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Background: Parkinson’s disease (PD) is a prevalent neurodegenerative disease. Long 
noncoding RNA small molecule RNA host gene 1 (SNHG1) has been reported to play 
critical roles in Parkinson’s disease (PD) progression. The study aimed to further elucidate 
the mechanism of SNHG1 in PD pathogenesis.
Methods: The levels of SNHG1, miR-125b-5p and mitogen-activated protein kinase 1 
(MAPK1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) 
or Western blot. Cell viability and apoptosis were evaluated by Cell Counting Kit-8 (CCK-8) 
assay and flow cytometry, respectively. The activity of Caspase-3 or Caspase-9 was mea-
sured using a Caspase-3 or Caspase-9 Assay Kit. The levels of tumor necrosis factor-α (TNF- 
α), interleukin-6 (IL-6), IL-1β, lactic dehydrogenase (LDH) activity, reactive oxygen species 
(ROS) generation and superoxide dismutase (SOD) activity were gauged by enzyme-linked 
immunosorbent assay (ELISA). Dual-luciferase reporter assay was performed to identify the 
relationship between miR-125b-5p and SNHG1 or MAPK1. The MPTP-induced PD mouse 
was used as an in vivo model of PD and MPP+-treated SK-N-SH and MN9D cells were used 
as in vitro models of PD.
Results: SNHG1 and MAPK1 were significantly up-regulated while miR-125b-5p was 
down-regulated in the MPTP-induced PD mouse model and MPP+-induced PD cell models. 
SNHG1 silence or miR-125b-5p overexpression protected against MPP+-evoked apoptosis, 
oxidative stress and inflammation in SK-N-SH and MN9D cells. Moreover, SNHG1 acted as 
a molecular sponge of miR-125b-5p, and the protective impact of SNHG1 silence on MPP+- 
evoked cell damage was reversed by miR-125b-5p inhibition. Furthermore, MAPK1 was 
a functional target of miR-125b-5p and its overexpression attenuated the effects of miR- 
125b-5p restoration in MPP+-triggered cell injury. In addition, the behavioral changes in 
MPTP-induced PD mouse in vivo model were relieved by SNHG1 silence.
Conclusion: SNHG1 knockdown exerted neuroprotective effects in MPP+-evoked cytotoxi-
city through regulating the miR-125b-5p/MAPK1 axis both in human and mouse PD cell 
models, highlighting a possible target for PD therapy.
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Introduction
Parkinson’s disease (PD) is the second most familiar neurodegenerative disease after 
Alzheimer’s disease (AD).1 PD prevalence increases with age and is regarded as 
a multifactorial central nervous system (CNS) disorder characterized by rest tremor, 
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rigidity and bradykinesia.2 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP) and 1-methyl-4-phenylpyridinium 
(MPP+, active metabolite of MPTP), which have neurotoxic 
effects, are well recognized to produce PD animal or cell 
models, respectively.3,4 Though massive works have been 
done to elucidate the pathological mechanisms of PD, the 
cure rate of PD is still very low. Thus, it is urgent to explore 
effective remedial methods for PD.

Long non-coding RNAs (lncRNAs) are a cluster of novel 
RNA molecules containing more than 200 nucleotides (nt), but 
lacking protein-coding abilities and have vital function in 
various human diseases.5 LncRNAs participate in the patho-
genesis and progression of PD and serve as putative diagnostic 
biomarkers and therapeutic targets for early PD diagnosis.6,7 

For instance, lncRNA HOTAIR accelerated MPTP-induced 
PD progression via upregulating leucine-rich repeat kinase 2 
(LRRK2) expression.8 Nuclear enriched abundant transcript 1 
(NEAT1) silence blocked MPP+-triggered cell damage via 
miR-212-5p in SK-N-SH cells.9 LncRNA small molecule 
RNA host gene 1 (SNHG1) is believed to be involved in PD 
pathogenesis and may target miR-153-3p to exacerbate MPP- 
induced SH-SY5Y cellular toxicity.10 Nevertheless, the role of 
SNHG1 in the etiology of PD still requires to be expounded 
furtherly.

MicroRNAs (miRNAs) are diminutive non-coding 
RNAs having approximately 23 nt that serve vital gene- 
regulatory roles by coupling with 3ʹuntranslated regions 
(3ʹUTR) of mRNAs.11 Evidence is emerging that miRNA 
dysregulation is implicated in the evolution of neurode-
generative lesion covering PD12,13 and could serve as 
biomarkers in PD targeted therapy.14 Study has reported 
that the unbalance of miR-125b-5p level was allied to SH- 
SY5Y cell viability, autophagy and apoptosis in the 
MPTP-induced PD model.15 However, the evidence 
about the action of miR-125b-5p in PD is far from enough.

In the present study, we used MPTP-induced PD mouse 
model in vivo and MPP+-induced SK-N-SH and MN9D cell 
models in vitro of PD to explore the possible roles and 
regulatory mechanisms of SNHG1 in the development of PD.

Materials and Methods
MPTP-Induced PD Mouse Model
This study was conducted with the authorization of the Animal 
Ethics Committee of Hubei Provincial Hospital of Traditional 
Chinese Medicine (Affiliated Hospital of Hubei University of 
Traditional Chinese Medicine, Hubei Institute of Traditional 
Chinese Medicine). All animal experimental procedures were 

implemented following the Guidelines of Management and 
Use for Laboratory Animals of National Institutes of Health 
(NIH). 6–8 week old C57BL/6J mice (male, n=45) were 
obtained from Beijing Vital River Laboratory Animal 
Technology Co., Ltd. (Beijing, China). The mice in the 
MPTP group or control group (n=5 for each group) were 
intraperitoneally injected with 25 mg/kg MPTP (Sigma, St 
Louis, MO, USA) or isotonic saline solution. After MPTP 
injection for different times (0, 1, 3, 5 or 7 days), the mice 
were sacrificed and their ventral midbrains were harvested for 
subsequent analysis.

To probe the function of SNHG1 in MPTP-stimulated 
PD mice, mouse midbrain dopaminergic MN9D cells were 
transduced with SNHG1 lentiviral short hairpin RNA (sh- 
SNHG1) or empty vector (sh-NC) for 48 h. Then, the 
transfected cells (1 × 106) were suspended with saline 
solution and then injected subcutaneously into the left 
flank of mice. One week after lentivirus inoculation, 
25 mg/kg MPTP (Sigma, n=5 for each group) or saline 
solution (Con, n=5) were intraperitoneally injected into 
mice for 7 days to establish reliable PD animal models.

Cell Culture and MPP+ Treatment
Human neuroblastoma cell line SK-N-SH and mice dopa-
minergic neuronal cell line MN9D from Procell (Wuhan, 
China) were maintained in DMEM medium (Gibco, 
Carlsbad, CA, USA) with 10% fetal bovine serum (FBS, 
Gibco) and 1% antibiotics (Gibco) in a moist incubator at 
37°C under 5% CO2.

For PD in vitro cell model, SK-N-SH and MN9D cells 
were stimulated with 1 mM MPP+ (Sigma) at 37°C for 24 
h, respectively.

Cell Transfection
The small interfering RNA (siRNA) against human or mouse 
SNHG1 (hsa-si-SNHG1 and mmu-si-SNHG1), siRNA nega-
tive control (hsa-si-NC and mmu-si-NC), lentiviral vector 
short hairpin RNA against SNHG1 (sh-SNHG1) or control 
(sh-NC), miR-125b-5p mimic and inhibitor (hsa-miR-125b- 
5p, mmu-miR-125b-5p, hsa-in-miR-125b-5p and mmu-in 
-miR-125b-5p) and respective controls (hsa-miR-NC, mmu- 
miR-NC, hsa-in-miR-NC and mmu-in-miR-NC), mitogen- 
activated protein kinase 1 (MAPK1) overexpression vector 
(hsa-MAPK1 and mmu-MAPK1), and pcDNA3.1 empty 
vector (hsa-pcDNA and mmu-pcDNA) were acquired from 
Genepharma (Shanghai, China). Above oligonucleotides or 
vectors were transduced into cells via Lipofectamine 3000 
(Invitrogen, Carlsbad, CA, USA).
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Quantitative Real-Time Polymerase Chain 
Reaction (qRT-PCR)
Total RNA extraction was conducted with Trizol 
(Invitrogen). The cDNA was synthesized using specific 
RT-PCR kit (Takara, Dalian, China). Subsequently, qRT- 
PCR was managed by the SYBR Green PCR Master Mix 
(Takara) in PCR amplifier. Relative expression was mea-
sured by 2−ΔΔCt method and normalized to GAPDH or U6. 
The primers synthesized from Sangon Biotech (Shanghai, 
China) are listed in Table 1.

Cell Counting Kit-8 (CCK-8) Assay
CCK-8 assay was proceeded to detect cell viability. In brief, 
cells (100 μL) were seeded into 96-well plates and cultivated 
in a 5% CO2 incubator for 48 h at 37°C. Then, CCK-8 reagent 
(10 μL, Sangon Biotech) was added to each well and incu-
bated for another 3 h after treatment or/and transfection at 37° 
C. Finally, the absorbance at 450 nm was determined by 
a microplate reader (Bio-Rad, Hercules, CA, USA).

Apoptosis Assay
The detection of apoptosis was performed via an Annexin 
V-FITC/Propidium Iodide (PI) Apoptosis Detection kit 
(Beyotime, Shanghai, China) following manufacturer’s direc-
tions. In brief, SK-N-SH and MN9D cells (5 × 104) with 
different treatment or/and transfection at 37°C were collected 
and resuspended in binding buffer. Then, cells were double 
stained with 5 μL Annexin V-FITC and 5 μL propidium iodide 
(PI) for 20 min in the dark. Finally, the apoptosis rate of cells 
was measured using a flow cytometer.

Caspase-3 and Caspase-9 Activity Assay
The activities of Caspase-3 and Caspase-9 were assessed using 
a Caspase-3 or Caspase-9 Assay Kit (Abcam, Cambridge, UK, 
USA) referring to the specification. In brief, extracted protein 
samples from harvested cells were detected via the BCA 
Protein Assay Kit (Pierce, Appleton, WI, USA). Then, the 
protein was incubated with 2× reaction buffer containing 
a specific substrate for 1 h at 37°C in the dark. The absorbance 
at 405 nm was measured via a microplate reader as fold 
change to reflect the relative activity.

Lactate Dehydrogenase (LDH) Release, 
Reactive Oxygen Species Activity (ROS) 
and Superoxide Dismutase (SOD) 
Activity Assay
The levels of LDH release, ROS and SOD were deter-
mined by the LDH Assay Kit (Cytotoxicity) (Abcam), 
ROS Assay Kit (Beyotime) and SOD Assay Ki 
(Beyotime), respectively, referring to the directions of 
manufacturers. The absorbance of samples at 450 nm, 
490 nm and 530 nm was tested to reflect SOD, LDH and 
ROS activity via a microplate reader, respectively.

Enzyme-Linked Immunosorbent Assay 
(ELISA)
The production levels of tumor necrosis factor-α (TNF-α), 
interleukin-1β (IL-1β) and IL-6 in the supernatants of SK- 
N-SH and MN9D cells were gauged using corresponding 
human or mouse ELISA kits (Beyotime) as recommended by 
manufacturers.

Dual-Luciferase Reporter Assay
The human or mouse wide type (WT) and mutated (MUT) 
sequences of SNHG1 or MAPK1 3ʹUTR with supposed 
miR-125b-5p targeted sites were inserted into pmirGLO 

Table 1 Primers Sequences Used for Quantitative Real-Time 
PCR (qRT-PCR)

Primers for qRT-PCR (5ʹ-3ʹ)

hsa-SNHG1

Forward GACAAGACCCATCTTTATGCAA
Reverse TTGCATAAAGATGGGTCTTGTC

hsa-miR 

-125b-5p

Forward TCCCTGAGACCCTAACTTGT
Reverse CTCAACTGGTGTCGTGGA

hsa-MAPK1

Forward GGTGCCTCCTCTTGACTTCC
Reverse AACCTGAACCTGACTGTCCATT

hsa-GAPDH

Forward GTCTCCTCTGACTTCAACAGCG
Reverse ACCACCCTGTTGCTGTAGCCAA

hsa-U6

Forward CTCGCTTCGGCAGCACA
Reverse AACGCTTCACGAATTTGCGT

mmu-SNHG1

Forward TTCGAGCTACCTCCCAGGAT
Reverse TGTTCTCAGCCAGACACACC

mmu-miR 

-125b-5p

Forward GCTGCTGTTCCCTGAGACCCTAAC
Reverse CTCAACTGGTGTCGTGGA

mmu-MAPK1

Forward TCAAGCCTTCCAACCTCCTGCT
Reverse AGCTCTGTACCAACGTGTGGCT

mmu-GAPDH

Forward CATCACTGCCACCCAGAAGACTG
Reverse ATGCCAGTGAGCTTCCCGTTCAG

mmu-U6

Forward CTCGCTTCGGCAGCACA

Reverse AACGCTTCACGAATTTGCGT
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luciferase vectors (LMAI Bio, Shanghai, China) to form 
plasmids (hsa/mmu-SNHG1 WT, hsa/mmu-SNHG1 MUT, 
hsa/mmu-MAPK1 3ʹUTR WT or hsa/mmu-MAPK1 
3ʹUTR MUT). The constructed luciferase reporter plas-
mids were co-transfected with miR-125b-5p or miR-NC 
into cells. 48 h post-transfection at 37°C, cells were col-
lected and the luciferase activity was measured by the 
Dual-Lucy Assay Kit (Solarbio, Shanghai, China) and 
data were analyzed based on ratio of Firefly/Renilla 
activity.

Western Blot Assay
Total protein was extracted via RIPA lysis buffer (Sangon 
Biotech). The same amount of protein was subjected to 
10% SDS-PAGE gel and then transferred onto PVDF 
membranes (Solarbio). After sealing of 5% skim milk, 
the membranes were joined with the primary antibodies 
against MAPK1 (1:2000, CSB-PA013448LA01HU, 
Cusabio Biotech, Wuhan, China) and β-actin (1:2000, 
ab8227, Abcam) overnight at 4°C. Thereafter, the mem-
branes were probed with a secondary antibody (1:10,000, 
ab205718, Abcam). The protein bands were visualized via 
ECL reagent (Beyotime) and the protein was quantified by 
ImageJ software.

Statistical Analysis
All data are presented as the mean ± standard deviation 
(SD) from at least 3 independent experiments. The differ-
ences were analyzed by Student’s t-test or one-way analy-
sis of variance (ANOVA) via SPSS software. P less than 
0.05 was deemed as statistically significant.

Results
Silencing of SNHG1 Mitigated 
MPP+-Evoked Neuronal Injury in 
SK-N-SH and MN9D Cells
In order to probe the function of SNHG1 in PD model, we 
first explored the influence of MPTP and MPP+ on 
SNHG1 expression in ventral midbrain of mouse and 
SK-N-SH and MN9D cells. qRT-PCR data revealed that 
SNHG1 expression was dramatically elevated by MPTP 
treatment in a time-dependent manner in ventral midbrains 
of mouse (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 
0.0001, Figure 1A). Meanwhile, SNHG1 level was signif-
icantly increased in SK-N-SH and MN9D cells stimulated 
with MPP+ (**P < 0.01, ***P < 0.001, Figure 1B and C). 
SK-N-SH and MN9D cells were exposed to 1 mM MPP+ 

for 24 h as the treatment conditions for subsequent 
experiments.

Next, a series of loss-of-function assays were performed 
to explore SNHG1 action in hsa-si-SNHG1-transfected SK- 
N-SH cells and mmu-si-SNHG1-transfected MN9D cells. 
As illustrated in Figure 1D (**P < 0.01, ***P < 0.001), 
SNHG1 was successfully transfected into SK-N-SH and 
MN9D cells. Then, the impact of MPP+ on cell damage 
of SK-N-SH and MN9D cells was inspected. As expected, 
the results revealed that MPP+ stimulation resulted in 
a conspicuous inhibition in cell viability (*P < 0.05, 
**P < 0.01, ***P < 0.001, Figure 1E and F), an overt 
promotion in cell apoptosis (****P < 0.0001, Figure 1G 
and H) together with increasing levels of pro-apoptotic 
proteins Caspase-3 and Caspase-9 (*P < 0.05, **P < 0.01, 
Figure 1I and J). Furthermore, the relative activities of LDH 
and ROS were raised while the relative activity of SOD was 
reduced in MPP+-disposed SK-N-SH and MN9D cells 
(*P < 0.05, **P < 0.01, Figure 1K and L). Moreover, 
after MPP+ treatment, the levels of TNF-α, IL-1β and IL- 
6 were remarkably elevated in SK-N-SH and MN9D cell 
culture medium (*P < 0.05, **P < 0.01, Figure 1M and N). 
These findings together demonstrated that MPP+ stimula-
tion triggered cytotoxicity in SK-N-SH and MN9D cells. 
Interestingly, the above effects of MPP+ stimulation on cell 
viability, apoptosis, oxidative stress and inflammation were 
all partly reversed by hsa-si-SNHG1 or mmu-si-SNHG1 in 
corresponding SK-N-SH or MN9D cells (Figure 1E-N). 
Together, these data manifested that knockdown of 
SNHG1 allayed MPP+-triggered neurotoxicity in SK- 
N-SH and MN9D cells. Thus, SNHG1 was required for 
the neurotoxic effects of MPP+ in these cell lines.

SNHG1 Was a Molecular Sponge of 
miR-125b-5p
On the basis of the prediction database LncBase Predicted 
v.2, wild type SNHG1 was verified to have a putative binding 
sequence for hsa-miR-125b-5p and mmu-miR-125b-5p 
(Figure 2A and B). The overexpression efficiency of hsa- 
miR-125b-5p in MPP+-evoked SK-N-SH cells and mmu- 
miR-125b-5p in MPP+-evoked MN9D cells was testified by 
qRT-PCR (***P < 0.001, Figure 2C). To confirm this inter-
action between SNHG1 and miR-125b-5p, the dual- 
luciferase reporter assay was implemented, and the results 
suggested that hsa-miR-125b-5p overexpression resulted in 
lower luciferase activity (62% reduction) in SK-N-SH cells 
transfected with wild-type reporter construct (hsa-SNHG1 
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WT) compared with hsa-miR-NC group (**P < 0.01), while 
did not affect the luciferase activity of mutant SNHG1 repor-
ter (hsa-SNHG1 MUT) (P > 0.05) (Figure 2D). Similarly, the 
co-transfection of mmu-miR-125b-5p and mmu-SNHG1 
WT in MN9D cells demonstrated the same result (*P < 
0.05, 47% reduction of luciferase activity, Figure 2E). The 
expression of miR-125b-5p in ventral midbrains of mouse 
was observably reduced after MPTP treatment relative to NC 
group (**P < 0.01, Figure 2F). Simultaneously, the level of 
miR-125b-5p was distinctly reduced after MPP+ treatment 
(**P < 0.01, Figure 2G and H). And miR-125b-5p level was 
prominently elevated by SNHG1 silence relative to that of si- 
NC group in MPP+-evoked SK-N-SH and MN9D cells 
(***P < 0.001, ****P < 0.0001, Figure 2I and J), which 
implied the targeted sites were functional. Collectively, all 

above data evidenced that SNHG1 sponged miR-125b-5p in 
SK-N-SH and MN9D cells.

The Protective Impact of SNHG1 
Knockdown on MPP+-Evoked SK-N-SH 
and MN9D Cell Damage Was Alleviated 
by miR-125b-5p Inhibition
To verify whether the protective effect of SNHG1 silence 
on MPP+-triggered cytotoxicity was mediated by miR- 
125b-5p, SK-N-SH and MN9D cells were transduced 
with hsa-si-SNHG1, hsa-si-SNHG1+ hsa-in-miR-125b- 
5p, mmu-si-SNHG1, mmu-si-SNHG1+ mmu-in-miR 
-125b-5p or corresponding controls, and then treated with 
1 mM MPP+. Compared with control groups, hsa-si 

Figure 1 SNHG1 was highly expressed in PD models and participated in PD biological processes. (A) The relative SNHG1 level in MPTP-induced PD mouse model (n=5 
mice/group) was examined by qRT-PCR assay. (B and C) MPP+-induced SK-N-SH cells and MN9D cells were tested by qRT-PCR assay. (D) The level of SNHG1 in MPP+- 
triggered SK-N-SH or MN9D cells transfected with hsa-si-NC, hsa-si-SNHG1, mmu-si-NC or mmu-si-SNHG1 was assessed. (E–N) SK-N-SH and MN9D cells were 
introduced with or without SNHG1 siRNAs or corresponding si-NCs and then exposed to 1 mM of MPP+ for 24 h. (E and F) Cell viability was analyzed by CCK8 assay. 
(G and H) Cell apoptosis rate was tested by flow cytometry. (I and J) The activity of Caspase-3 and Caspase-9 was detected by corresponding kits. (K–N) ELISA assay was 
utilized for LDH, ROS, SOD, TNF-α, IL-1β, and IL-6. Data were expressed as mean ± SD from at least three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001 versus corresponding controls analyzed by ANOVA (Figure 1A) or Student’s t-test (Figure 1B-1N).
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-SNHG1- or mmu-si-SNHG1-mediated miR-125b-5p 
increase was overturned by hsa-in-miR-125b-5p or mmu- 
in-miR-125b-5p introduction in SK-N-SH and MN9D 
cells under MPP+ stimulation (**P < 0.01, ***P < 
0.001, Figure 3A and B). CCK-8 assay testified that 
SNHG1 silence-induced accelerated effect on cell viability 
in MPP+-treated SK-N-SH and MN9D cells was attenu-
ated by knockdown of miR-125b-5p (*P < 0.05, **P < 
0.01, Figure 3C and D). Meanwhile, SNHG1 depletion 
caused a striking suppression in cell apoptosis and 
decrease in Caspase-3 and Caspase-9 activity, and these 
impacts were abrogated by miR-125b-5p inhibition (*P < 
0.05, **P < 0.01, ***P < 0.001, Figure 3E-H). 
Furthermore, the reduction of LDH and ROS release and 
the increase in SOD level induced by SNHG1 silence were 
depressed by deficiency of miR-125b-5p in SK-N-SH and 
MN9D cells under MPP+ stimulation (*P < 0.05, **P < 
0.01, Figure 3I and J). Similarly, the inhibiting action of 
hsa-si-SNHG1 and mmu-si-SNHG1 on the levels of TNF- 
α, IL-1β and IL-6 in MPP+-exposed SK-N-SH or MN9D 
cells was corrected by lessened expression of miR-125b- 
5p (*P < 0.05, **P < 0.01, Figure 3K and L). These 

findings indicated that knockdown of SNHG1 attenuated 
MPP+-induced neurotoxicity via reducing the levels of 
miR-125b-5p.

MAPK1 Was Targeted and Suppressed by 
miR-125b-5p
To further explore the action of miR-125b-5p in MPP+- 
evoked cytotoxicity, DIANA TOOLS microT-CDS (v5.0) 
software was utilized to identify its molecular targets. As 
illustrated in Figure 4A and B, the 3ʹUTR sequence of 
MAPK1 contained putative miR-125b-5p complementary 
sites in SK-N-SH and MN9D cells. Transient transfection 
of hsa-miR-125b-5p or mmu-miR-125b-5p observably les-
sened the luciferase activity of MAPK1 3ʹUTR luciferase 
reporter (hsa-MAPK1 3ʹUTR WT and mmu-MAPK1 
3ʹUTR WT) (**P < 0.01) but barely affected the luciferase 
activity in the MAPK1 mutant reporter (hsa-MAPK1 
3ʹUTR MUT and mmu-MAPK1 3ʹUTR MUT) (P > 0.05) 
in corresponding SK-N-SH and MN9D cells (Figure 4C 
and D). The protein level of MAPK1 in ventral midbrains 
of mouse after MPTP treatment and in MPP+-stimulated 
SK-N-SH or MN9D cells was visibly increased (***P < 

Figure 2 SNHG1 participated in PD biological processes via miR-125b-5p. (A and B) The target sequence of hsa-SNHG1 (A) or mmu-SNHG1 (B) with miR-125b-5p and 
the corresponding mutated sites. (C) The efficiency of miR-125b-5p overexpression in MPP+-evoked SK-N-SH and MN9D cells was verified. (D and E) The relative 
luciferase activity in SK-N-SH and MN9D cells co-transfected with hsa/mmu-SNHG1 WT or MUT luciferase reporter plasmids and miR-125b-5p or miR-NC was detected. 
(F–H) The relative miR-125b-5p level in MPTP-induced PD model (F), MPP+-induced SK-N-SH (G) and MN9D cells (H) was detected. (I and J) The relative miR-125b-5p 
level in MPP+-induced SK-N-SH and MN9D cells transfected with SNHG1 siRNAs or corresponding si-NCs was examined. Data were expressed as mean ± SD from at least 
three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 versus corresponding controls analyzed by Student’s t-test (Figure 2C-2J).
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0.001, Figure 4E-G). Moreover, MAPK1 level was dis-
tinctly reduced by miR-125b-5p overexpression in SK- 
N-SH and MN9D cells (**P < 0.01, ***P < 0.001, 
Figure 4H). In addition, the level of MAPK1 was signifi-
cantly decreased by hsa-si-SNHG1 or mmu-si-SNHG1 
introduction, which was respectively inverted by hsa-in- 
miR-125b-5p or mmu-in-miR-125b-5p introduction in 
MPP+-induced SK-N-SH or MN9D cells (**P < 0.01, 
***P < 0.001, Figure 4I and J).

Overexpression of miR-125b-5p 
Mitigated MPP+-Triggered Neuronal 
Injury by Targeting MAPK1
To explore whether MAPK1 participated in the regulation 
by miR-125b-5p of MPP+-stimulated cytotoxicity, the 
effect of miR-125b-5p and/or MAPK1 overexpression 
was examined in SK-N-SH and MN9D cells. As displayed 
in Figure 5A and B (*P < 0.05, **P < 0.01), the down- 
regulation of MAPK1 level caused by miR-125b-5p over-
expression was abated by the introduction of MAPK1 

overexpression plasmid in MPP+-triggered SK-N-SH and 
MN9D cells. Moreover, miR-125b-5p overexpression- 
mediated viability enhancement (*P < 0.05, **P < 0.01, 
Figure 5C and D), apoptosis repression (*P < 0.05, **P < 
0.01, ***P < 0.001, Figure 5E-H) and inflammation reduc-
tion (*P < 0.05, **P < 0.01, Figure 5K and L) were 
distinctly reversed by the up-regulation of MAPK1 expres-
sion. Concurrently, MAPK1 overexpression also abrogated 
the decrease of LDH and ROS and the enhancement of 
SOD induced by miR-125b-5p introduction (*P < 0.05, 
**P < 0.01, Figure 5I and J). These data together evi-
denced that miR-125b-5p ameliorated MPP+-triggered 
neurotoxicity via sponging MAPK1.

SNHG1 Knockdown Mitigated Behavioral 
Deficits in MPTP-Induced PD Mice
To study the in vivo effects of SNHG1, we established 
SNHG1 knockdown mice by lentivirus transduction, and 
then the mice were treated with MPTP. As shown in 
Figure 6A and B (*P < 0.05, **P < 0.01), the numbers 
of counters (5 min) and latency to fall (sec) were 

Figure 3 SNHG1 knockdown alleviated MPP+-evoked neuronal injury by regulating miR-125b-5p. (A–L) SK-N-SH and MN9D cells were transduced with hsa-si-SNHG1, 
hsa-si-SNHG1+hsa-in-miR-125b-5p, mmu-si-SNHG1, mmu-si-SNHG1+ mmu-in-miR-125b-5p or homologous controls (hsa-si-NC, hsa-si-SNHG1+hsa-in-miR-NC, mmu-si- 
NC, or mmu-si-SNHG1+ mmu-in-NC) before MPP+ stimulation (1 mM MPP+, 24 h). The level of miR-125b-5p (A and B), cell viability (C and D), cell apoptosis (E and F), 
Caspase-3 and Caspase-9 activity (G and H), LDH, ROS or SOD activity (I and J) and inflammatory factor levels (K and L) were examined via corresponding methods. Data 
were expressed as mean ± SD from at least three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 versus corresponding controls analyzed by Student’s t-test.
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decreased in MPTP treated mice by using spontaneous 
motor activity test and rotarod test, implying the beha-
vioral deficits of MPTP-treated mice, while the above 
decreased effects were reversed by SNHG1 knockdown. 
Furthermore, the levels of SNHG1 and MAPK1 were 
increased while miR-125b-5p level was declined in 
MPTP-induced PD mice, while these alterations were all 
overturned by silence of SNHG1 (**P < 0.01, ***P < 
0.001, ****P < 0.0001, Figure 6C-E). In conclusion, 
SNHG1 knockdown attenuated MPTP-induced neuronal 
damage in PD in vivo model mice.

Discussion
PD is a progressive chronic age-related neurological dis-
ease which impairs the action capability of human being.2 

Until now, PD cannot be completely cured and the patho-
genesis of PD is still unclear. Therefore, it is indispensable 
to find available therapeutic regimen to restrain PD devel-
opment and thus to improve life quality of PD sufferers. 

This study elucidated the action mode of lncRNA SNHG1/ 
miR-125b-5p/MAPK1 axis in PD etiopathology.

LncRNAs are pivotal regulators in diverse malignant 
diseases.16 SNHG1 has been demonstrated to accelerate 
tumorigenesis and development and could act as a useful 
tumor biomarker for cancer diagnosis, prognosis and treat-
ment in multifold cancers.17 Also, SNHG1 was reported to 
be a vital regulatory molecule in the brain actions and 
pathophysiology of CNS disorders, including PD. For 
example, SNHG1 promoted glioma progression by spong-
ing miR-194 to up-regulate PHLDA1.18 Silence of 
SNHG1 exerted its neuronal protective effects by repres-
sing KRENEN1 via miR-137 in the AD in vitro cell 
model.19 Particularly, SNHG1 was deemed to participate 
in PD progression. For instance, SNHG1 aggravated MPP- 
induced cellular toxicity in SH-SY5Y cells via modulating 
miR-153-3p.10 The raised SNHG1 level was found in 
MPP+-evoked cell model and brain tissues of PD sufferers, 
and SNHG1 facilitated PD evolvement by miR-7.20 Here, 

Figure 4 MAPK1 was a direct target of miR-125b-5p. (A and B) The predicted binding sequence between MAPK1 and miR-125b-5p was displayed. (C and D) The targeting 
relationship between MAPK1 and miR-125b-5p was confirmed via dual-luciferase reporter assay. (E–G) The protein level of MAPK1 in MPTP-induced PD model (E), MPP+- 
induced SK-N-SH cells (F), MPP+-induced MN9D cells (G) was tested by Western blot. (H) The expression of MAPK1 was measured in SK-N-SH and MN9D cells 
transfected with miR-NC or miR-125b-5p. (I and J) The level of MAPK1 was tested in MPP+-stimulated SK-N-SH and MN9D cells transfected with hsa/mmu-si-SNHG1, hsa/ 
mmu-si-SNHG1 + hsa/mmu-in-miR-125b-5p or corresponding controls (hsa/mmu-si-NC or hsa/mmu-si-SNHG1 + hsa/mmu-in-miR-NC). Data were expressed as mean ± 
SD from at least three independent experiments. **P < 0.01, ***P < 0.001 versus corresponding controls analyzed by Student’s t-test (Figure 4C-4J).
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Figure 5 MAPK1 overexpression reversed the effects of miR-125b-5p on MPP+-triggered neuronal injury. (A–L) SK-N-SH cells were transduced with hsa-miR-NC, hsa-miR 
-125b-5p, hsa-miR-125b-5p + hsa-pcDNA, hsa-miR-125b-5p + hsa-MAPK1 and MN9D cells were transduced with mmu-miR-NC, mmu-miR-125b-5p, mmu-miR-125b-5p + 
mmu-pcDNA or mmu-miR-125b-5p + mmu-MAPK1 and then treated with 1 mM MPP+. MAPK1 level (A and B), cell viability (C and D), cell apoptosis (E and F) and 
Caspase-3 or Caspase-9 activity (G and H) were examined via corresponding methods. LDH, ROS or SOD activity (I and J) and inflammatory factor levels (K and L) were 
tested by corresponding kits. Data were expressed as mean ± SD from at least three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 versus corresponding 
controls analyzed by Student’s t-test.

Figure 6 SNHG1 silence attenuated behavioral deficits in MPTP-induced PD model mice. The mice transduced with sh-SNHG1 or not were treated with MPTP. (A) The 
numbers of counters (5 min) of mice was evaluated by spontaneous motor test. (B) The time of latency to fall was evaluated by rotational behavior. (C–E) The levels of 
SNHG1, miR-125b-5p and MAPK1 were examined. Data were expressed as mean ± SD from at least three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001 versus corresponding controls analyzed by Student’s t-test.
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we proposed a prominent up-regulation of SNHG1 in 
MPTP-stimulated animal model and MPP+-treated SK- 
N-SH and MN9D cell models of PD. We also exposed 
that SNHG1 silence exerted a protective effect on MPP+- 
triggered apoptosis, oxidative stress and inflammation in 
SK-N-SH and MN9D cells.

MicroRNAs are believed to play important roles via 
serving as the targets of lncRNAs thereby to regulate 
target genes expression and implicate in PD 
pathogenesis.11,21,22 miR-135b exerts a protective role in 
MPP-intoxicated PD cell model by inhibition of apoptosis 
and neuroinflammation by sponging FoxO123 or GSK3.24 

Meanwhile, BDNF-AS knockdown could increase SH- 
SY5Y cell viability, block autophagy and apoptosis in 
MPTP-induced PD models via miR-125b-5p.15 This 
study uncovered that the elevated level of miR-125b-5p 
alleviated MPP+-triggered cytotoxicity in PD cell models. 
Furthermore, we first authenticated that miR-125b-5p was 
targeted by SNHG1 and SNHG1 knockdown relieved 
MPP+-evoked neuronal damage by increasing miR-125b- 
5p expression.

Studies have verified the character of MAPK1 in var-
ious cancers, brain functions and CNS disorders. For 
example, MAPK1 was increased and acted as a tumor 
inhibitor through serving as the target of miRNAs in 
gastric cancer,25 hepatocellular carcinoma26 and lung 
adenocarcinoma.27 Meanwhile, miR-129-1 acted as tumor 
depressor and impeded cell cycle progress of glioblastoma 
(GBM) cells via MAPK1 and IGF2BP3.28 Besides, 
MAPK1 level was elevated in intermediate and late AD 
stages and the alteration of MAPK1 expression was related 
to the pathogenesis of AD.29 Knockdown of MAPK1 
mitigated MPP+-treated SH-SY5Y cell injury via 
lncRNA AL049437/miR-205-5p/MAPK1 pathway.30 We 
first substantiated that MAPK1 was functionally targeted 
by miR-125b-5p in MPP+-triggered PD cells, and miR- 
125b-5p upregulation relieved MPP+-evoked cytotoxicity 
via suppressing MAPK1. Meanwhile, we demonstrated the 
function of SNHG1 as a sponge of miR-125b-5p to control 
MAPK1 expression and SNHG1 knockdown could effica-
ciously improve behavioral changes in MPTP-induced PD 
animal model. Even though our research illuminated the 
regulatory mechanism of SNHG1 in PD progression, there 
were still some disadvantages. For example, this study 
lacked the data support of clinical tissues from PD 
patients. Meanwhile, we noted that miR-125b-5p inhibi-
tion could only partially relieve the effects of si-SNHG1 
on MAPK1 expression, suggesting that there might exist 

other factors that were regulated by SNHG1/miR-125b-5p 
axis. This progress was worthy of further studying, and we 
will explore this in our future studies.

In a word, we identified that SNHG1 silence protected 
against MPP+-evoked injury in MN9D and SK-N-SH cells 
by targeting miR-125b-5p/MAPK1 axis. These data pro-
vided a novel regulatory mechanism about SNHG1 in PD 
pathogenesis and proposed feasible targets for PD remedy.
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