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Abstract: The blood-brain barrier (BBB) is an essential structure of the central nervous 
system (CNS), and its existence makes the local internal environment of the CNS a relatively 
independent structure distinct from other internal environments of the human body to ensure 
normal physiological and high stability of activities of the CNS. Changes in BBB structure 
and function are fundamental to the pathophysiology of many diseases. The occurrence and 
development of glioma are often accompanied by a series of changes in the structure and 
function of the internal environment, the most significant of which is remodelling of the 
BBB. The remodelling of the BBB usually leads to changes in the permeability of local 
microvessels, which provide certain favourable conditions for the occurrence and develop-
ment of glioma. Meanwhile, the newly generated abnormal blood vessels and the remaining 
intact regions of the BBB also hinder the effects of drug treatments. Changes in permeability 
and structural function often lead to the creation of abnormally functioning vascular regions, 
which pose further treatment challenges. At present, therapeutic methods for glioma have not 
achieved satisfactory effects in clinical practice, and emerging therapeutic methods have not 
yet been widely used in clinical practice. In this review, we summarize the knowledge of 
remodelling of the BBB in the glioma environment, the type of changes that occur, and 
current BBB treatment methods and prospects for the treatment of glioma. 
Keywords: blood-brain barrier, glioma, blood-brain barrier-associated therapy, remodelling, 
structural and functional changes

Introduction
In 1885, Paul Ehrlich performed a series of innovative experiments using intrave-
nous injection of aniline dye in experimental animals, which ultimately led to the 
discovery of the blood-brain barrier (BBB).1 For more than 100 years, our under-
standing of the BBB has continued to become more profound.

The BBB is composed of the continuous capillary endothelium and tight junc-
tions (TJs) between the cells, the intact basement membrane, the pericytes, the 
microglia, and the glial membrane surrounded by astrocytes.2 The normal BBB 
structures is shown in Figure 1.

Endothelial cells overlap each other and are tightly connected, effectively 
preventing macromolecular substances from passing through the junction of 
endothelial cells.3 A continuous basement membrane also surrounds these endothe-
lial cells. On the basement membrane’s outer surface are many astrocytes with 
a perivascular foot (final foot) that surrounds approximately 85% of the brain 
capillaries’ surface and provides connections to neurons.4 The basal lamina, the 
abluminal surface of the endothelium, consists of cell type IV collagen, fibronectin, 
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heparin sulphate, and laminin, which form the molecular 
and charge barrier.5–7 Compared to endothelial cells in 
different tissues, endothelial cells of the BBB are unique 
because they have continuous TJs, a lack of fenestrations, 
and a meagre extracellular endocytosis rate, which signifi-
cantly restricts the movement of molecules through the 
endothelial cell layer.4,8.

TJs are multiprotein junctional complexes whose func-
tion is to prevent leakage and seal the paracellular path-
way. TJs are multifunctional, ranging from forming 
selective and tightly regulated barriers to acting as bidir-
ectional signalling hubs to coordinate junction assembly 
and cell polarization, as well as regulate gene expression 
and cell proliferation.3 The low permeability of endothelial 
cells means that many specific transporters are needed to 
supply various compounds to the brain.9 TJ-associated 
signalling mechanisms are now firmly linked to the reg-
ulation of cell proliferation, polarization, and 
differentiation.

Astrocytes play an essential role in maintaining the 
integrity of endothelial cell barrier functions. Astrocytes 
form a multilayered membrane structure of brain capillaries, 
which constitutes a protective barrier for brain tissue.10 

Pericytes cover the outer surface of endothelial cells, pro-
moting BBB integrity and inducing barrier properties.11

BBB characteristics make it difficult for neurotoxic 
substances, such as viruses, inflammatory factors, and 
heavy metals, to enter and accumulate in brain tissue, 
which is of considerable significance for maintaining the 
normal physiological function of the CNS.

How Does Glioma Remodel the 
Blood-Brain Barrier?
Structural and Functional Changes
The effects of glioma cells on the BBB include direct 
effects on the local BBB and indirect impacts on the 
distant BBB through secretion of various substances. 
These effects result in local structural and functional 
changes, which are described below.

Structural Changes Associated with Astrocytes
As a highly invasive tumour, glioma usually metastasizes 
along pre-existing brain structures, such as nerve tracts, 
blood vessels, meninges, and white matter tracks.12–14 The 
changes in blood vessels in glioma include changes in exist-
ing blood vessels and the promotion of angiogenesis. 
Glioma cells attach to blood vessels through bradykinin, 
produced by vascular endothelial cells, which acts as 
a chemotactic signalling peptide.15 Prior to angiogenesis, 
glioma tends to encase the outside of the original blood 
vessels by invasion and parasitism, invading the surrounding 
space.16,17 This invasive behaviour blocks the connection 
between astrocyte end feet and endothelial cells, which leads 
to breakdown of the BBB.12 Astrocyte end feet and pericytes 
work together to release large amounts of vasoactive mole-
cules from the junction end to endothelial cells, which 
regulate vascular tension and help maintain expression of 
TJ proteins, transporters, and enzymes by releasing soluble 
factors and maintaining mutual contact.4,18–20 However, in 
response to glioma-induced displacement, these functions 
are disrupted, while astrocytes alter their phenotype.12 At 

Figure 1 The normal BBB.
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the same time, glioma cells can physically move the astro-
cytic end feet away from the basement membrane of 
endothelial cells and into the abluminal side of vessels, 
which also prevents vasoactive substances from reaching 
endothelial cells.12 These changes usually cause degradation 
of the basement membrane and loss of TJs, leading to serum 
leakage into the parenchyma.14

As the glioma grows, glioma cells migrate along the 
blood vessels and compress and destabilize the vessels, 
resulting in vascular degeneration and reduced perfusion. 
Moreover, these actions can lead to hypoxia and necrosis. 
Hypoxia and mutations in glioma cells upregulate the secre-
tion of growth factors, such as vascular endothelial growth 
factor (VEGF), basic fibroblast growth factor (BFGF), inter-
leukin 8 (IL8), and stromal cell-derived factor-1 (SDF1), 

which generate new blood vessels through angiogenesis.21 

However, increased expression often leads to abnormal 
angiogenesis and dysfunctional blood vessels, which creates 
an adverse microenvironment (reduced oxygen partial pres-
sure and increased interstitial fluid pressure), leading to 
a malignant phenotype and increased morbidity and 
mortality.22,23 Meanwhile, hypoxia-induced transcription fac-
tors recruit activated pericytes to glucose uptake sites from 
afar.23 These structural changes are depicted in Figure 2.

Interestingly, in tumour cells adjacent to blood vessels, 
intercellular connections and the basal lamina remain. 
Studies have demonstrated that in the case of U87 cell 
transplantation, glioma cells can remove the end feet of 
astrocytes. However, multiple interactions were observed 
in glioma stem-like cell (GSC) transplantation from 

Figure 2 Structural changes in BBB.
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patient samples, and the BBB maintained its integrity. This 
condition may be related to the molecules carried by 
serum in different media.24

Cytoskeleton and Tight Junctions
Several studies have demonstrated a close relationship 
between decreased glial fibrillary acidic protein (GFAP) 
and s-100 expression in BBB TJs caused by hypoxia/ 
ischaemia and increased BBB vascular permeability.25 

GFAP is an acidic protein and the primary cytoskeletal 
protein of glial cells. S-100 is an acidic calcium-binding 
protein primarily found in astrocytes in various parts of the 
central nervous system. It is generally acknowledged that 
when central nervous system cells are damaged, s-100 
protein is extruded into the cerebrospinal fluid from the 
cell fluid and then enters the blood through the 
damaged BBB.

TJ structure is primarily composed of transmembrane 
proteins, such as occludins, claudins, and junctional adhe-
sion molecules (JAMs), as well as peripheral proteins, 
such as zonula occludens (ZO). On the one hand, the 
structure of this functional barrier mediated formed by 
complex compounds restricts the diffusion and transport 
of ions, water, and other solutes in the paracellular space. 
On the other hand, it limits the random diffusion of mem-
brane proteins and lipids on the top and basal sides of the 
plasma membrane, maintains cell polarity, and acts as 
a fence.26,27

In the extracellular loop (EL), occludins form dimers 
with adjacent cells and build TJs in the intercellular space. 
Occludins participate in endothelial cell differentiation and 
signal transduction. Upregulation of VEGF expression due 
to hypoxia and necrosis can activate the protein kinase 
C (PKC) signalling pathway, leading to phosphorylation 
of occludins and affecting endothelial cell permeability,28 

which destroys the local structure of the BBB.
Claudins play an important role in maintaining BBB 

structure and functional stability. Meanwhile, claudins are 
considered the main TJ transmembrane proteins in the 
BBB and are an essential component in the formation of 
ultrastructures that determine the characteristics of TJs. 
Abnormal expression of claudins is associated with var-
ious CNS diseases, such as brain tumours and Alzheimer’s 
disease. Claudin-5 is a cytoskeletal protein that makes up 
the TJs between endothelial cells. Pathologically, claudin- 
5 can be degraded by matrix metalloproteinase-9 (MMP- 
9), leading to increased BBB permeability, mainly to small 
molecular substances.29,30 Guo et al found that lncRNA 

NEAT1 is associated with miR-181d-5p/SOX5 pathway 
regulation, leading to increased permeability of the BBB 
by reducing TJ protein (ZO-1, occludin, claudin-5) 
expression.31 Similarly, miR-34c and miR-18a were 
reported to have the same functions.32,33

The relationship between junctional adhesion mole-
cules and BBB remodelling in glioma conditions is not 
clearly understood.

ZO includes three subtypes: ZO-1, ZO-2, and ZO-3. 
The ZO-1 protein contains multiple functional domains 
and performs its corresponding physiological functions 
by combining with different proteins.34 For example, over-
expression of endophilin-1 inhibits ZO-1 and enhances 
cell bypass permeability through the epidermal growth 
factor receptor (EGFR)-ERK1/2 and EGFR-JNK 
pathways.35,36

The direct effect of glioma cells on the BBB can 
significantly reduce expression levels of ZO-1 in 
ECV304 cells. In contrast, the indirect impact had no 
significant effect on expression levels of ZO-1 in 
ECV304 cells. This suggests that expression levels of 
ZO-1 are a crucial molecular mediator for the impact of 
glioma cells on TJs of the BBB.12,37–39 Decreased or 
absent expression of ZO-1 leads to loss and even decom-
position of the TJs that ultimately affects the functional 
integrity of the BBB, which is the cause of peritumour 
oedema. Lin et al found that miR-424-5p may affect TJ 
proteins (ZO-1 and occludin) through endorphin-1, regu-
lating BBB permeability in a BBB model of endothelial 
cells incubated with Abeta in vitro.40 The increased micro-
vascular permeability in human glioma results in severe 
clinical cerebral oedema due to the imbalance in junctional 
proteins.41

Extracellular Matrix
The extracellular matrix in the tumour microenvironment, 
including collagen IV, fibronectin, heparin sulphate, and 
laminin, plays a vital role in glioma invasion and progres-
sion. Gliomas often exhibit necrotic areas. As a result, 
hyaluronic acid in the extracellular matrix can activate 
the white blood cell toll-like receptors (TLR) pathway, 
secrete tumor necrosis factor (TNF) and transforming 
growth factor-β (TGF-β) and regulate matrix metallopro-
teinase (MMP) expression and chemokines, thereby acti-
vating the immune system and remodelling the 
extracellular matrix.42 Laminin is a noncollagen sugar 
that stabilizes the vasculature and keeps T lymphocytes 
out of the brain through integrin α6β1 to maintain CNS 
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stability and contribute to endothelial junctional 
tightness.43,44 Savettieri et al reported that collagen IV 
can increase endothelial cell TJ claudins mRNA 
expression.45 In laminin gene knockout mice, platelet- 
derived growth factor receptor-β (PDGFR-β) and contrac-
tile protein expression in pericytes were upregulated, the 
basal membrane of pericytes was fragmented and dis-
persed, the fluorescence intensity of Evans blue staining 
in the brain parenchyma was higher than in the control 
group, and expression of transporters AQP4, ligandin, 
occludin, and claudin-5 was downregulated.46 

Meanwhile, glutamate concentration was increased in the 
extracellular fluid of the BBB basal surface, and excessive 
glutamate release enhances vascular permeability.47,48

Transendothelial Electrical Resistance and the 
Endothelial Barrier
Previous studies have shown that the permeability of 
endothelial cells is related to their transmembrane resis-
tance. Astrocytes induce endothelial cells to form TJs and 
produce higher transendothelial electrical resistance 
(TEER).28 These TEER values can be increased by the 
extent of the parietal endothelial disruption. Meanwhile, 
changes in TJ proteins can also alter TEER values.

However, in response to the formation and action of 
glioma, TEER can be significantly reduced because TJs 
between endothelial cells become compromised, and resi-
dual TJs can occasionally be seen in some areas.49

Mendes et al found that during the coculture of glioma 
cell lines and endothelial cells, decreased expression of 
claudin-5, occludin, and vascular endothelial cadherin 
(VE-cadherin, CD144) markers was observed by immuno-
fluorescence, leading to the destruction of tight connec-
tions. Meanwhile, a decrease in the paracellular values of 
TEER was also observed.49

Cellular and Molecular Changes
Pericytes
Pericytes express a variety of TJ proteins and 
transporters.50 Pericytes and endothelial cells secrete 
TGF-β1 through the PDGF/PDGF-β pathway to inhibit 
vascular cell migration, maintaining BBB integrity. 
Pericytes maintain vascular integrity by negatively regu-
lating fibrinolysis of endothelial cells, regulating BBB- 
specific gene expression pattern in endothelial cells, and 
inducing polarization of astrocyte end-feet surrounding 
CNS blood vessels.51–53 In PDGF knockout mice with 
pericyte dysfunction, the permeability of the BBB to 

water and small molecular weight tracers was significantly 
increased.53,54 Furthermore, expression of the TJ proteins 
ZO-1 and occludin in PDGF-β transgenic mice was 
downregulated.55 The proliferation of pericytes and the 
distribution of tumour vessels are associated with Notch 
signalling. The absence or mutation of Notch3 inhibits the 
expansion of pericytes, leading to decreased BBB 
integrity.56

Tissue damage and the multimodal function of peri-
cytes may be related to glioma proliferation, resulting in 
activation or damage. When gliomas proliferate and 
invade, the vascular supply and the expression of growth 
factors required by cells are increased. Therefore, peri-
cytes are highly expressed in proliferating tissues with 
oedema and inflammation, which characterizes the glioma 
microenvironment.57 Under hypoxic conditions, pericytes 
maintain mitochondrial activity, thus maintaining the 
integrity of TJs.58 However, in the case of chronic disease, 
the damage or loss of pericytes caused by hypoxia and 
hypoperfusion leads to a reduction in BBB integrity and 
vascular stability.59 Amyloid beta (Aβ) deposition can lead 
to the loss of pericytes under the same conditions. 
Interestingly, it was reported that pericyte-associated neu-
rotrophic factors can increase the expression of claudin-5 
in cerebral microvascular endothelial cells and TEER level 
of cerebral microvascular endothelial cells, enhancing the 
barrier function of the BBB.60

Glioma-associated mesenchymal stem cells (gaMSCs) 
have been proven to transform into pericytes under certain 
conditions.61,62 These findings may present new opportu-
nities for treatment strategies. However, many functions of 
gaMSCs remain to be understood.

Water Channels and Aquaporins
Aquaporins (AQPs) belong to the water channel family, 
some of which are also involved in transporting other 
small molecules, such as glycerol and urea. At the same 
time, their expression and localization often affect glioma 
metastasis and angiogenic oedema. Studies have shown 
that aquaporins are involved in many aspects of glioma 
pathogenesis, such as promoting the movement and inva-
sion of glioma cells under hypoxia, promoting the forma-
tion of oedema, and improving the metabolism of glioma 
cells during glycolysis.63

Aquaporin 4 (AQP4) is the main water channel in the 
brain and is expressed in various CNS structures.64 It is 
primarily an astrocyte membrane protein that is localized 
at the end of astrocytes and points to microvessels. At the 
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same time, the AQP4 molecule helps to form orthogonal 
arrays of particles (OAPs), which serve as a critical func-
tional component of the BBB.

Expression of AQP4 in glioma is impaired, and its 
arrangement is disordered, leading to obstruction of the 
transmembrane transport function of water molecules.64 

Astrocyte podocytes induce the formation of TJs of the 
BBB and highly express AQP4.65 The disturbed MMP3/ 
TIMP-1 balance in glioblastoma may be one reason for the 
increased agrin degradation. The reduction in agrin was 
accompanied by the redistribution of AQP4 across the 
surface of glioma cells.9 The loss of agrin and AQP4 
leads to loss of cellular polarity and consecutive oedema 
formation.66,67 Zhou et al found that brain microvessel 
ultrastructure in mice without AQP4 is often altered, 
including open TJs and astrocyte swelling around blood 
vessels, hyperpermeability of the BBB, and glial fibrillary 
acidic protein (GFAP) immunoreactivity.68

Interestingly, Saadoun et al found that the absence of 
AQP4 in mice did not alter the integrity of the BBB or 
brain morphology,69 while Zhang et al observed increased 
capillary density and decreased water exchange in the 
BBB in AQP4-KO mice.70 Further research is needed to 
confirm these findings.

Caveolin
Caveolin-1 is a significant membrane intrinsic protein in 
caveolae on the cell surface that plays a specific role in 
maintaining caveolae integrity, cell transport, and signal 
transmission. Caveolin-1 contributes to tumour angiogen-
esis, growth, and metastasis. In glioma, caveolin-1 over-
expression induces reduced proliferation, clonogenicity, 
and migration.71 Caveolin-1 can also induce increased 
BBB permeability. Furthermore, there appears to be het-
erogeneity in caveolin-1 expression among glioma cells, 
suggesting that caveolin-1-positive and caveolin-1-nega-
tive cells coexist in glioma.72 In astrocytes, caveolin-1 
binds to multidrug resistance protein-1 (MDR1), also 
called p-glycoprotein 1 (P-GP), which is a transporter 
involved in the function of the BBB.73

Vascular Endothelial Growth Factor (VEGF)
Progressive growth of tumour tissue is accompanied by 
increased VEGF expression, indicating the formation of 
new blood vessels. Changes in VEGF expression asso-
ciated with the permeability of the BBB may cause stellate 
cells to produce a large number of factors that are harmful 
to the BBB, leading to increased permeability of the BBB 

and induction of brain oedema in the process of micro-
vascular leakage. Many bioactive cytokines play a role in 
this process, and increased expression of VEGF is one of 
the primary factors.74 Due to a lack of normal anatomy of 
the new vascular tissue, BBB permeability increases. 
Other changes related to VEGF are described above. 
These changes are illustrated in Figures 2 and 3.

Radiological Changes
In areas where the BBB has been physically destroyed, 
hydrophilic contrast agent molecules disperse out of the 
vascular cavity and gather in the extracellular space out-
side the blood vessels. Almost all T1-weighted (T1W) 
sequences of glioblastoma (GBM) show a high-intensity 
region of enhanced contrast.75 However, MR and PET 
imaging demonstrate that most GBMs have an intact 
BBB that extends beyond the contrast-enhancing tumour 
volume.76 This result indicates that the BBB in GBM is 
not entirely destroyed, and all GBMs have some areas of 
intact BBB.76

The Effect of Remodelled BBB on 
Glioma
Destruction of the BBB leads to molecular extravasation 
of the serum, which results in apparent cerebral oedema, 
nodular tumour growth, satellite nodules, and tumour 
invasion.

Changes in the BBB are independent of the size, type, 
and anatomical location of the glioma.11 Compared to low- 
grade glioma, high-grade glioma was significantly differ-
ent, with low-grade glioma exhibiting no distinct 
changes.77 Meanwhile, a single invading tumour cell that 
removes the astrocyte tip from the endothelial cell is 
enough to cause a local rupture of the BBB.12

Initially, when the BBB function is damaged, the most 
common result is vasogenic brain oedema, which is caused 
by many large molecular weight substances in the plasma 
entering the extracellular fluid of brain tissue so that the 
water passively diffuses into the brain tissue gap through 
the BBB to cause brain oedema.

Furthermore, when glioma cells act on the BBB, vas-
cular endothelial cells proliferate abnormally, promoting 
tumour neovascularization, which may further accelerate 
the occurrence and development of glioma.

Finally, changes in the BBB may prevent effective 
treatment by glioma drugs. Due to the varying degree of 
damage to the BBB in different regions, factors such as the 
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dosage, administration method, and specificity of drugs 
should be carefully considered. Therefore, these changes 
convey some difficulties in postoperative clinical 
treatment.

Treatments with Respect to the 
Blood-Brain Barrier
The invasive and aggressive nature of glioma makes com-
plete surgical removal impossible, while the BBB prevents 
most treatments from reaching the remaining tumour cells. 
Therefore, metastatic and residual tumour cells need to be 
treated with therapies that penetrate the BBB. The physio-
logical protection provided by the BBB makes the delivery 
of drugs to the brain challenging, which affects the central 
nervous system. The most common way to ensure that 
drugs pass the BBB is to use existing channels or to create 
a new pathway.

See Figure 4 for the schematic diagram of the overall 
treatment, and figure legend for details.

Associations of Tight Junctions and 
Therapeutic Methods
Hypertonic Solutions and Bradykinin
Hypertonic solutions can destroy the BBB instantaneously, 
leading to contraction of endothelial cells, widening the 
gap between TJ proteins, and promoting diffusion of drug 
molecules into the brain.78 Ma et al found that Krüppel- 
like factor 4 (KLF4) regulates the permeability of the 
blood-brain tumour barrier (BTB) by regulating the 
expression of the tightly bound and related proteins ZO- 
1, occludin, and claudin-5 and may be a key transcrip-
tional regulator of BTB function.79 The BTB is similar to 
the BBB and is located between glioma cells and micro-
vessels formed by highly specialized endothelial cells. In 
vivo, animal studies have shown that vasoactive sub-
stances, such as bradykinin, histamine, bradykinin analo-
gues, and RMP-7, stimulate B2 receptors on endothelial 
cells, instantly increasing the intracellular Ca2+ concentra-
tion, activating nitric oxide synthase, and increasing nitric 

Figure 3 Cellular and molecular changes.
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oxide concentration, thereby dilating blood vessels and 
opening TJs.80,81 However, the infusion of hypertonic 
solutions, such as mannitol, is not widely used in clinical 
practice as it constitutes an invasive treatment that requires 
close coordination. Other methods of bradykinin modify-
ing TJs have not been clinically proven to be effective.

Adenosine Receptors
Adenosine receptors (ARs) have four different subtypes, 
A1, A2A, A2B, and A3.82 Human endothelial cells are 
capable of producing and responding to adenosine. 
Moreover, activated A2A AR effectively increases the 
permeability of the BBB in vitro in a reversible manner, 
which is essential for patient safety.83 Thus, adenosine can 

be used to improve BBB permeability by activating A2A 
AR to decrease the expression of VE-cadherin and clau-
din-5. Additionally, adhesion points between endothelial 
cells and their extracellular matrix were decreased, RhoA 
activity was increased, and actin stress fibres formed.84 

These studies suggest that regulation of the BBB by AR 
signalling may be a feasible strategy for the delivery of 
therapeutic drugs to glioma, with fewer side effects. 
However, this method has not entered the clinic. 
Nevertheless, clinical evaluation is expected.

Angiotensin-(1-7)
Angiotensin-(1-7) is a bioactive fragment of the renin- 
angiotensin system (RAS). Studies have shown that Ang- 

Figure 4 Treatments based on BBB (A) The process of ultrasonic treatment. (B) The process of nanoparticle carrier delivery system and transporter system. (C) The 
process of bradykinin, hypertonic solution, VEGF and angiotensin-(1-7). (D) The process of short-term destruction and adenosine.
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(1-7) might reduce the destruction of the BBB in a glioma 
model in rats by activating expression of TJ proteins in 
endothelial cells through downregulating MMP-9.85 

Meanwhile, the c-Jun N-terminal kinase (JNK) pathway 
is involved in the mediating effect of Ang-(1-7). 
SP600125 is an inhibitor of the JNK pathway that can 
significantly enhance the expression of claudin-5 and 
ZO-1 and reduce JNK pathway interference with claudin- 
5 and ZO-1. Therefore, Ang-(1-7) might be a therapeutic 
target due to its ability to affect BBB permeability, tumour 
growth, and oedema formation.86

Short-Term Destruction Method
Using drugs to destroy glioma stem cell-derived pericytes 
in a short time, the reduction of TJ proteins and the 
destruction of TJ structures on glioma vessels can increase 
vascular permeability without affecting tumour vascular 
density, promoting the delivery of chemotherapy drugs.87 

Alvarez et al applied the Smoothened inhibitor cyclopa-
mine to disrupt TJs in the brains of normal rats, demon-
strating that the in-depth study and utilization of signalling 
pathways that maintain the stability and integrity of the 
BBB may represent several methods and pathways that 
can be exploited for drug delivery into the brain.88

VEGF
VEGF and smoothed signalling pathways play an impor-
tant role in maintaining the stability of TJ proteins.88 It 
was found that interfering with these signalling pathways 
can cause TJ proteins to lose stability, subsequently 
improving BBB permeability.89 VEGF downregulates or 
retargets the TJ protein claudin-5, leading to instability in 
TJs and increasing BBB permeability. Wen et al found that 
interfering with the VEGF/VEGFR pathway through use 
of the inhibitor axitinib reduces BBB permeability and 
enhances integrity of the barrier. Simultaneously, low- 
density lipoprotein receptor-related protein 1 (LRP1) is 
highly expressed in the BBB under pathological condi-
tions. Therefore, doxorubicin (DOX)-loaded glycolipid- 
like nanoparticles (AP-CSSA/DOX) loaded into the BBB 
and low-density lipoprotein receptor expressed in GBM- 
associated protein 1 (LRP1) have a high affinity for the 
tumour and achieve good antitumour effects.90 

Bevacizumab specifically binds to VEGF (primarily 
VFGF-A), attenuating or blocking VEGF binding to 
VEGFR-1 and VEGFR-2 on the vascular endothelial cell 
surface and blocking VEGFR-mediated downstream sig-
nalling pathways.91 However, current clinical trials show 

that bevacizumab has not achieved good, predetermined 
efficacy in improving long-term outcomes in patients with 
GBM. This phenomenon may be related to the incomplete 
understanding of the upstream and downstream mechan-
isms of VEGF.

Ultrasonic Treatment-Associated Effects
Specifically, microbubbles 2–6 microns in diameter 
formed by preinjection can be induced by ultrasound, 
causing the BBB to open instantaneously, which can be 
monitored by MRI or ultrasound.92 Zhang et al found that 
ultrasound-bound microbubbles could open the BBB 
through paracellular and transcellular pathways. They pri-
marily cause changes in the expression of BTB endothelial 
cell membrane TJ proteins, such as claudin-5, ZO-1, and 
occludin, reduce the expression of JAM-A and upregulate 
KCa channel expression in glioma.93

Transient disruption of the BBB by focused ultrasound 
(FUS) facilitates noninvasive drug delivery with precise 
spatial and temporal specificity.94 Chen et al found that 
focused ultrasound improves the antitumour immune 
response of interleukin-12 (Il-12) in c-6 glioma rats, safely 
and reversibly disrupting the BBB.95 Ting et al used 
focused ultrasound combined with microbubble technol-
ogy to improve carmustine penetration in the rat brain.96 

This method increases local drug concentrations in glioma 
to promote treatment more effectively.

Zhang et al found that low-frequency ultrasound (LFU) 
and bradykinin (BK) caused increased BTB permeability 
by regulating the expression of the TJ-related proteins ZO- 
1, Occludin, and Claudin-5.97 Wang et al found that low- 
frequency ultrasound irradiation combined with the use of 
papaverine causes a similar effect.98

Ultrasound-related therapy has only been used in pre-
clinical studies, and its ability to open the tumour BBB is 
still being explored. However, ultrasound-related treatment 
is considered a promising method that facilitates transient, 
localized, and noninvasive changes in the brain for drug 
administration. It has broad applications in the future for 
use in combination with newly developed drugs.

Transportation-Associated Effects
BBB endothelial cells contain a variety of transporters 
through which drugs travel from the brain to the blood.99 

Two major protein families drive carrier-mediated trans-
port, the solute carrier (SLC) superfamily and ATP binding 
cassette (ABC) transporters, which prevent the influx of 
lipophilic molecules, xenobiotics, toxic metabolites, and 
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drugs.100 It has been reported that there are also extraneous 
transporters on GBM cells, forming the brain-tumour cell 
barrier, while the BBB and brain-tumour cell barrier make 
it more difficult to transport drugs to glioma tissues.96 

Chen et al discovered a peptide from phages that can be 
used as a generic carrier to cross the BBB.101 Agarwal 
et al found that the combined use of elacridar increased the 
concentration of erlotinib in the brain of a xenograft model 
of glioma in U87 rats.102 Therefore, efflux transporter 
inhibitors are an important method for promoting drug 
transport into the brain.

Recent studies have shown that phosphatidylinositol-3 
kinase inhibitors, which mediate cell proliferation, apop-
tosis, metabolism, angiogenesis, and other biological pro-
cesses, promote GBM cell death and have good prospects 
for the treatment of GBM.103 Currently, many drugs that 
inhibit efflux transporters or utilize existing transporters 
are undergoing clinical trials with promising results.

A variety of ABC transporters, such as P-glycoprotein 
(P-GP), multidrug resistance associated protein (MRP), 
and breast cancer resistance protein (BCRP), are efflux 
transporters that are highly expressed at the BBB, which 
are also the primary factors inhibiting introduction of 
drugs into the brain, which is the primary reason for the 
poor efficacy of commonly used antitumour drugs against 
glioma.99,104 Meanwhile, studies have found that the BBB 
of glioma patients is destroyed due to the influence of 
pathological factors. However, there is still an intact 
BBB in the glioma tumour area, preventing active drug 
ingredient distribution to tumour cells.24,105 Interestingly, 
the more significant increase in permeability compared to 
the sum of the two transporters was due to functional 
compensation on the BBB between P-GP and BCRP rather 
than simply upregulation of transporters.102

Convection-enhanced delivery (CED) is the continuous 
delivery of a drug by an implanted infusion catheter during 
surgery that relies on a hydrostatic pressure gradient to enable 
the drug to reach the tumour cell through substantial convec-
tion. The drug will be widely distributed in the brain by 
dispersing large quantities. However, this method’s challenge 
is that medicines injected into the brain cannot easily spread 
or transport into the blood, making the drug concentration at 
the tumour site too low to achieve the desired effect.106

Liposomes are vesicles formed by the self-assembly of 
amphiphilic phospholipids. The structure of liposomes is 
similar to the lipid bilayer of the cell membrane. 
Liposomes can embed water-soluble drug molecules and 
lipophilic drug molecules to facilitate transport to the 

corresponding target sites.107 The biocompatibility and 
targeting characteristics of liposomes can effectively pro-
mote drug transport across the BBB, improving the ther-
apeutic index of chemotherapeutic drugs and reducing 
adverse reactions. Tumours targeting polymer checkpoint 
inhibitors can activate systemic or local tumour immune 
responses through the BBB, playing a therapeutic role.108 

Based on peptide research, it has been shown that cell 
penetrating peptides (P1NS) and an anti-GBM antibody 
(TN-C) can bind to the surface of liposomes for targeted 
delivery. Superparamagnetic iron oxide nanoparticles 
(SPIONs) and doxorubicin (DOX) are coloaded in lipo-
somes to achieve thermally triggered drug release when an 
alternating magnetic field (AMF) is applied. These results 
show that the structure can be easily transported through 
the in vitro BBB model.109

Nanoparticle Carrier Delivery 
System-Associated Effects
Polymer nanoparticles have many of the same advantages as 
drug carriers, such as many functional groups on the surface 
of the polymer, which can bind a variety of biological mole-
cules. Commonly used polymer nanoparticle carrier materi-
als include chitosan, dextran, polyethylene glycol, poly(lactic 
acid)-hydroxyacetic acid copolymer, and dendrimer, which 
can deliver antitumour drugs to glioma cells through polymer 
nanoparticles.110 Although nanoparticles remain in tumour 
cells for a long time and are easily cleared by the reticuloen-
dothelial system, they have an uncertain plasma circulation 
time, but ligand modification of nanoparticles can reduce 
toxicity and promote drug delivery to the brain.107

The most classic example is the use of doxorubicin in 
the treatment of breast cancer, which has been studied for 
intracerebral administration due to its high rate of brain 
metastases. Nanomodified doxorubicin exhibited better 
results than the original doxorubicin111 because lipid mole-
cules are free to spread through the BBB. Research has 
indicated that thermoresponsive lipid nanoparticles (LNPs) 
might be an effective treatment because of their natural 
tendency to cross the BBB. LNPs undergo a solid-liquid 
phase transition at 39°C, and as the drug rapidly diffused 
from the liquid nanoparticles, it provided up to 20 times 
the drug release rate without any damage to the BBB.112 

However, the relatively harsh reaction conditions may 
limit the use of this method.

Mesoporous silica nanoparticles (MSNs) were custo-
mized and coupled with the cRGD peptide to be loaded 
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with the antitumour drug doxorubicin, which showed 
a strong ability to penetrate the blood-brain barrier and 
destroyed the vasculogenic mimicry ability of glioma cells 
to achieve an excellent antitumour effect, avoiding adverse 
toxicity and side effects on normal brain tissue.113 

Albumin nanoparticles, the cell-penetrating peptide 
LMWP, can achieve glioma cell apoptosis and antiangio-
genesis through SPARC- and gp60-mediated biomimetic 
transport mechanisms and adjust the tumour immune 
microenvironment to achieve a therapeutic effect with 
fewer adverse reactions.114 Fan et al found that human 
h-ferritin (HFn) nanocarriers can successfully kill glioma 
cells by crossing the BBB through the overexpressed HFn 
receptor (transferrin receptor 1) in endothelial cells and 
glioma cells.115 Meanwhile, there was no HFn buildup in 
the surrounding healthy brain tissue. Therefore, HFn is an 
ideal nanocarrier for the treatment of glioma with excellent 
potential. Similarly, nanoparticles made of lactoferrin (Lf) 
protein have been shown to enhance the pharmacological 
properties of drugs.116 Large-scale clinical trials of nano-
particles could facilitate the future clinical use of these 
methods. The specific functions of other extracellular vesi-
cles (EVs), such as exosomes, have been described in 
detail in a review by Rufino-Ramos et al.117

Kolter et al prepared ester-loaded nanoparticles mod-
ified with Tween-80 surfactant and treated endothelial 
cells with reduced TEER.118 However, nanocrystalline 
silver can damage TJs of endothelial cells, causing cell 
gap widening, cell cavitation, organelle necrosis, coarse 
endoplasmic reticulum degranulation, depolymerization, 
and mitochondrial swelling.119 Therefore, the potential 
toxicity of nanomaterials should be closely monitored 
when they are used.

Nanomaterials show promise, and several experiments 
have demonstrated different methods for crossing the BBB 
and delivering therapeutic drugs to tumour cells with fewer 
toxic side effects. However, there is no large-scale clinical 
use of nanomaterials at present, and their surface properties, 
size, and targeting properties should be carefully considered 
before entering clinical use. The high cost of nanomaterials 
is also an issue that needs to be addressed.

Current Status and Deficiencies in 
Treatment of the BBB
The physical and biochemical barriers of the BBB limit 
the transport of many drugs into the brain, representing 
one of the bottlenecks of glioma treatment. Glioma 

recurrence often occurs in areas far from the edge of the 
surgical resection, indicating that the drug concentration of 
glioma cells in these areas was low and thus not ade-
quately treated. It also indicates that the BBB near the 
growth edge of the glioma was intact. However, because 
of the high invasiveness of glioma, recurrence easily 
occurs in the residual area. Currently, the drugs in use, 
whether chemotherapy drugs, immunotherapy or monoclo-
nal antibodies, are all subject to the presence of residual 
BBB and perfusion differences in tumour vessels, resulting 
in different drug concentrations in various sites, which 
affects their clinical efficacy. Currently used drugs, such 
as bevacizumab and cilengitide, are still in clinical trials. 
Although bevacizumab has been shown to extend progres-
sion-free survival as an anti-angiogenesis target drug in 
previous trials, it does not extend overall survival and has 
a tendency to promote tumour cell invasion and migration. 
Based on the above issues, current treatment should focus 
on the following points. First, many approaches to improv-
ing glioma drug delivery are still in the experimental and 
preclinical stages, with only a few entering clinical trials. 
For those methods that have already passed preclinical 
trials, the pace of clinical trials should be accelerated 
under proper supervision. Furthermore, this area’s main 
challenge is the limited concentration of drugs in glioma 
since transversely passing drugs through the BBB repre-
sents a significant barrier. Therefore, the current focus 
remains improving the pass rate through various methods 
to achieve higher effective drug concentrations. Treatment 
of the residual intact blood-brain barrier and more com-
prehensive inhibition of angiogenesis should also be con-
sidered. Bevacizumab is a VEGF-targeted drug, so the 
upstream and downstream molecules that simultaneously 
control VEGF expression and regulation can be considered 
potential therapeutic targets. Finally, safety remains 
a significant concern regarding these treatments.120

Summary and Future Directions
Brain tumours, such as glioma, offer significant challenges 
to neurosurgery and related disciplines. Generally, the 
treatment methods for glioma primarily include surgical 
therapy, radiotherapy, chemotherapy, immunotherapy, 
gene therapy and molecular targeted therapy. After partial 
treatment, tumour volume is reduced but not completely 
controlled, and local adjuvant gamma knife therapy may 
be considered. However, the survival time of glioma 
patients, especially glioblastoma patients, is still relatively 
short. Under glioma conditions, remodelling of the BBB 
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leads to abnormal neogenesis of blood vessels and 
a residual intact blood-brain barrier, which brings new 
challenges to treatment. With in-depth research on the 
biological characteristics of glioma, many molecularly 
targeted drugs have been developed, which are more spe-
cific than traditional chemoradiotherapy and have 
a significant inhibitory effect on the invasiveness of 
glioma. However, some medications require additional 
support to work at the appropriate sites because of their 
properties. Current research in this direction is investigat-
ing glioma treatment, which is the main direction of clin-
ical research. At present, emerging technologies, such as 
nanotransport particles, transporters, ultrasound, and other 
methods have achieved some results in studies on the 
passage of chemotherapy drugs and targeted drugs 
through the BBB. However, most of these methods are 
still in the preclinical research state and have not yet 
entered clinical use. Therefore, the future research direc-
tion should be a combination of new technologies and 
traditional methods to improve the permeability of the 
BBB, promote the entry of drugs into the brain as much 
as possible, and reduce the toxic effect on normal cells, 
which is the biggest challenge of future research 
endeavours.
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