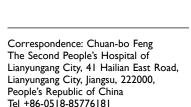
RETRACTED ARTICLE: LINC00894 Enhances the Progression of Breast Cancer by Sponging miR-429 to Regulate ZEBI Expression

De-feng Meng¹ Hua Shao² Chuan-bo Feng²

¹Department of Oncology Surgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, People's Republic of China; ²Department of Thyroid and Breast Surgery, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu, People's Republic of China **Purpose:** Long non-coding RNAs (lncRNAs) are flown to regulate up agenesis. Although breast cancer tissues show a high expression of *E. C00894* as specific biological role in breast cancer progression is still unknown. In this study, line of a microary was used to analyze the lncRNA expression in breast cancer tissue and *LINCO* and was selected for further analysis.

Materials and Methods: Expression of Lie C00894 in 4s, pairs of breast cancer tissues and normal tissues obtained from patients with breast cancer was assessed by quantitative reverse transcription-PCR, while premeration and invasion of breast cancer cells were assessed using a Cell Counting Kita (CCK-8), EdV assay, colony formation experiment, and transwell assays. A dual-lucit asse reporter gene assay and bioinformatics analysis were employed to detect potential orgets of LINC00894. Additionally, RNA Binding Protein Immunoprecipita (in CP) and western blot assays were utilized to clarify its interaction and roles in the regulation of the context cancer progression.

Results Wigh explanation of *LINC00894* was observed in breast cancer cells, and its over-expression's unificance expedited cell proliferation and invasion. Moreover, *LINC00894* attively replated the expression of *ZEB1* by competitively binding to miR-429.


Construction: Taken together, these results suggest that *LINC00894* competitively binds to miR-42 to mediate *ZEB1* expression; consequently, it is implicated to play a role in the progression of breast cancer.

ywords: lncRNA, ceRNA, proliferation, invasion, breast cancer

Introduction

Breast cancer is not only the most prevalent malignant tumor in females, but also one of the major causes of cancer-related deaths in females, worldwide. About 2.1 million newly diagnosed breast cancer cases were reported worldwide in 2018, accounting for almost 1 in 4 cancer cases among women. Early-stage breast cancer responds well to radiation, drug therapy, and surgical intervention. Nevertheless, there is a trend for breast cancer to metastasize in distal organs (eg, the brain, lungs, liver, and bones), and poor prognosis is observed in patients with distal metastasis. Despite progress in systemic chemotherapy, the median survival of patients with metastatic breast cancer is less than two years. Hence, more studies on effective strategies to diagnose breast cancer at an early stage, inhibit its metastasis and predict prognosis, and reduce mortality of breast cancer patients are needed.

Long non-coding RNAs (lncRNAs) are non-coding RNAs composed of over 200 base pairs. 5 Most of these lncRNAs have a poly A tail and are incapable of

Email amdoreducn@163.com

being translated into proteins unlike mRNAs.⁶ lncRNAs were identified earlier as "transcriptional noise" or "dark matter" without any biofunctions. However, many dynamically expressed lncRNAs have been identified in whole genome transcriptome analysis, and many of these lncRNAs participate in various biological activities, for example, lincRNA-RoR manages the reprogramming of human induced pluripotent stem cells.⁸ MYOSLID is a new lncRNA that depends on serum response factors and may amplify the differentiation of vascular smooth muscle cells. 9 lncRNA is a major regulatory factor in the progression of breast cancer. The TEAD4-regulated lncRNA, MNX1-AS1, partially enhances breast cancer progression by suppressing BTG2 and activating BCL2.¹⁰ Moreover, the lncRNA SOX2OT enhances breast cancer progression by sponging miR-194-5p and regulating AKT2.11 The breast juice lncRNA is utilized as a marker to screen breast cancer. 12 However, the exact role of LINC00894 in the progression of breast cancer is unclear. Therefore, in this study, lncRNA microarray was used to analyze the lncRNA expression in breast cancer tissues, and LINC00894 was selected for further analysis.

The results of our study verified that high levels of *LINC00894* were present in both breast cancer cells at tissues. Overexpressed *LINC00894* could accelerate breas cancer cell invasion and proliferation. In brief, *LLE00894* was confirmed to be involved in breast cancer progression through competitive binding to *miR-429* mediatoral mediatoral factor Zinc finger E-base binding to omeobox 1 (*ZEB1*) expression.

Materials and Methods

Clinical Tissue Smpla

cer tissue and normal tissues Forty-five pairs of breast were obtained om parents was bast cancer confirmed by the Second People's Hospital of pathologica tests a Each pan of breast cancer tissue and Lianyungang normal tissue was brained from the same patient. None of the patients had undergone preoperative chemotherapy or radiotherapy, and they provided informed consent. Immediately after removal, all the samples were frozen in liquid nitrogen to perform further experiments. The experiments were approved by the Ethics Committee of the Second People's Hospital of Lianyungang City. All populationrelated studies were performed based on the World Medical Association Declaration of Helsinki, and written informed consent forms were obtained from all the participants.

Cell Culture and Transfection

Breast cancer cell lines (CAL-51, MCF-7, BT-20, BT-549, and AU565) and human normal mammary epithelial cells (MCF 10A) were purchased from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China). Cells were cultured in Dulbecco's Modified Eagle's Medium supplemented with 10% fetal bovine serum (FBS, Beyotime, Nantong, China), 100 IU/mL penicillin, and 100 µg/mL streptomycin (Invitrogen, Carlsbad, CA, USA), and maintained at 37 °C under 5% CO₂. The overexpression plan LINC00894 LINC00894 siRNA, LINC00894 shRNA, pr. c-429 inh itors, and miR-429 mimics were construed by GelePharma (Shanghai, China). Cell cransfecti was conducted using Lipofectamine 000 (Introgen, arlsbad, CA, USA) according anufactuer's instructions. After 48-72 h culture, he conswere washed and transfected as re collecte or further experiments.

RNA Extraction and Quantitative Referse Transcriptase Polymerase Chain Readion (a. I-PCR)

The RNAIso Plus kit (Takara, Japan) was employed for the evidence of total RNA from MCF-7 and AU565 cells and PrimeScript RT-PCR kit (Takara, Japan) was used for everse transcription as per the manufacturers' instructions. Using a Fast Real-time PCR 7500 System (Applied Biosystems), qRT-PCR was conducted using SYBR-green PCR Master Mix in 10 mL reaction mixtures in triplicate. *GAPDH* or *U6* were used as internal controls. Primer sequences were designed as follows: *LINC00894* forward 5'- GCAGGGTCTCTTGAGTTCCT -3', reverse 5'-TTCCTCAAGCTTCTCCAGGG-3'; *miR-429* forward 5'-ACACTCCAGCTGGGTGCCAAAATGGTCTGT-3',

reverse 5'- CTCAACTGGTGTCGTGGAGTCGGC AATTCAGTTGAGATTATGAC-3'; *ZEB1* forward 5'-GCCAATAAGCAAACGATTCTG-3', reverse 5'- TTTGG CTGGATCACTTTCAAG-3'. The $2^{-\Delta Ct}$ method was utilized for calculating relative RNA levels.

Cell Proliferation

Cell Counting Kit-8 (CCK-8, Dojindo, Japan) was used to assess the viability of AU565 and MCF-7 cells as per the manufacturer's instructions within five days after seeding transfected cells in 96-well plates. A multifunctional microplate reader (Bio-Rad Laboratories, Hercules, CA,

3396 https://doi.org/10.2147/OTT.S277284 OncoTargets and Therapy 2021:14

USA) was employed to measure absorbance at 450 nm after 1 h of incubation.

For the EdU assay, cell culture was performed using the EdU reagent for 2 h, with 15 min of cell fixation in 4% paraformaldehyde, followed by EdU staining as per the manufacturer's protocol.

Colony Formation Assays

For the colony formation assay, 0.5×10^3 cells were inoculated into a 12-well plate and cultured for ten days. The original medium was replaced with fresh medium on the 5th day. Following incubation, PBS was used to rinse the cells, which were then immobilized with 4% paraformaldehyde for 5 min and stained with 0.1% crystal violet for 30 s. The experiment was performed thrice.

Transwell Cell Invasion Assay

After suspending cells at a density of 1.0 × 10⁵/mL in serum-free medium, a transwell chamber (Corning, NY, USA) precoated with Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) was placed in the 24-well plate. The apical chamber and basolateral chamber contained a 200 μL suspension of cells and 500 μL medium with 10% FBS, respectively. Forty-eight hours later, with the personal content of the penetrating cells were fixed in 5% paraformal dehyde and subsequently stained with 0.00 crystal violet for 20 min. A light microscope of lympu was utilized for imaging and counting as invariance cells in five randomly selected fields for the fin

Subcellular Distribution

RNA was extracted from cells at the cytoplasmic and nuclear levels using a PAPIS Kit (Life Technologies, USA), and the quantification of total RNA in each fraction was carried on using a CT-PCR internal references were U6 and GAPL I for the nucleus and cytoplasm, respect ely.

Dual-Luci rase Reporter Gene Assay

Mutant-type (ZES1 Mut, LINC00894 Mut) and wild-type plasmids (ZEB1 Wt, LINC00894 Wt) were constructed. After seeding HEK293T cells into 24-well plates, Lipofectamine 2000 was used to co-transfect 50 nM miR-429 mimics or negative control and wild- or mutant-type plasmids. Plasmid to vector (pRL-SV40) ratio was 80 ng:5 ng. A dual-luciferase reporter assay kit (Promega, Madison, WI, USA) was used to detect luciferase intensities.

RNA Immunoprecipitation (RIP) Assay

Magna Nuclear RIPTM Nuclear RNA-Binding Protein Immunoprecipitation Kit (Millipore, Bedford, MA, USA) was used for the RIP assay. Briefly, cell lysis was performed using a complete RIPA buffer and adding RNase inhibitor and protease inhibitor cocktails. After conjugating with human AGO2 antibody or IgG as control (Millipore, Bedford, MA, USA), cell extracts were obtained using RIP buffer containing magnetic beads. Next, protein digestion was carried out to obtain immunoprecipitated RNAs. Finally, purification in the SIP assay.

Western Potting

After extra fig and qualifying proteins using the BCA method he betein sample were separated using SDS-PAGE gel electrohoresis, proteins were transferred to rocellulose membranes, and the membranes were locked wit 5% defatted milk. Next, the membranes ere incubated with antibody against ZEB1 (ab203829, anghai, China) and GAPDH antibody (ab181602, Abcam, Shanghai, China) as primary antibodies and subsequently with corresponding secondary antibodies. Protein bands were visualized using chemiluminescence.

Construction of Tumor Models

Six BALB/c athymic nude mice (five-week-old) obtained from the National Laboratory Animal Center (Beijing, China) were subjected to seven days of acclimation before performing the assay. The North China University of Science and Technology approved all the animal experiments, which were performed following the National Institutes of Health (NIH) guidelines on animal welfare. For the construction of a breast cancer xenograft model, 4×10^6 AU565 cells stably transfected with sh-LINC00894 or sh-NC were injected into the dorsal right flank of each mouse. The tumor volume was measured with calipers at two major axes every 1 week and calculated as: $V = 0.5 \times L$ (length) $\times W^2$ (width). Four weeks later, the mice were anesthetized using 40 mg sodium pentobarbital and then sacrificed with 10% formalin perfusion of the central nervous system. 14 Death was confirmed when the heartbeat and breathing completely stopped as well as with the disappearance of the foot

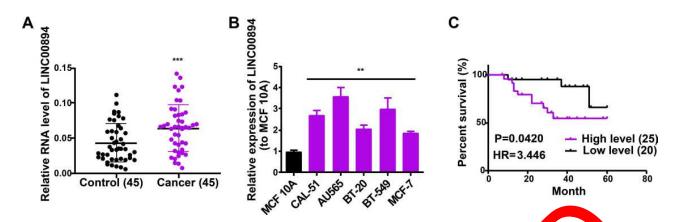


Figure 1 Characteristics and expression of *LINC00894* in breast cancer cells and tissues. (**A**) *LINC00894* expression in breast cancer cissues and pair normal tissue samples (n= 45) using qRT-PCR. (**B**) *LINC00894* expression in breast cancer cell lines (CAL-51, MCF-7, BT-20, BT-549, and AU565) and no pal mammary epit lial cells MCF 10A using qRT-PCR. (**C**) Kaplan-Meier analysis of overall survival of breast cancer patients stratified by *LINC00894* expression.

Notes: **P value < 0.01 and ***P value < 0.001.

withdrawal reflex. Tumor tissues were removed and weighed.

Lung Metastasis Assay

Briefly, 1×10^6 AU565 cells in 30 μ L of 30% Matrigel were injected intravenously through the tail vein of nude mice. After 4 weeks, nude mice were sacrificed, and metastatic nodules in each lung were analyzed.

Statistical Processing

All statistical analyses were conducted using GraniPad Prism 6.0 (GraphPad Software Inc., San Digo, CA and SPSS 20.0 (SPSS Inc., Chicago, IL SA data are reported as mean \pm SD. A inparametrizest was applied for non-normally distributed ta, and t-to conducted for the analysis of normally istributed data. Pearson's correlation coefficient was determed to assess associations among Li C0089 miR-429 and ZEB1. Log method ere used to assess rank test and Kaplan-Me survival rates contain the association of LINC00894 expression with clinecopathological features of breast cancer or analyzed by chi-squared test or Fisher's exact test. P<0.0. Indicated statistical differences.

Results

LINC00894 Expression in Breast Cancer

For identifying the correlation between lncRNAs and breast cancer, GSE119233 microarray was employed to analyze the expression profiles of lncRNAs from 20 breast cancer tissues and 10 adjacent normal tissues. ¹⁵ Collectively, the top 200 dysregulated lncRNAs, including 100 upregulated and 100 downregulated lncRNAs in breast cancer tissues,

and B). igh expression of were analyzed (Fig. in Last cancer tissues. observea expression LINC00894 in 45 pairs Moreover, the high of breast cancer tissue amples and breast cancer cell lines 31, MCF-7, BT-20, T-549, and AU565) was verified qRT-PCR eigure 1A and B). Particularly, among the cancer celllines used for subsequent experiments, wed the highest LINC00894 expression, eas MCF-7 cells exhibited the lowest expression. In attion, the survival rate of breast cancer patients with highly expressed LINC00894 was inferior to that of patients ith low LINC00894 expression (Figure 1C). The average expression level (0.064) of LINC00894 in breast cancer tissues was taken as the cut off value for high and low levels. Correlation between LINC00894 expression and clinicopathological parameters of breast cancer patients is shown in Table 1. We found that higher LINC00894 expression was associated with TNM stage (P < 0.05), but there was no association between the expression level of LINC00894 and molecular subtypes in breast cancer (P > 0.05).

LINC00894 Functions in Breast Cancer Cells

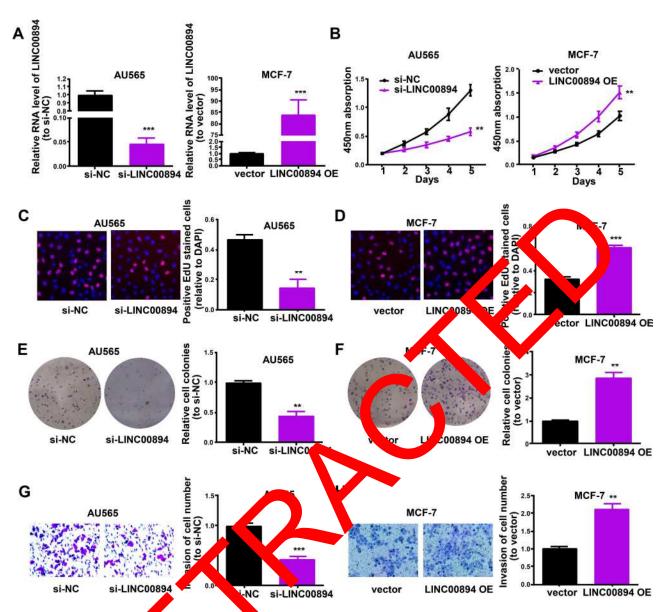
qRT-PCR was conducted to verify the transfection efficacy of the *LINC00894* overexpression vector and *LINC00894* siRNA in breast cancer cells (Figure 2A). Employing the CCK-8 assay, proliferation of breast cancer cells was observed to be remarkably reduced due to downregulation of *LINC00894* and accelerated by overexpression of *LINC00894* (Figure 2B); these results were similar to those obtained from the EdU assay and colony formation

Table I Patient Clinicopathologic Features

Clinicopathologic Features	Number of Cases	LINC00894 Expression		p value
		Low (n=20)	High (n=25)	
Age				0.5572
<40	25	10	15	
≥40	20	10	10	
Tumor size				0.0389*
TI	19	12	7	
T2-T4	26	8	18	
N stages				0.0010*
N0	21	15	6	
NI-3	24	5	19	
Metastasis				0.0169*
M0	22	14	8	
MI	23	6	17	
TNM stage				
1/11	15	12	3	0.0012*
III/IV	30	8	22	
ER status				0.5273
Negative	30	12	18	
Positive	15	8	7	
HER-2 status				0.2. 4
Negative	26	14	12	
Positive	19	6	1	Y
PR status				0.7600
Negative	18	7		
Positive	27	3		

Notes: Total data from 45 tumor tissure of bloom cancer patient, were analyzed. For the expression of LINC00894 was assayed by PCR, the average expression level was used as the cutoff. Day were analyzed by a squared test and Fisher's exact test. *P-value in bold in the ces statistically significant.

experiment (Fig. e 2005). Furthermore, the transwell assay recealed tolt invasic of breast cancer cells was enhanced by Avecot overexpression and decreased by LINCOOs (downregulation (Figure 2G and H). Taken together, our holings uncovered that LINCOOS94 might play regulatory roles in cell proliferation and invasion of breast cancer cells.


LINC00894 is Targeted by miR-429

Breast cancer cells were fractionated into cytoplasmic and nuclear fractions, with *GAPDH* and *U6* as the respective controls for verifying the cellular location of *LINC00894*. The results of qRT-PCR indicated the presence of

LINC00894 in the cytoplasmic fractions of AU565 and MCF-7 cells (Figure 3A). Hence, it can be concluded that LINC00894 is implicated in breast cancer progression by post-transcriptional regulation and that LINC00894 is a possible ceRNA in breast cancer progression. The expression of miR-429 was reduced in breast cancer cells as observed by qRT-PCR (Figure 3B). In addition, the expressions of miR-429 and LINC00894 were negatively related in breast cancer tissues (Figure 3C). Starbase prediction identified closely matched sequences in miR-429 to both Exon-5 and Exon-7 of 1894 (Figure 3D). pGL3-LINC00894 wild type Nt) and p 3-LINC00894 Mut were constructed based these binding sequences (Figure 3D). HEK2937 cells displayed significantly downregulated lucifera activities following co-transfection with miR-429 min nd LIN 00894 Wt. However, these activity remaine uncharged after the cells were co-trans cted ith miR-42 mimics and LINC00894 Mut (Figure 3E). RIP nalysis was conducted to determine LINC0094 participated ribonucleo otein complex with RNAs. Results indicated at LINC00 4 was more abundant in anti-AGO2 antiin controls, which was similar to miR-429 Sigure 3F). Therefore, it can be speculated that LINC00894 binds to miR-429.

ZEB1 is a Target of miR-429 Regulated by LINC00894

To explore the potential roles of miR-429 in breast cancer progression, screening for the target gene of miR-429 via bioinformatics prediction resulted in the discovery of ZEB1, which was used for subsequent analyses (Figure 4A). miRNA negative control (miR-NC) or miR-429 mimics were selected to co-transfect the constructed luciferase plasmids (ZEB1 Mut and ZEB1 Wt) in HEK293T cells. Luciferase activity of the Mut reporter+ miR-429 mimics was unchanged, while that of Wt reporter+ miR-429 mimics group was repressed (Figure 4B). ZEB1 served as a candidate target of miR-429 according to the above results. qRT-PCR revealed a significant enhancement in the RNA levels of ZEB1 in breast cancer tissues versus normal tissue samples (Figure 4C). Additionally, increased protein levels of ZEB1 were observed in breast cancer tissues by Western blot analysis (Figure 4D). Moreover, the expression levels of miR-429 and ZEB1 were negatively correlated (Figure 4E). However,

a positive correlation was observed between the expressions of ZEB1 and LNC00894 (Figure 4F).

To determine whether *LINC00894* regulates *ZEB1* expression by targeting miR-429, we measured *ZEB1* expression levels after adjusting the content of *LINC00894* and miR-429. The transfection efficacy of miR-429 inhibitor and miR-429 mimic is shown in Figure 5A. Subsequently, upregulated *ZEB1* expression was identified in AU565 cells following transfection with miR-429 inhibitor as indicated by both Western blotting and qRT-PCR. However, this effect

was reversed after co-transfection with *LINC00894* siRNA (Figure 5B). Additionally, inhibitory effects of *ZEB1* expression were detected after transfection with *miR-429* mimics in MCF-7 cells; these effects were reversed by co-transfection with the *LINC00894* overexpression plasmid (Figure 5C). Next, the *LINC00894* Wt overexpression plasmid and corresponding mutant overexpression plasmid were transfected in MCF-7 cells prior to determining *ZEB1* expression levels. As indicated by Western blotting and qRT-PCR, overexpression of wild-type *LINC00894* upregulated *ZEB1* expression,

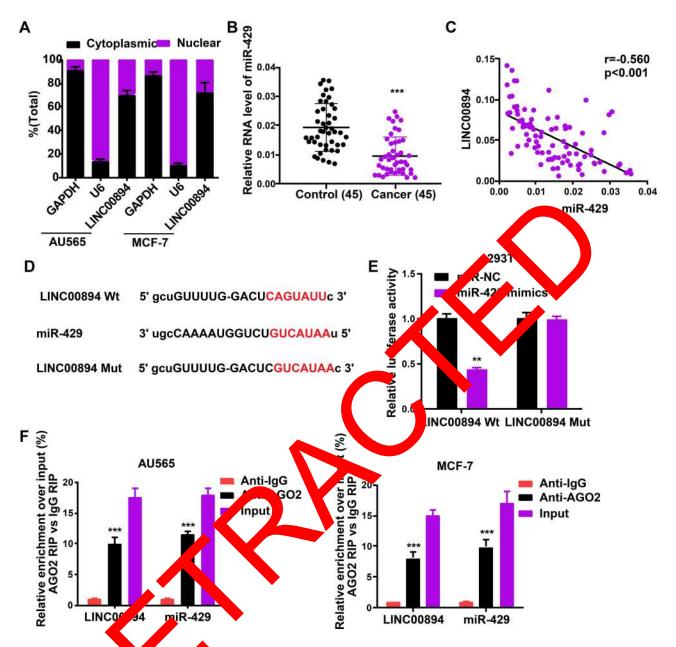
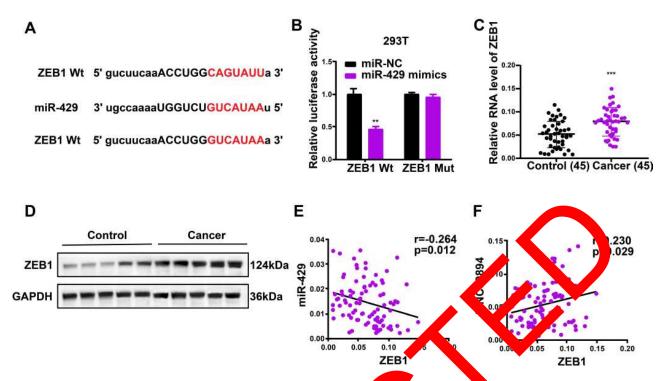


Figure 3 Direct interaction (C00894 with miR-429. (A) LINC00894 in AU565 and MCF-7 cells at cytoplasmic and nuclear levels using qRT-PCR. (B) MiR-429 expression in brundless and adjusted non-cancerous tissues. (C) Correlation analysis of LINC00894 and miR-429 expressions in breast cancer. (D) Binding sequences of C429 are LINC0089. (F) dal-luciferase reporter gene assay in HEK293T cells. (F) Amounts of LINC00894 and miR-429 in AU565 and MCF-7 cells in the RIP experiment.

Notes: * lue < 0.001.


Abbreviation, miRNA; NC, negative control; Wt, wild-type; Mut, mutant-type.

whereas mutant-type *LINC00894* did not (Figure 5D). In summary, *LINC00894* directly binds to miR-429 to generate positive regulatory effects on *ZEB1* expression.

LINC00894/miR-429 Axis Regulates the Behavior of Breast Cancer Cells

The present study determined whether miR-429 had an impact on the proliferation and invasion abilities of

AU565 and MCF-7 cells. The proliferation and invasion abilities were remarkably enhanced via downregulation of miR-429 in AU565 cells versus those of controls, which was partially reversed by *LINC00894* siRNA treatment (Figure 6A–D). In contrast, overexpression of miR-429 restrained the proliferative and invasive abilities of MCF-7 cells, and the overexpression was partially reversed by overexpressed *LINC00894* (Figure 6A–D).

dence. (B) Dual-luciferase porter gene assay. (C) Expression of ZEB1 in Figure 4 ZEB1 was directly targeted by miR-429. (A) Assumed miRNA binding sites in ZEB1 breast cancer and normal tissues. (D) Protein levels of ZEB1 in breast cancer tissues and nonncerous tissues using Western blotting. (E) Correlation analysis of ZEB1 and miR-429 expressions in breast cancer. (F) Correlation analysis of LINC00894 and ZEB1 expre on in breast can All the data represent three individual experiments and are shown as mean ± SD.

Notes: **P value < 0.01. ***P value < 0.001 Abbreviations: Wt, wild-type; Mut, mutant-type.

Downregulation of LINC00894 Inhibits Breast Cancer Tumor Growth Migration in vivo

A tumor formation assay revealed that tuning growth in vivo was suppressed by LP 200 4 downres ation and that AU565 cells transduced with h-LINC00894 grew at a slower rat after implantation in mice (Figure 7A). In addition the grage volume and weight sh-LI 00894 transduced of xenografts obtained n ose obtained from shcells were me kedly ower to and C). Images of pulmonary NC cells (igure) and their stained sections are shown metastatic tul in Figure 7D. In number of lung metastatic nodules was observed to be recreased in the LINC00894 shRNA group. As shown in Figure 7E and F, the results indicated that knockdown of LINC00894 increased miR-429 expression and decreased ZEB1 expression in pulmonary metastatic tumors. Taken together, the above findings indicated that LINC00894 shRNA inhibited the growth and migration of breast cancer tumors in vivo.

Jiscussion

Despite dramatic advances in cancer research, breast caner remains a major health problem worldwide. 16,17 lncRNAs are reported to function as regulatory factors in many cellular processes, 18 and dysregulation of lncRNAs is known to be associated with the development of diseases 19,20 such as Parkinson's disease, 21 pancreatic cancer, 22 and Alzheimer's disease. 23 Moreover, it was demonstrated that several lncRNAs, including lncRNA-ATB,²⁴ DSCAM-AS1,²⁵ and lncRNA BCAR4,²⁶ participated in the occurrence and progression of breast cancer. These studies suggested that lncRNAs may be crucial in the initiation and progression of breast cancer. Therefore, further investigation of the biofunctions and molecular mechanisms underlying the role of lncRNAs in breast cancer may facilitate the development of new target molecules for breast cancer treatment.

Therefore, an lncRNA microarray was performed to analyze lncRNA expression in breast cancer tissues, and LINC00894 was found to be highly expressed in breast cancer tissues. Subsequently, LINC00894 was shown to

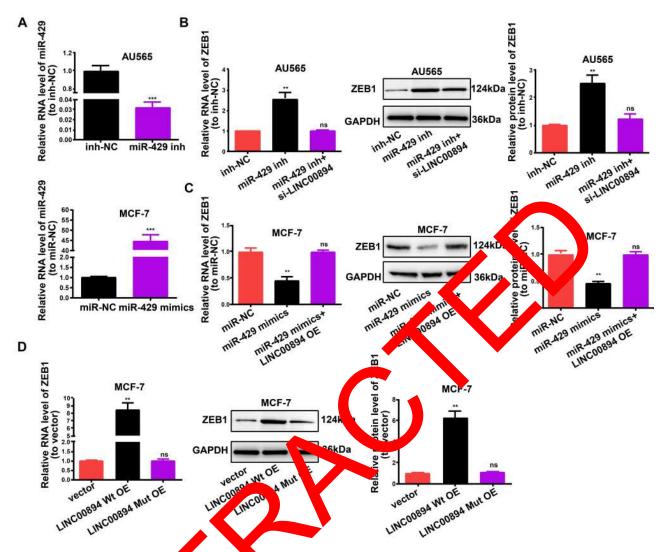


Figure 5 LINC00894/miR-429 axis is key to 181 expression. Transfection efficiency of miR-429 inhibitor and miR-429 mimics. (**B**) RNA and protein levels of ZEB1 in AU565 cells after transfection with miB 29 in tor ± LINC0083. RNA. (**C**) RNA and protein levels of ZEB1 in MCF-7 cells after transfection with miR-429 mimics ± LINC00894 OE plasmid. (**D**) RNA and protein levels of ZEB1 after transfection with LINC00894 Mut OE plasmid or LINC00894 wild type (Wt) OE plasmid. All the data represent three individual experiments and are shown mean ± SD.

Notes: ** P value < 0.01, *** alue < 0.001.

Abbreviations: ns, no sign cant differ the; Wt, wild-type; Mut, mutant-type; OE, overexpression; inh, inhibitor; NC, negative control; si, siRNA.

promote the profession and invasive capacities of AU56s and MC1. It calls using CCK-8, EdU, and transwell assays. The amor xenograft model and lung metastasis assay were unived to verify the effects of *LINC00894* on breast cancer. It was demonstrated that tumor growth and metastasis were suppressed by *LINC00894* knockdown in AU565 cells. Therefore, investigating the effects of *LINC00894* on the proliferation and invasion inhibition of breast cancer cells is important for further studies on the occurrence, progression and metastasis of breast cancer.

LncRNAs may bind to miRNAs and regulate their functions. 27,28 miRNAs (18–22 nucleotides) are a class

of non-coding RNAs, and various pathophysiological processes may be regulated by miRNAs, including inflammation and cancer. ^{29–31} miRNAs could negatively regulate the expression levels of other non-coding transcripts and protein coding genes, and are involved in the post-transcriptional modulation of several genes. ^{32,33} In our study, miR-429 bound to *LINC00894* and was expressed at low levels in breast cancer cell lines. Importantly, in cell function assays, proliferation and invasion abilities of breast cancer cells were limited by overexpressed miR-429; however, the effects of miR-429 mimics were partially reversed by *LINC00894* overexpression. Besides, miR-429 was

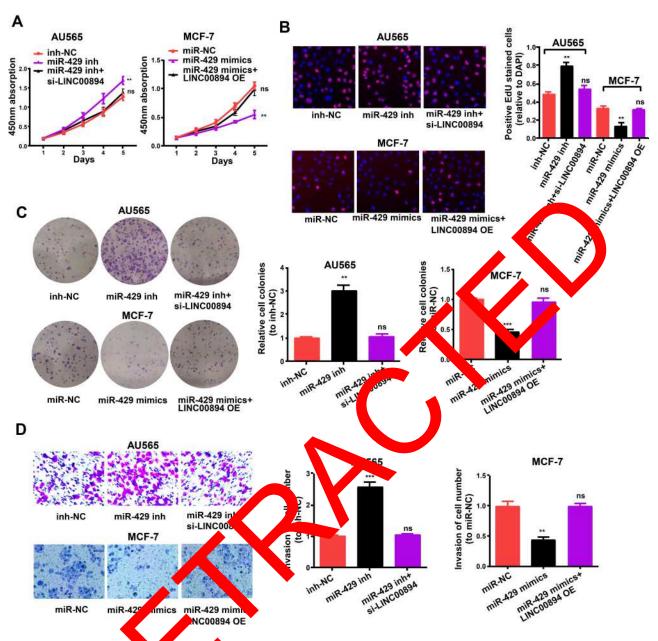


Figure 6 LINC00894/miR-429 axis to be assay. (B) Proliferative abilities of AU565 and MCF-7 cells in a CCK-8 assay. (B) Proliferative abilities of AU565 and MCF-7 cells in a CCK-8 assay. (B) Proliferative abilities of AU565 and MCF-7 cells in a colony formation experiment. (D) Invasion by cells following alteration of AU565 and MCF-7 cells in a colony formation experiments and are reported as mean ± SD.

Notes: **P value* 0.001, ***F alue* 0.001.

Abbreviations no significance; OE, overexpression; inh, inhibitor; NC, negative control; si, siRNA.

reported to inh. It the pathological processes of cancers. 34,35 For instance, miR-429 was shown to inhibit the invasion and migration of breast cancer cells. 36 Thus, *LINC00894* and miR-429 may contribute to the initiation and progression of breast cancer.

Next, we confirmed that ZEB1 was a downstream target of miR-429 and that LINC00894 adjusted the expression of ZEB1 by competitively binding miR-429. ZEB1, as an epithelial mesenchymal transition

(EMT) regulator, together with the EMT associated molecules such as SNAIL, SLUG, and TWIST, participates in multiple biological processes related to malignancy such as invasion and metastasis. 37,38 Besides, *ZEB1* is also closely related to hypoxia and chemoresistance of tumors. Meanwhile, it has been proven that *ZEB1* can promote the pathophysiological process of tumors, including that of breast cancer. 41–43

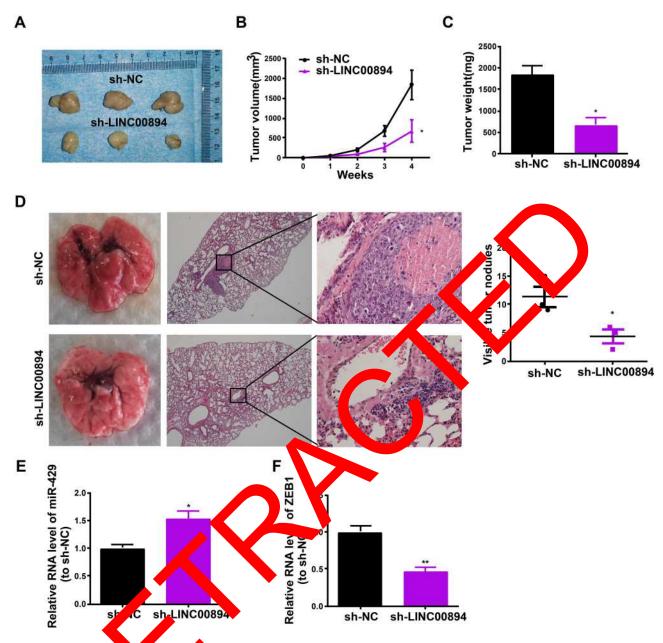


Figure 7 LINC00894 regulate test cancer in No. (A) Xenograft tumors (n=3 in each group). (B) Tumor volumes in both LINC00894 knockdown and control groups measured at one tervals. Tumor regists measured after tumor dissection. (D) Images of pulmonary metastatic tumors and their stained sections. (E, F) The expressions confined at 2E. For pulmonary metastatic tumors.

Notes: *P alue < 0.05 P value < 0. compared to sh-NC.

Abbrevia s: NC sh, shRNA.

Taken together, *LINC00894* is a competitive endogenous RNA that plays an important role in regulating the expression of *ZEB1* by sponging *miR-429* to regulate breast cancer progression.

Data Sharing Statement

The datasets used or analyzed in the current study are available upon reasonable request.

Author Contributions

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.

References

- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin*. 2018;68(6):394–424. doi:10.3322/caac.21492
- Chas M, Goupille C, Arbion F, et al. Low eicosapentaenoic acid and gamma-linolenic acid levels in breast adipose tissue are associated with inflammatory breast cancer. *Breast.* 2019;45:113–117. doi:10.1016/j.breast.2019.04.001
- Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China. Lancet Oncol. 2014;15(7):e279–e289. doi:10.1016/S1470-2045(13)70567-9
- Kim EY, Chang Y, Lee KH, et al. Serum concentration of thyroid hormones in abnormal and euthyroid ranges and breast cancer risk: a cohort study. *Int J Cancer*. 2019;145(12):3257–3266. doi:10.1002/ ijc.32283
- Wang X, Zhang X, Dang Y, et al. Long noncoding RNA HCP5 participates in premature ovarian insufficiency by transcriptionally regulating MSH5 and DNA damage repair via YB1. *Nucleic Acids Res.* 2020;48(8):4480–4491. doi:10.1093/nar/gkaa127
- Lecerf C, Le Bourhis X, Adriaenssens E. The long non-coding RNA H19: an active player with multiple facets to sustain the hallmarks of cancer. *Cell Mol Life Sci.* 2019;76(23):4673–4687. doi:10.1007/ s00018-019-03240-z
- Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193(3):651–669.
- Loewer S, Cabili MN, Guttman M, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripot stem cells. *Nat Genet*. 2010;42(12):1113–1117. doi:10.1038/ng.710
- Zhao J, Zhang W, Lin M, et al. MYOSLID is a novel serum response factor-dependent long noncoding RNA that amplifies a scular smooth muscle differentiation program. Arterioscial Thron Vasc Biol. 2016;36(10):2088–2099. doi:10.1161/ATVI. atA.116.3 879
- Shuai Y, Ma Z, Liu W, et al. TEAD4 in clated me. MNX1-AS1 contributes to gastric cancer of gression and through suppressing BTG2 and activating BCL2 fol Cancer. 200;19(1):6. doi:10.1186/s12943-019-1104-1
- 11. Qu F, Cao P. Long noncoding RNA SOX2O contributes to gastric cancer progression by spongic miR-194-5p fro AKT2. *Exp Cell Res*. 2018;369(2):187–196 pt;10.1016/j.yexcr.2018 5.017
- 13. Livak KJ, Schongen D. Anarois of native gene expression data using real-rate quantitive PCn and the 2(-Delta Delta C(T)) Method. A bods. 26 10:402–408. doi:10.1006/meth.2001.1262
- 14. Zhang DW, Zhu CR, wu DD. CircRNA hsa_circ_0070934 functions as a spetitive endogenous RNA to regulate HOXB7 expression by spoting miR12363p in cutaneous squamous cell carcinoma. *Int J Oncol*. 2020;57(2):478–487. doi:10.3892/ijo.2020.5066
- 15. Du C, Zhang JL, Wang Y, et al. The Long Non-coding RNA LINC01705 regulates the development of breast cancer by sponging miR-186-5p to Mediate TPR expression as a competitive endogenous RNA. Front Genet. 2020;11:779. doi:10.3389/fgene.2020.00779
- Anastasiadi Z, Lianos GD, Ignatiadou E, Harissis HV, Mitsis M. Breast cancer in young women: an overview. *Updates Surg*. 2017;69(3):313–317. doi:10.1007/s13304-017-0424-1
- Kolak A, Kaminska M, Sygit K, et al. Primary and secondary prevention of breast cancer. *Ann Agric Environ Med.* 2017;24 (4):549–553. doi:10.26444/aaem/75943

 Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62. doi:10.1038/nrg.2015.10

- Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. *Cell*. 2013;152(6):1298–1307. doi:10.1016/j.cell.2013.02.012
- Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. *Physiol Rev.* 2016;96(4):1297–1325. doi:10.1152/ physrev.00041.2015
- Majidinia M, Mihanfar A, Rahbarghazi R, Nourazarian A, Bagca B, Avci CB. The roles of non-coding RNAs in Parkinson's disease. *Mol Biol Rep.* 2016;43(11):1193–1204. doi:10.1007/s11033-016-4054-3
- 22. Duguang L, Jin H, Xiaowei Q, et al. The interpretation of lncRNAs in the development and progression of profession *Cancer Biol Ther.* 2017;18(12):927–936. doi:10.1001/j.15384047.201385682
- Wan P, Su W, Zhuo Y. The role of long oncoding RN is in neurodegenerative diseases. *Mole Neurobion* 2017;546 2012–2021. doi:10.1007/s12035-016-97 -6
- 24. Shi SJ, Wang LJ, Yu Li YH, In Y, Bar Z. LncRNA-ATB promotes trastuzumah rest uncer ad invasion-metastasis cascade in breast cancer. *Or charget*. 2 3:6(13):11 2–11663. doi:10.18632/oncotarget.345
- 25. Niknafs Y. Han S. Ma T, et al. Lee lncRNA landscape of breast cancer reveals a role in QSCAM-AS1 in breast cancer progression. *Nat. Inc.* 2016;7(1):n. Q1. doi:10.1038/ncomms12791
- 26. Yorg Z, Park PK, Lin C, Yang L. LncRNA BCAR4 wires up signaltransduction breast cancer. *RNA Biol.* 2015;12(7):681–689.
- 27. Fe Z, Chen Z, Huang N, Luo C. Long non-coding RNA ASM. 161 ahibits tumor growth and glycolysis by regulating he miR-93-3p/miR-660/FOXO1 axis in papillary thyroid are a. *Life Sci.* 2020;244:117298. doi:10.1016/j. lfs.2020.117298
- 28. Xia W, Liu Y, Cheng T, Xu T, Dong M, Hu X. Down-regulated IncRNA SBF2-AS1 inhibits tumorigenesis and progression of breast cancer by sponging microRNA-143 and repressing RRS1. *J Exp Clin Cancer Res.* 2020;39(1):18. doi:10.1186/s13046-020-1520-5
- Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK. miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. *Cancer Discov.* 2016;6(3):235–246. doi:10.1158/2159-8290.CD-15-0893
- Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. *Annu Rev Pathol*. 2014;9(1):287–314. doi:10.1146/annurev-pathol-012513-104715
- Haneklaus M, Gerlic M, O'Neill LA, Masters SL. miR-223: infection, inflammation and cancer. *J Intern Med*. 2013;274(3):215–226. doi:10.1111/joim.12099
- 32. Bartel DP. MicroRNAs: target recognition and regulatory functions. *Cell.* 2009;136(2):215–233. doi:10.1016/j.cell.2009.01.002
- 33. Pu M, Chen J, Tao Z, et al. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. *Cell Mol Life Sci.* 2019;76 (3):441–451. doi:10.1007/s00018-018-2940-7
- 34. Guo CM, Liu SQ, Sun MZ. miR-429 as biomarker for diagnosis, treatment and prognosis of cancers and its potential action mechanisms: a systematic literature review. *Neoplasma*. 2019;67 (2):215–228. doi:10.4149/neo_2019_190401N282
- 35. Wang Y, Yu XJ, Zhou W, Chu YX. MicroRNA-429 inhibits the proliferation and migration of esophageal squamous cell carcinoma cells by targeting RAB23 through the NF-kappaB pathway. Eur Rev Med Pharmacol Sci. 2020;24(3):1202–1210. doi:10.26355/eurrev 202002 20172
- 36. Ye ZB, Ma G, Zhao YH, et al. miR-429 inhibits migration and invasion of breast cancer cells in vitro. *Int J Oncol*. 2015;46 (2):531–538. doi:10.3892/ijo.2014.2759

3406 https://doi.org/10.2147/OTT.S277284

- Dave N, Guaita-Esteruelas S, Gutarra S, et al. Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. *J Biol Chem.* 2011;286 (14):12024–12032. doi:10.1074/jbc.M110.168625
- 38. Wels C, Joshi S, Koefinger P, Bergler H, Schaider H. Transcriptional activation of ZEB1 by Slug leads to cooperative regulation of the epithelial-mesenchymal transition-like phenotype in melanoma. *J Invest Dermatol.* 2011;131(9):1877–1885. doi:10.1038/jid.2011.142
- Shi K, Sun H, Zhang H, Xie D, Yu B. miR-34a-5p aggravates hypoxia-induced apoptosis by targeting ZEB1 in cardiomyocytes. *Biol Chem.* 2019;400(2):227–236. doi:10.1515/hsz-2018-0195
- Zheng G, Peng C, Jia X, et al. ZEB1 transcriptionally regulated carbonic anhydrase 9 mediates the chemoresistance of tongue cancer via maintaining intracellular pH. *Mol Cancer*. 2015;14(1):84. doi:10.1186/s12943-015-0357-6

- 41. Xiao YY, Lin L, Li YH, et al. ZEB1 promotes invasion and metastasis of endometrial cancer by interacting with HDGF and inducing its transcription. Am J Cancer Res. 2019;9(11):2314–2330.
- Cui Y, Qin L, Tian D, et al. ZEB1 promotes chemoresistance to cisplatin in ovarian cancer cells by suppressing SLC3A2. Chemotherapy. 2018;63(5):262–271. doi:10.1159/000493864
- 43. Wu HT, Zhong HT, Li GW, et al. Oncogenic functions of the EMT-related transcription factor ZEB1 in breast cancer. J Transl Med. 2020;18(1):51. doi:10.1186/s12967-020-02240-z

OncoTargets and Therapy

Publish your work in this journal

OncoTargets and Therapy is an international, peer-reviewed, open access journal focusing on the pathological basis of all cancers, potential targets for therapy and treatment protocols employed to improve the management of cancer patients. The journal also focuses on the impact of management programs and new therapeutic

agents and protocols on patient perspectives such as quality of life, adherence and satisfaction. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

 $\textbf{Submit your manuscript here:} \ \texttt{https://www.dovepress.com/oncotargets-and-therapy-journal}$

