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Purpose: A prognostic prediction model for metabolic syndrome can help nurses or 
physicians evaluate the future individual absolute risk of MetS in order to develop persona-
lized care strategies. We aimed to derive and internally validate a prognostic prediction 
model for 4-year risk of metabolic syndrome in adults.
Patients and Methods: This was a retrospective cohort study conducted in a tertiary care 
setting, and the dataset was obtained from the Healthcare Information and Management 
Systems of a tertiary hospital. The cohort included Chinese adults attending health examina-
tion from 1 January 2011 to 31 December 2014. A total of 6793 participants without 
metabolic syndrome were included in the cohort and were followed up for 4 years. 
Available candidate predictors in the dataset were weight, MCV, MCH, AST, ALT, BMI, 
NGC, TC, serum uric acid, gender, smoking, WBC, LC, Hb, HCT, and age. A logistic 
regression model was adopted to build the risk equation, and bootstrapping was used when 
considering internal validation. Calibration, discrimination, and the clinical utility were 
calculated for the model’s performance.
Results: Of the 6793 participants, 1750 participants were diagnosed with metabolic syn-
drome within 4 years. The developed prediction model contained 5 predictors (body mass 
index, age, total cholesterol, alanine transaminase, and serum uric acid). After internal 
validation, the C-statistic was 0.783 (95% CI, 0.772–0.795). Additionally, the current 
model had good calibration. Calibration slope was 0.995 (95% CI, 0.934–1.058), and 
calibration intercept was −0.008 (95% CI, −0.088–0.073). The Brier score was 0.156. The 
decision-curve analysis indicated that the prediction model provided greater net benefit than 
the default strategies of providing treatment or not providing treatment for all patients.
Conclusion: A prognostic risk prediction model for determining 4-year risk of metabolic 
syndrome onset in adults was developed and internally validated. This model was based on 
routine clinical measurements that quantified individual future risk of metabolic syndrome.
Keywords: prediction model, prognosis, metabolic syndrome, algorithms, calibration, 
discrimination

Introduction
Metabolic syndrome (MetS) refers to a group of risk factors for metabolic dis-
orders: raised fasting plasma glucose, abdominal obesity, high cholesterol, and high 
blood pressure.1 The world’s adult population is facing a significant epidemic of 
MetS. In the Asia-Pacific region, nearly 20% of the adult population was influenced 
by MetS.2 Eleven cohort studies found that the prevalence of MetS was 15.7% in 
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males and 14.2% in females among non-diabetic people in 
many European countries.3 This syndrome can increase 
the risk of developing atherosclerosis, cardiovascular dis-
ease, type 2 diabetes mellitus (T2DM), and all-cause 
mortality.4,5 Compared with people without metabolic syn-
drome, affected individuals are twice as likely to die of 
and three times as likely to have heart attacks or strokes.1 

The metabolic syndrome results in cardiovascular-related 
illness, diabetes, and death, causing an inevitable and 
profound impact on global healthcare systems. 
Consequently, primary prevention and screening are 
needed to combat this epidemic and reduce the morbidity 
and mortality associated with it.

A prognostic prediction model can help nurses or phy-
sicians evaluate future individual absolute risk of MetS in 
order to develop personalized care strategies. Meanwhile, 
the prognostic prediction model can keep patients 
informed about their future outcomes and help patients 
appraise subsequent health management possibilities.6

We first conducted a systematic review to identify all 
existing prediction models for MetS by searching in English 
databases (PubMed, EMBASE, CINAHL, and Web of 
Science) and Chinese databases (Sinomed, WANFANG, 
CNKI, and CQVIP).7 Eleven prognostic prediction modelling 
studies were identified from 29,668 retrieved papers. For 
critical appraisal, the prediction model risk of bias assessment 
tool (PROBAST) was used to evaluate the risk bias and 
application of those prognostic prediction models. We found 
that all models were at a high risk of bias mainly caused by the 
low quality of the domains of outcome and statistical analysis 
(e.g., appropriate selection of predictors, missing data, trans-
formation of predictors, and sample size). This suggests that it 
is not appropriate to apply any of them to clinical practice. 
Apart from this, it is recommended to develop and validate 
prediction models by adhering to TRIPOD (Transparent 
Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis) statement to improve the quality of 
a prediction model.

Therefore, by following TRIPOD, this study aimed to 
develop and internally validate a prognostic prediction 
model for MetS based on identified candidate predictors 
from the systematic review.

Methods
Study Design and Data Source
This was an observational study in a tertiary care setting, 
and one retrospective cohort was obtained from the 

Healthcare Information and Management Systems of 
a tertiary hospital. This cohort included Chinese adults 
attending health examination from 1 January 2011 to 
31 December 2014. Participants were included if they 
attended health examination consecutively for 4 years (-
2011–2014) and were not diagnosed with metabolic syn-
drome at baseline. Participants were excluded if they were 
not adults (younger than 18) and were pregnant.

Outcomes
The outcome was metabolic syndrome (MetS), and the 
2009 Joint Scientific Statement (harmonizing criteria 
2009) was chosen to diagnose MetS.8 The criteria includes 
five risk factors: ① waist circumference (WC)≥85 cm 
(male); waist circumference≥80 cm (female) ② 

Triglycerides (TG)≥1.7 mmol/L or treatment; ③ lasma 
high-density lipoprotein cholesterol (HDL-C) <1.0 mmol/ 
L (male) or treatment; Plasma high-density lipoprotein 
cholesterol <1.3 mmol/L (female) or treatment; ④ 

Systolic blood pressure (SBP)≥130 and/or diastolic blood 
pressure (DBP)≥85 mmHg or treatment ⑤ Fasting plasma 
glucose (FPG)≥5.6 mmol/L or treatment. MetS can be 
diagnosed if any three out of five were present.

Predictor Variables
Usually, predictors can be obtained from participant demo-
graphic characteristics, medical history, physical examina-
tion, and test results. It is recommended that candidate 
predictors should be obtained from a related prediction 
model systematic review.6,9 Before conducting this study, 
our team finished a related systematic review by searching 
English and Chinese databases. Eleven studies were finally 
included in the review, and a set of predictors were recom-
mended for consideration as candidate predictors when 
developing prognostic prediction models for MetS because 
those predictors were used in at least two studies. They 
were serum HMW-adiponectin, total adiponectin, HOMA- 
IR, serum insulin, free fatty acids, weight, glycated albu-
min, hip circumference, physical activity, MCV, MCH, 
AST, ALT, BMI, NGC, TC, serum uric acid, LDL- 
cholesterol, gender, smoking, WBC, LC, Hb, HCT, and 
age. Information was extracted from the dataset. We found 
that serum HMW-adiponectin, total adiponectin, HOMA- 
IR, free fatty acids, glycated albumin, hip circumference, 
and physical activity were not available in the dataset, so 
these variables were excluded in the analysis. 
Additionally, there is a high possibility of multicollinearity 
between weight and BMI,10 and BMI is a more 

https://doi.org/10.2147/DMSO.S288881                                                                                                                                                                                                                               

DovePress                                                                                             

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2021:14 2230

Zhang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


comprehensive index, so weight was excluded in the ana-
lysis. Serum insulin, smoking, and LDL-cholesterol were 
missing above 50% in the dataset. This means that it is not 
appropriate to conduct multiple imputation for them, so 
they were also excluded in the analysis. It is suggested that 
blind assessment of predictors and outcomes is vital for 
subjective judgment and assessment (eg, imaging, electro-
physiology, and pathology results), but it is of minimal 
influence for candidate predictors in our study, such as 
age, sex, or quantitative laboratory values, because they 
were measured and were greatly independent of observer 
interpretation.11

Sample Size
In prediction modelling studies, the effective sample size 
can be determined by outcome events per variable (EPV); 
the number of participants with the outcome relative to the 
number of candidate predictor parameters should be ≥20. 
There were 14 candidate predictors in this study, so at least 
320 participants with outcome events were needed.

Statistical Analysis
Multiple imputation with chained equations was used to 
deal with missing data, and five imputations were created 
because it was a pragmatic method to account for the size 
of the datasets and has a relatively high efficiency.12 All 
candidate predictors and the indicators of outcome were 
included in the imputation model.

Continuous predictors were kept as continuous, and con-
tinuous predictors that were not normally distributed were 
handled by log transformation. Fractional polynomial (FP) 
functions were adopted to deal with nonlinearity. We treated 
the presence of MetS within 4 years of follow-up as binary 
outcomes, so a logistic model was used to estimate the 
coefficients associated with potential predictors. The least 
absolute shrinkage and selection operator (LASSO) regres-
sion analysis was adopted to further limit the number of 
candidate predictors and select the most useful predictors 
among candidate predictors. This technique allows each 
predictor effect to be shrunk differently and eventually 
excludes some predictors to adjust overfitting and optimism. 
Predictors identified by LASSO method were entered into 
the logistic regression model to fit the model.13 We did not 
include any interactions in the final model, since previous 
studies rarely reported interactions in prediction models for 
MetS, and it is reasonable that interaction terms rarely add to 
the predictive ability of the prediction models.6

For model performance, discrimination (C-statistic) 
was assessed, and calibration was plotted. Additionally, 
calibration slope and intercept were calculated, and 
a prediction model with perfect calibration has 
a calibration slope of 1 and an intercept of 0 ideally.14 

To evaluate the overall predictive ability, the Brier score 
was calculated. This score can be both influenced by dis-
crimination and calibration, and therefore is a metric of 
overall performance.15 The brier score for flipping a fair 
coin is 0.25.16 We adopted bootstrapping methods (100 
bootstrap resamples) for internal validation because this 
internal validation technique can quantify the extent of 
model overfitting and optimism.6

Additionally, the clinical utility of this prediction model 
was assessed by decision curve analysis (DCA). This analy-
sis aims to establish the net benefit (weighted average of true 
positives and false positives) of the prediction model across 
a wide range of threshold probabilities. When the provider 
has determined their threshold probability for adopting inter-
ventions, DCA can show the expected utility (net benefit) of 
using the prediction model at that specific threshold.

TRIPOD statement was used when reporting this 
study.6 The TRIPOD checklist can be found in Data 
Supplement 1. The calculator tool for the probability of 
risk was developed. Statistical analysis was conducted 
with R software (version 3.6.2, R Foundation), and P < 
0.05 was considered statistically significant.

Ethical Approval
This study was approved by the ethics committee of 
Zhejiang University School of Medicine Sir Run Run 
Shaw Hospital (20181220–3). The ethics committee waived 
the requirement of written informed consent for participation 
because this was the secondary use of the data. This study 
was conducted in accordance with the principles of the 
Declaration of Helsinki. Patient data were protected and 
confidential. The datasets presented in this article are not 
readily available due to hospital policy. Requests to access 
the datasets should be directed to 3192005@zju.edu.cn.

Results
Baseline Characteristics
In total, 6793 participants were included in the derivation 
cohort based on inclusion and exclusion criteria (Figure 1) 
and were followed up for 4 years. Of the 6793 participants, 
1750 participants were diagnosed with MetS within 4 
years, so EPV was above 100. Table 1 provides the 
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baseline characteristics, candidate predictors, and outcome 
indicators of the study population.

Predictor Variables
Among 14 candidate predictors, 5 predictors were selected 
in the LASSO regression model on the basis of the deriva-
tion cohort and were with nonzero coefficients in the 
LASSO regression model (Figure 2A and B). These pre-
dictors included age, TC, UA, ALT, and BMI.

Prediction Model Development and 
Apparent Performance
Five predictors selected from the LASSO regression 
model were entered into multivariable logistic regression 
analysis to develop a prediction model. C-statistic was 
0.784 (95% CI, 0.773–0.796). The agreement between 
the observed and predicted proportion of MetS showed 

apparent calibration (Figure 3). Calibration slope was 1, 
and calibration intercept was 0. The Brier score was 0.156.

Internal Validation
To adjust optimism, bootstrapping approach was used for 
internal validation. The optimism-corrected C-statistic was 
0.783 (95% CI, 0.772–0.795). Figure 3 presents the opti-
mism-corrected calibration plot. After optimism- 
correction, calibration slope was 0.995 (95% 
CI,0.934–1.058), and calibration intercept was −0.008 
(95% CI, −0.088–0.073). The optimism-corrected brier 
score was 0.156. Based on the results of calibration plot, 
calibration slope, calibration intercept, we found that cali-
bration was acceptable. The decision-curve analysis indi-
cated that the prediction model provided greater net benefit 
than the default strategies of providing treatment or not 
providing treatment for all patients (Figure 4).

Figure 1 Participant flow.
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Clinical Examples
Figure 5 shows a clinical example of the application of the 
risk calculator which can be found in Data Supplement 2. 
The predicted probability of 4-year risk of metabolic syn-
drome in adults was determined by

P = 1/[1+ exp – (−12.486 + 0.048 × age + 0.354 ×TC + 
0.003× UA + 0.937 × ALT(log) + 0.243×BMI).

Discussion
Screening patients at risk of developing future MetS is 
important for health providers to make the decision about 
metabolic syndrome prevention and management. 
A prognostic prediction model for 4-year risk of metabolic 
syndrome in adults was developed and internally validated 
in this study. This risk prediction model only contains 5 
predictors (BMI, Age, TC, ALT, UA) which are derived 

from clinical measurements routinely recorded and readily 
accessible in clinical care settings.

We find that higher UA, TC, ALT, BMI, and older age 
predict faster progression to the appearance of MetS. 
These predictors will allow health professionals to have 
a better estimate of the future risk of MetS. It is now well 
established from a variety of studies that these predictors 
are important for the appearance of MetS. For example, 
Osadnik et al found that the patients with MetS had older 
age, higher BMI, ALT, UA, and TC.17 Aging and 
increased BMI can be significantly associated with 
increased WC,18 which is one of the diagnostic criteria 
of MetS. ALT was found to be a risk factor for MetS, and 
research suggested that a high level of ALT can lead to fat 
accumulation in the liver. This will cause liver disease (e. 
g., nonalcoholic fatty liver disease) and individuals with 
liver disease are more likely to be at risk of developing 
MetS and other cardiometabolic diseases.19 It is suggested 
that a high level of UA is related to the prevalence of Mets 
both in male and female.18 This is because UA can 
increase insulin resistance causing a high risk of MetS.20 

Additionally, a longitudinal study has shown that a high 
level of TC can increase the risk of MetS, and this is 
because TC can result in insulin resistance.21 Although 
age is an unmodifiable risk factor, BMI, ALT, UA, and 
TC are modifiable risk factors. Medical professionals 
should help individuals adopt healthy lifestyles to reduce 
the risk of these predictors.

The current model’s discrimination was useful, and the 
calibration of this prediction model was acceptable. The 
clinical usefulness of this model demonstrates that using 
this model leads to fewer portions of negative net benefit 
and greater positive net benefit. Additionally, the overall 
performance of this model was satisfied. This means that 
the model with only a few major predictors can increase 
clinical applicability in routine care and the calculator can 
be used in medical practice.

A few prognostic prediction models have been built for 
MetS in previous studies identified by our systematic 
review.22–31 Compared to our prognostic prediction model, 
many of those models have excellent or good discrimination 
ranged from 0.80 to 0.90. However, it is important to notify 
that most previous models have included the components of 
the diagnostic criteria of MetS as candidate predictors, so the 
relationships between predictors and outcomes are more likely 
to be overestimated.11 Consequently, those models have good 
and excellent discrimination, which means that those predic-
tion models can differentiate individuals with or without 

Table 1 Characteristics of Participants

Candidate predictor Derivation Cohort 
(N=6793) n (%)/Mean±SD

Missing 
Values 
n (%)

Sex

Female 2377 (34.99%) 0

Male 4416 (65.01%) 0

Age 41.488±10.411 0

WBC 5.794±1.459 0.147

Hb 143.245±14.858 0.147

LC 33.296±7.288 0.147

NGC 3.317±1.088 0.147

TC 4.419±0.846 0.471

UA 303.305±86.971 0.501

Weight 63.28±10.538 30.561

Height 166.225±7.722 30.59

BMI 22.802±2.726 30.59

AST 19.754±9.33 38.216

ALT 21.453±20.271 0.118

MCV 91.757±4.967 0.147

MCH 31.486±1.962 0.147

HCT 41.752±4.211 0.147

Outcome Indicator Participants with Events 
(N=1750) n (%)/Mean±SD

Missing 
Values 
n (%)

WC 86.445±6.972 16.971

TG 1.969±1.383 0.114

HDL-c 1.151±0.29 0.114

SBP 127.648±14.457 4.914

DBP 78.301±10.582 4.914

FPG 5.306±0.993 0.114

Medication for hypertension 269 (15.37%) 0

Medication for FPG 39 (2.23%) 0

Medication for TG or HDL-c 617 (35.26%) 0
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diseases, but they may be optimistic when validated in new 
cohorts. Meanwhile, many of the previous models did not 
report calibration, which refers to the agreement between the 
predicted outcomes and the observed outcomes, while models 
with satisfactory discrimination may have poor calibration 
leading to limited clinical value.32 Our prediction model with 
adequate discrimination and excellent calibration will provide 
more useful information to nurses and physicians.

Strengths and Limitations
Our prediction model has some advantages. Before devel-
oping the prognostic prediction model, candidate predictors 
were selected from a related prediction model systematic 
review conducted by our team, which is recommended by 
the TRIPOD statement. Additionally, the components of the 
diagnostic criteria of MetS were excluded from candidate 
predictors to avoid overfitting. The key strength should be 

Figure 3 Calibration plot. 
Notes: Apparent refers to apparent performance for calibration; bias-corrected refers to optimism-corrected in internal validation; bootstrap=100.

Figure 2 Predictors selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) LASSO coefficient profiles of the 14 
texture features. A coefficient profile plot was produced against the log (λ) sequence. (B) Hyperparameter (λ) selection in the LASSO model used 10-fold cross-validation via 
minimum criteria. Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the 1 standard error of the minimum criteria (the 1-SE criteria).
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Figure 4 Decision-curve analysis. 
Notes: The horizontal lines (labeled “none”) refer to the expected net benefit without any treatment or intervention which indicates no benefits (net benefit>0) or harms 
(net benefit<0) from this strategy. The slanted vertical line (labeled “all”) refers to treatment or intervention provided for all patients. False positives are weighted more, and 
the net benefit becomes negative for providing treatment or intervention for all patients.

Figure 5 A clinical example of the application of the calculator 4-year risk of 60% based on the prognostic prediction model for a man, age 50, total cholesterol of 7 mmol/l, 
serum uric acid of 400 μmol/l, alanine transaminase of 30 U/L, body mass index (22.2 kg/m2).
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that the use of statistical analysis methods is appropriate to 
reduce potential bias. EPV in this study was above 100, so 
the sample size in our study was appropriate. Continuous 
predictors are examined for nonlinearity. For missing values, 
multiple imputations were used to avoid bias. Lasso regres-
sion and internal validation (bootstrapping techniques) were 
adopted to reduce model overfitting and optimism.

The lack of external validation is the major limitation 
of this study. Based on the TRIPOD guidelines, prediction 
models should be repeatedly validated to evaluate possible 
performance among different independent populations 
before recommending the application of a model in prac-
tice. Future studies are encouraged to conduct model 
external validation in an independent cohort. Moreover, 
although we identified 25 candidate predictors from the 
related systematic review, some of them in the current data 
are not available and the proportion of missing in some 
predictors is above 50%. These predictors were excluded 
in the final analysis, leading to residual confounding bias, 
while it is a potential source of bias in all observational 
research, especially in routinely collected data.33 

Prospective cohort studies are needed in the future.

Conclusions
This is the first study to develop a prognostic prediction 
model for 4-year risk of MetS in adults by following the 
TRIPOD statement. This prognostic prediction model aims 
to quantify absolute risks of MetS in adults, which include 
5 risk factors: age, TC, UA, ALT, and BMI. The identifi-
cation of individuals at high risk of MetS during a certain 
period of time could help clinicians and nurses to develop 
management and prevention strategies.
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