Accuracy Precision 
Class 1

Recall Class 
1

AUC of ROC AUC of PRC F1 Score

Test set (calibration model)

Logistic regression 0.720 0.734 0.891 0.771 0.846 0.805
Random forest 0.727 0.755 0.858 0.747 0.812 0.803

Extra trees 0.723 0.754 0.852 0.746 0.820 0.800

Support vector 0.709 0.717 0.913 0.638 0.736 0.803
Multilayer Perceptron 0.738 0.756 0.880 0.775 0.838 0.813

XG Boost 0.713 0.730 0.885 0.769 0.839 0.800

Validation set (calibration model)

Logistic regression 0.772 0.528 0.936 0.906 0.794 0.675

Random forest 0.814 0.598 0.813 0.865 0.735 0.689

Extra trees 0.813 0.597 0.807 0.855 0.709 0.687
Support vector 0.768 0.524 0.936 0.852 0.632 0.671

Multilayer Perceptron 0.818 0.596 0.869 0.901 0.792 0.708

XG Boost 0.781 0.542 0.876 0.898 0.776 0.669

Figure 2 ROC plots of the calibrated model in the test set (A) and validation set (B).
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used for modeling and lack of external verification.34–36 To the 
best of our knowledge, this is the first large-sample, multi- 
center, externally validated predictive model study that 
focuses on the use of ultrasound image features for BC 
screening.

Predictors of Breast Cancer
Based on our previous study that initially identified 27 inde-
pendent variables,24 we selected 7 independent variables to 
develop six machine learning models for BC diagnosis. In 
our logistic regression model, tumor margin burr and the 
direction of tumor growth had a relatively profound impact 
on the differentiation between benign and malignant tumors. 
The odds ratio (OR) were 3.267 (2.013–5.303) and 4.281 
(3.098–5.917), respectively (Table 8). This is consistent with 

the findings reported by Chhatwal et al37 that the most 
important predictors associated with BC as identified by 
this model were spiculated mass margins. Direction of 
tumor growth, non-identifiable and burr at the margins, and 
edema of the surrounding tissue showed the highest OR 
values. This indicated that non-parallel growth, non- 
identifiable margin burr, and edema of the surrounding tissue 
are the most important factors for predicting malignant BC. 
Wang et al also showed that axillary lymphadenopathy is 
indicative of the probability of metastasis in BC.38

Performance of the Predictive Models 
Compared to Those in Previous Studies
he average AUCs of the models in the test and validation 
sets were 0.741±0.052 and 0.880±0.025, respectively. At 
a threshold of 0.571, the logistic model achieved 82.9% 
sensitivity and 81.9% specificity in the validation set. The 
overall performance of the model in the validation set was 
better than that in the test set. Compared with internal 
verification, external verification is more concerned with 
model transportability and generalizability. Thus, we 
believe that the predictive model can be applied generally 
across population samples and has good promotion signifi-
cance. Guo et al used 4 ultrasound image features to 
develop a logistic model of BC recurrence risk, with an 
AUC of 0.801.34 Gao et al conducted a multi-center study 
in China that combined the Gail model and the Breast 
Imaging Reporting and Data System (BI-RADS) category 
to differentiate malignant and benign breast lesions. The 
results showed that their combination achieved higher accu-
racy than did each model alone.39

Figure 3 Calibration plots of the calibrated model in the test set (A) and validation set (B).

Table 6 Comparison Between Clinician Diagnosis and Gold 
Standard Diagnosis

Clinician Gold Standard Total

Benign Malignant

All validation set Benign 1318 36 1354

Malignant 149 462 611
Total 1467 498 1965

Primary hospitals Benign 535 11 546
Malignant 54 81 135

Total 589 92 681

Tertiary class 

A hospitals

Benign 783 25 808

Malignant 95 381 476
Total 878 406 1284
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Table 7 Comparison Between Clinician and Model Diagnosis

Model Accuracy Precision 
Class 1

Recall Class 
1

AUC of 
ROC

AUC of 
PRC

F1 
Score

Threshold FPR TPR

Full validation set

Clinicians 0.906 0.756 0.927 0.913 0.851 0.833 – – –
Logistic regression 0.772 0.528 0.936 0.906 0.794 0.675 0.571 0.181 0.829

Random Forest 0.814 0.598 0.813 0.865 0.735 0.689 0.491 0.185 0.815

Extra Trees 0.813 0.597 0.807 0.855 0.709 0.687 0.505 0.185 0.807
Support vector 0.768 0.524 0.936 0.852 0.632 0.671 0.710 0.206 0.793

Multilayer 
perceptron

0.818 0.596 0.869 0.901 0.792 0.708 0.573 0.187 0.827

XG Boost 0.781 0.542 0.876 0.898 0.776 0.669 0.557 0.183 0.817

Tertiary class A hospitals

Clinicians 0.906 0.790 0.932 0.915 0.874 0.855 – – –
Logistic regression 0.798 0.618 0.941 0.915 0.839 0.746 0.584 0.155 0.833

Random forest 0.798 0.641 0.825 0.861 0.778 0.721 0.565 0.198 0.788

Extra trees 0.795 0.638 0.813 0.850 0.750 0.715 0.548 0.213 0.796
Support vector 0.793 0.612 0.941 0.851 0.687 0.742 0.712 0.210 0.791

Multilayer 

perceptron

0.807 0.643 0.877 0.903 0.829 0.742 0.573 0.210 0.837

XG Boost 0.792 0.621 0.877 0.900 0.816 0.727 0.581 0.208 0.828

Primary hospitals

Clinicians 0.905 0.683 0.918 0.894 0.807 0.784 – – –

Logistic regression 0.797 0.388 0.870 0.873 0.544 0.537 0.584 0.199 0.783
Random forest 0.747 0.321 0.783 0.771 0.446 0.456 0.627 0.246 0.739

Extra trees 0.746 0.318 0.772 0.766 0.409 0.451 0.644 0.251 0.750

Support vector 0.717 0.314 0.924 0.797 0.304 0.468 0.696 0.246 0.750
Multilayer 

perceptron

0.749 0.329 0.826 0.860 0.578 0.471 0.715 0.248 0.750

XG Boost 0.725 0.309 0.837 0.836 0.481 0.452 0.587 0.243 0.750

Table 8 Performance of the Logistic Regression Model

B SE OR 95% CI P β

fx 1.454 0.165 4.281 3.098–5.917 <0.001 0.322239

bqxcd1 0.235 0.143 1.265 0.956–1.674 0.100 0.118155

bqxcd2 0.334 0.142 1.396 1.058–1.844 0.019 0.155041

bqxcd3 0.716 0.154 2.047 1.513–2.768 <0.001 0.295653

bqxcd4 1.184 0.247 3.267 2.013–5.303 <0.001 0.425586

hfhs 0.340 0.101 1.405 1.152–1.714 0.001 0.123337

shuiz 1.193 0.269 3.298 1.947–5.586 <0.001 0.170345
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Comparison of Outcomes Between 
Clinician and Models
When compared with clinician diagnosis, the logistic 
regression model showed lower accuracy (0.906 vs 
0.772) and AUC (0.913 vs 0.906). When model perfor-
mance was evaluated by type of hospital (tertiary class 
A hospitals and primary hospitals), the model performed 
better in primary hospitals than it did in tertiary class 
A hospitals. This may be due to the different distribution 
of benign and malignant tumors in both groups. The pro-
portion of benign tumor patients was significantly higher 

in primary hospitals (n=892, 85.93%) than that in tertiary 
class A hospitals (n=575, 62.02%). For complex malignant 
tumors, predictions based on models alone is more likely 
to be biased. In primary hospitals, the accuracy of clinician 
diagnosis was higher than that of the logistic model (0.929 
vs 0.806), and the AUC of clinician diagnosis was also 
slightly higher (0.913 vs 0.906). Similarly, the accuracy of 
clinician diagnosis in tertiary class A hospitals was higher 
than that of the logistic model (0.880 vs 0.734). The AUC 
of clinician diagnosis was also slightly higher than that of 
the logistic model (0.890 vs 0.875). The high sensitivity of 

Figure 4 Probability distribution by model.

Table 9 Predicted Probability of Different Proportions of People by Model

Logistic 
Regression

Random Forest Extra Trees Support Vector Multilayer 
Perceptron

XG Boost

1% 0.2158926 0.0870467 0 0.2690289 0.1223317 0.1271728

2% 0.2481656 0.2063348 0.1830000 0.2690872 0.1924786 0.2399745

5% 0.2953400 0.2432472 0.2500000 0.2691355 0.2032477 0.2851146

10% 0.2953400 0.2826738 0.2857143 0.2691355 0.2580033 0.2999176

50% 0.2953400 0.2826738 0.2857143 0.2691355 0.2580033 0.2999176

90% 0.8769365 0.8999733 0.9291429 0.7422661 0.8754747 0.8494976

95% 0.9327307 0.9831579 1 0.7428197 0.9669854 0.9255747

98% 0.9648594 1 1 0.7554798 0.9834885 0.9730366

99% 0.9675776 1 1 0.7882681 0.9877369 0.9751260
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clinician diagnosis in tertiary class A hospitals indicates 
that clinicians have a greater probability of accurately 
diagnosing malignant tumors, and the possibility of missed 
diagnosis is lower. Meanwhile, the high specificity of 
clinician diagnosis in primary hospitals indicates that clin-
icians in these hospitals can accurately diagnose benign 
tumors, and the possibility of misdiagnosis is lower.

Difference in AUC and Accuracy 
According to Model Performance 
Indicators
Although there was no significant difference in AUC 
between the model and clinician diagnosis, the accuracy 
seems markedly different. The imbalance in the classifica-
tion between benign and malignant in the external valida-
tion set is an important reason for the low accuracy. The 
external validation set of 1965 cases included 498 cases of 
malignant tumors and 1467 cases of benign tumors. For 
example, this means that by simply all cases are benign, 
we can already achieve good accuracy: 1467/(1467 +498) 
= 74.7%. The 77.2% accuracy of the logistic model was 
calculated at a default threshold of 0.5 in the validation set. 
When the threshold was 0.571, the logistic model achieved 
82.1% accuracy. Thus, we cannot compare the accuracy (a 
performance at one threshold) with the AUC (an average 
performance on all possible thresholds). Improper scoring 
rules such as proportion classified correctly, sensitivity, 
and specificity are not only arbitrary (in choice of thresh-
old) but are improper. Appropriate scoring rules (Brier 
score) and c-index (semi-correct scoring rule area under 
the ROC curve; consistent probability) make us more 
confident in the correct scoring rules. The AUC is com-
puted by adding all the “accuracies” computed for all the 
possible threshold values. Meanwhile, ROC is an average 
(expected value) of those accuracies when they are com-
puted for all threshold values.

Explanation of Logistic Model 
Performance
Model performance was evaluated according to the AUC. 
Therefore, increasing the number of samples to obtain 
a more balanced data set may help improve the accuracy 
of the model. However, it has little contribution to improv-
ing the AUC. In addition, there is an imbalance in the 
distribution of benign and malignant samples in the real 
world due to several influencing factors such as tumor 
prevalence. An external validation of the model enables 

evaluation under conditions closer to the real world, thus 
determining its generalizability. Therefore, we did not 
choose to use a more balanced scale data set for external 
verification. Considering the shortcomings of the logistic 
model as a shallow learning, the model based on deep 
learning with better optimization capabilities for imbal-
anced categories may easily surpass the logistic model 
with respect to prediction accuracy to a certain extent. 
Finally, the diagnostic process involves the consideration 
of several data and not only on ultrasound images. Our 
model uses only very limited ultrasound features. 
Therefore, in theory, the model cannot achieve the high 
diagnostic efficiency of physicians from tertiary medical 
centers. However, the AUCs support a similar diagnostic 
accuracy of our model to that of physician diagnosis, and 
thus it can be used to distinguish between benign and 
malignant tumors.

Limitations
This study has some limitations. First, this study was 
mainly an external verification of the previous model. 
The independent variable in the model population is 
different from the verification population, which may 
cause a selection bias. Second, this study did not modify 
and improve the model because of the imbalance in the 
distribution of the predictor variables and classification, 
and thus the model has low accuracy. Future research 
should pay attention to selecting some complex models 
that can optimize the imbalance of sample proportions, 
such as deep learning, when constructing predictive mod-
els. Third, this study did not collect demographic infor-
mation and baseline patient data, It was difficult to 
balance the patient baseline in the pre-modeling stage. 
This may have affected the performance of the model and 
introduced confounding factors. Future research can con-
sider adding characteristic variables such as demography 
or building a compound model to improve predictive 
performance.

Conclusion
Of the six machine learning models, the logistic regression 
model showed the highest AUC and generalizability, indi-
cating its potential for application in primary hospitals. 
Compared with clinician diagnosis, the logistic model 
showed better diagnostic efficiency, supporting its poten-
tial for application in BC screening in lower level medical 
centers.
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Expert Recommendations
If the predicted probability in our logistic model was lower 
than 1% of the population (corresponding to a predicted 
probability of 0.2158926), it is highly likely that patients 
do not have to undergo pathological biopsy. Malignancy 
can be largely ruled out, and the patient can undergo 
regular follow-up. When the predicted probability is 
higher than 90% of the population (corresponding to 
a predicted probability of 0.8769365), it is highly indica-
tive of malignant lesions, and clinicians are required to 
intervene. Patients should immediately undergo 
a pathological biopsy to confirm malignancy. For patients 
whose predicted probabilities are in between these values, 
a short-term follow-up (within 1 year, preferably 3 to 6 
months) can be recommended.40 The clinicians can further 
use the models to assist in decision-making according to 
the follow-up outcomes. However, the cut-off value of the 
predictive probability needs to be verified and calculated 
in studies with a larger sample size.

Abbreviations
AUC, area under the receiver operating characteristic 
curve; BC, breast cancer; OR, odds ratio; ROC, receiver 
operating characteristic; ABUS, automated breast ultra-
sound screening.
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