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Introduction: Breast cancer, one of the most common health threats to females worldwide, 
has always been a crucial topic in the medical field. With the rapid development of digital 
pathology, many scholars have used AI-based systems to classify breast cancer pathological 
images. However, most existing studies only stayed on the binary classification of breast 
lesions (normal vs tumor or benign vs malignant), far from meeting the clinical demand. 
Therefore, we established a multi-class classification system of breast digital pathology 
images based on AI, which is more clinically practical than the binary classification system.
Methods: In this paper, we adopted a two-stage architecture based on deep learning method 
and machine learning method for the multi-class classification (normal tissue, benign lesion, 
ductal carcinoma in situ, and invasive carcinoma) of breast digital pathological images.
Results: The proposed approach achieved an overall accuracy of 86.67% at patch-level. At 
WSI-level, the overall accuracies of our classification system were 88.16% on validation data 
and 90.43% on test data. Additionally, we used two public datasets, the BreakHis and 
BACH, for independent verification. The accuracies our model obtained on these two 
datasets were comparable to related publications. Furthermore, our model could achieve 
accuracies of 85.19% on multi-classification and 96.30% on binary classification (non- 
malignant vs malignant) using pathology images of frozen sections, which was proven to 
have good generalizability. Then, we used t-SNE for visualization of patch classification 
efficiency. Finally, we analyzed morphological characteristics of patches learned by the 
model.
Conclusion: The proposed two-stage model could be effectively applied to the multi-class 
classification task of breast pathology images and could be a very useful tool for assisting 
pathologists in diagnosing breast cancer.
Keywords: image analysis, breast cancer, digital pathology images, deep learning, multi- 
class classification

Introduction
Breast cancer is the most frequently diagnosed tumor and the leading cause of 
cancer death among females worldwide. In 2020, almost 1 in 4 of the newly 
diagnosed female cancer cases were breast cancer, and nearly 700,000 women 
died of breast cancer worldwide, accounting for 15.5% of female mortality.1 

Therefore, early diagnosis of breast cancer plays a significant role in reducing 
cancer-related deaths.

In clinical practice, breast cancer is initially diagnosed by physical examination 
and medical imaging, including bilateral breast palpation, mammography, and 
ultrasonography. Then, after surgical excision, the specimens are submitted to 
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microscopic analysis, which allows pathologists to make 
a final diagnosis and predict the prognosis for further 
therapy and management.2 Hence, it is important for 
pathologists to classify breast diseases correctly. 
However, the qualitative visual analysis of microscopic 
images is a prolonged and tedious process and lacks 
objective standards.3,4 Thus, for the same case, the diag-
nostic result varies among different pathologists. It is 
reported that the overall discordance of independent diag-
nosis was 25% in breast biopsy specimens, and the dis-
cordance with the consensus-derived reference diagnoses 
is 9.7%.5 Furthermore, due to the increase of cancer inci-
dence, it makes more time-consuming and overwhelming 
for diagnosis and grading of cancer as well as harder to 
manage the volume. To draw a complete diagnosis, pathol-
ogists have to go through a large number of glass slides, 
often including conventional H&E slides and additional 
immunohistochemical stains.6 As a result, developing 
computerized-aided diagnosis (CAD) algorithms for the 
detection of disease extent from digital pathology images 
has always been of growing necessity in the field.7,8

As a rapidly expanding field of digital pathology, the 
technology of whole-slide image (WSI), which can digi-
tize glass slides at high resolution, provides an opportunity 
for CAD in the field of pathology. Currently, CAD is 
moving towards the goal of fully automated analysis of 
WSIs for the detection and grading of cancer. In recent 
years, with the advent of Graphics Processing Unit (GPU) 
and Field Programmable Gate Array architectures with 
massively parallel computing, deep learning has become 
a powerful tool for segmentation, detection, and classifica-
tion problems in the field of medical imaging. Gao et al9 

proposed to use a combination of CNNs and RNNs for 
grading nuclear cataracts in slit-lamp images, where CNN 
filters were pre-trained. Ronneberger et al10 proposed 
U-net, a new CNN architecture, to solve the biomedical 
segmentation in medical imaging. Coudray et al11 trained 
a deep convolutional neural network on WSIs obtained 
from The Cancer Genome Atlas12,13 to accurately and 
automatically classify them into lung adenocarcinoma, 
lung squamous, or normal lung tissue.

Some papers published over the last few years discussed 
the application of deep learning techniques on breast digital 
pathology images. Ciresan et al14 were the first to apply 
convolutional neural networks to the task of mitosis count-
ing for primary breast cancer grading. Wang et al15 later 
expanded the work on mitosis detection by combining hand-
crafted features and convolutional neural networks. Han 

et al16 proposed a class structure-based deep learning 
model (CSDCNN) to achieve the binary classification and 
subtype analysis of benign and malignant, which performed 
outstandingly on the public dataset BreakHis.17 At the 
Camelyon Grand Challenge 2016 (CAMELYON16)18 held 
by the International Symposium on Biomedical Imaging 
(ISBI), a team used a stain standardization algorithm19 in 
the data pre-processing and used GoogLeNet architecture.20 

Ultimately, their deep learning model achieved an area under 
the receiver operating characteristic curve (AUC) of 0.9935, 
superior to experts.21 Cruz-Roa et al proposed a new method 
that employs a convolutional neural network, which had 
good accuracy and robustness to identify the extent of inva-
sive tumors on digitized images automatically.22 In general, 
automatic pathological image analysis could potentially save 
time for pathologists and reduce inter- and intra-observer 
variability.23,24

However, most of the above studies focused on the 
binary classification (normal vs tumor or benign vs malig-
nant) of breast cancer. Only a few scholars proceeded on 
the breast tissue multi-class classification task, which has 
more clinical research value than the binary classification 
task. Teresa et al25 published the earliest available litera-
ture, which utilized deep learning to study the multi-class 
classification of digital pathology images of breasts. Their 
study was based on the Bioimaging Challenge 2015 Breast 
Histology Dataset, which contains 30 images from differ-
ent biopsy samples for each of the four classes (normal, 
benign, in situ carcinoma, and invasive carcinoma). Based 
on this dataset, a new dataset named BACH26 is derived, 
in which each of the four classes has 100 images. 
Depending on the BACH, the International Conference 
Image Analysis and Recognition 2018 Grand Challenge 
on BreAst Cancer Histology images (ICIAR2018) was 
organized, and several works27–29 demonstrated accurate 
multi-class classification models utilizing deep learning. 
However, there are only hundreds of images with low 
pixels in this dataset, and the models trained with this 
dataset are hard to be generic and cannot fulfill the demand 
of the clinical application.

In our study, we focused on the task of multi-class 
classification of breast pathological images, and a new 
approach combining a deep convolutional neural network 
as a patch-level classifier and XGBoost as a WSI-level 
classifier was proposed to automatically classify 
H&E-stained breast digital pathology images into four 
classes as normal tissue, benign lesion, ductal carcinoma 
in situ (DCIS), and invasive carcinoma.
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Materials and Methods
A Deep Learning Framework for 
Multi-Class Classification
In our study, we proposed a deep learning approach designed 
for the analysis of breast cancer. The research protocol was 
approved by the Ethics Committee of Peking Union Medical 
College Hospital (PUMCH). Informed consent was waived 
because the data are anonymized according to the protocol. 
All aspects of our research complied with the tenets of the 
Declaration of Helsinki. Since directly calculating the infor-
mation of the WSIs will overflow the computer memory, this 
deep learning framework was divided into two stages.

In the first stage, tissue sections stained by the H&E 
procedure were firstly digitized into WSIs. Then we 
extracted the regions of interest (ROIs) from WSIs and 
performed image cutting on ROIs to get patches. Next, we 
used a trained CNN to obtain patch-level classification 
results by entering patches. In the second stage, for each 
WSI, a heatmap was generated using the classification 
results of all patches that belong in the WSI. Then, 72 
statistical features were extracted from heatmaps at WSI- 
level to make the final diagnosis through XGBoost,30 

achieving the diagnosing accuracy comparable to that 
from pathologists. A summary of the deep learning frame-
work applied in our study is shown in Figure 1.

WSI Acquisition and Label
This study was based on an H&E-stained pathology image 
dataset authorized by PUMCH, which was composed of 
uncompressed and labeled WSIs, including 486 cases of 
paraffin-embedded tissues and 54 cases of frozen sections. 
All slides were digitalized with KF-pro-400 (Ningbo, 
China) scanner under the same acquisition condition, 
with a magnification of 40× (0.2μm/pixel). The size of 
each WSI was different (eg, 83,956×75,514 pixels), and 
all WSIs occupied approximately 706GB of memory space 
in total. A sample WSI is shown in Figure 1A.

Of the 486 paraffin-embedded tissue WSIs, 371 WSIs were 
used as training and validation data (split as 8:2), and 115 WSIs 
were used as test data. Fifty-four cases of frozen section WSIs 
were used as generalizability verification data. The distribution 
of WSIs divided by use and class is shown in Table 1 in detail.

Pathologists Annotation and Image 
Cutting
After obtaining WSIs, two pathologists used irregular 
curves of four different colors to encircle the normal 

tissue, benign lesion (including breast adenosis and fibroa-
denoma), DCIS, and invasive carcinoma regions, respec-
tively (Figure 1B) on ASAP (an open-source platform for 
visualization, annotating, and automatic analysis of WSIs). 
Because WSIs are too large to be analyzed in computer 
memory directly, image cutting was performed on the 
annotated regions to get patches. Patches extracted from 
training WSIs were used to train the patch-level classifier. 
Validation WSIs were equally divided into two parts, 
patches extracted from one for validation and the other 
for testing.

The classification of breast digital pathology images 
must rely on morphology-related features such as the 
density and variability of the nucleus. Therefore, the size 
of patches should make the color and shape of high 
nuclear density regions, as well as other morphological 
details, observable. Through experiments, we found that 
a suitable patch size being 1024×1024 pixels. Since the 
edges of annotated regions were irregular, for each patch 
extracted from annotated regions, if 75% of its area was 
marked as normal, the patch would be labeled normal. The 
proportions for the other three classes were all 90%.

Finally, we obtained 28,490 patches labeled as normal, 
and the number of patches of benign lesions, DCIS, and 
invasive carcinoma was 31,469, 50,638, and 22,447, respec-
tively. The specific distribution of these patches is shown in 
Table 2, and different types of patches are shown in Figure 
1C (Figure 1C (a) to (d) are patches of normal tissue, benign 
lesion, DCIS, and invasive carcinoma, respectively).

ROIs Extraction from WSIs and Image 
Cutting
In the test stage, patches extracted from the blank back-
ground areas would waste computational resources and 
affect the model accuracy. Therefore, the Otsu method was 
used to extract the ROIs of WSIs, and image cutting was 
performed on the ROIs.31 The ROIs of a sample WSI are 
shown in Figure 1D (regions surrounded by dark red lines).

Since the edges of ROIs were irregular as well, patches 
extracted from ROIs might contain some background pix-
els. Thus, for each patch, if the proportion of ROIs pixels 
was less than 50%, this patch would be excluded. The size 
of patches was also 1024×1024 pixels.

Data Augmentation
Training an accurate artificial intelligence (AI) model 
requires a large amount of high-quality data, but reliable 
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data are rare.32 Thus, we performed data augmentation for 
each patch extracted from annotated regions to generate 
new patches by rotating or flipping. Each of these new 
patches was considered to have the same label as the 
original one because the studied problem was rotation 
invariant, ie, pathologists can make a diagnosis using 
breast digital pathology images from different orientations 
without altering the diagnosis results. Consequently, data 
augmentation could enlarge the dataset without deteriorat-
ing the data quality.25

Using data augmentation, we expected that the model 
would better fit the validation and test data. The scale of 
the data augmentation depended on the number of patches 
in each class. After data augmentation, the number of 
patches for training, validation, and test was balanced.

Inception V3 as Patch-Level Classifier
In a two-stage model, the patch-level classifier was 
designed to extract features from patches in the first 
stage. Here, we selected Inception V3, an open-source 
CNN model developed by Google,33 as the patch-level 
classifier. The inception V3 can minimize the number of 
parameters by factorization so that the extra computing 
power could be used to deepen the network. Many pub-
lications have demonstrated that the Inception module is 

suitable for pathology tasks,11 such as skin cancer34 and 
diabetic retinopathy.35

In this research, a full connection layer (1024 neurons) 
and a softmax layer were added after the basic model of 
Inception V3. We trained the Inception V3 model on the 
training dataset from scratch and used this trained model, 
which has about 25 million parameters, to obtain patch-level 
classification results from new patches. The network weights 
were initialized randomly, and an 0.001 learning rate gradi-
ent-descent back-propagation algorithm was used for weight 
update. The selected loss function was categorical cross- 
entropy. The classifier was trained for 100 epochs, in 
which we took the set of parameters with the highest accu-
racy on the validation data as the final parameters of the 
classifier.

Feature Generation from Results of 
Patch-Level
For each WSI, we firstly predicted each patch, extracted from 
the ROIs, by the trained Inception v3 classifier to generate 
the four predicted probability values being classified into 
each of the four categories. Then, these predicted patches 
together were combined into one heatmap (Figure 1E). Areas 
in red, yellow, and cyan represented invasive carcinoma, 
DCIS, and benign lesion, respectively, while normal tissue 

Figure 1 The framework of the deep learning approach. 
Notes: In the training stage, pathologists annotate different regions on WSIs (A), and image cutting is performed on the annotated regions (B) to obtain four types of 
patches (C). In the test stage, image cutting is performed on the extracted ROIs (D). Furthermore, patch-level classification results can also generate a heatmap (E) for each 
WSI.
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kept the original color. The darker the color, the higher the 
probability of the patch being classified into this category.

Then we performed post-processing operations based 
on the patch-level classification results. We extracted 72 
statistical features from the heatmap of each WSI, includ-
ing the total number of patches with a probability (P) 
greater than threshold belonging to each of the four cate-
gories and some statistical features of probabilities belong-
ing to each class, such as mean, variance, standard 
deviation, median, minimum, maximum, range, and the 
sum. All features are listed in Table 3.

WSI-Level Classifier
After obtaining features of each WSI, we used different 
machine learning classifiers, including Adaboost, Decision 
Tree, SVM, Random Forest, Gradient Boosting, LightGBM, 
and XGBoost, to diagnose WSIs. By comparing the classifica-
tion accuracy of different classifiers, we finally choose 
XGboost, which has the highest accuracy, as the WSI-level 
classifier. XGBoost is an optimized distributed gradient boost-
ing library designed to be highly efficient, flexible, and por-
table, and the impact of the system has been widely recognized 
in many machine learning and data mining challenges.

Time Consumption and Result 
Comparison
The current model framework took about 150 hours for the 
training stage using one NVIDIA 1080Ti GPU and the 

TensorFlow36 framework. Moreover, it took about 
one minute for our trained AI model to diagnose one WSI.

To verify the effect of our model, we invited five 
pathologists to diagnose each WSI in one minute (same 
with the time consumption of our AI model) without other 
clinical information about the patient for reference. 
Finally, the average diagnostic accuracy of these patholo-
gists was compared with that of the AI model.

Table 1 Distribution of WSIs Authorized by Peking Union Medical College Hospital

Class Paraffin-Embedded Frozen Total

Training Validation Test Generalizability Verification

Normal tissue 80 20 27 16 143

Benign lesion 73 19 21 11 124
Carcinoma in situ 90 24 33 18 165

Invasive carcinoma 52 13 34 9 108

Total 295 76 115 54 540

Table 2 Distribution of Patches Extracted from the Annotated 
Regions of WSIs

Class Training Validation Test Total

Normal tissue 20,312 5838 2340 28,490

Benign lesion 26,942 1871 2656 31,469
Carcinoma in situ 37,144 8099 5395 50,638

Invasive carcinoma 17,595 3565 1287 22,447

Total 101,993 19,373 11,678 133,044

Table 3 Features Extracted from Heat Maps of WSIs

Index Features

f1 - f8 Sf of normal tissue
f9 - 

f16

Sf of benign lesion

f17 - 
f24

Sf of ductal carcinoma in situ

f25 - 

f32

Sf of invasive carcinoma

f33 - 

f36

Np for each class with P>0.999

f37 - 
f40

Np for each class with 0.99<P≤0.999

f41 - 

f44

Np for each class with 0.95<P≤0.99

f45 - 

f48

Np for each class with 0.9<P≤0.95

f49 - 
f52

Np for each class with 0.8<P≤0.9

f53 - 

f56

Np for each class with 0.7<P≤0.8

f57 - 

f60

Np for each class with 0.6<P≤0.7

f61 - 
f64

Np for each class with 0.5<P≤0.6

f65 Numeric label of the category to which the largest value in 

the mean of P belongs
f66 Numeric label of the category with the most patches

f67 - 

f72

f9/f1, f17/f1, f25/f1, f17/f9, f25/f9, f25/f17

Note: Sf, eight statistical features of probabilities; P, probability of a patch being 
classified into a certain category; Np, number of patches.
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Results
Patch-Level Classification
The confusion matrix of the patch-level classifier is 
shown in Figure 2A, and overall accuracy of 86.67% is 
achieved. Then, we chose the precision, sensitivity, and 
ROC to evaluate the performance of the patch-level clas-
sifier. Since these evaluation parameters are designed for 
binary classification problems, we compressed those four 
categories into two categories by combining three of the 
four categories and compared them with the left one. The 
ROC is shown in Figure 2B, and the compression method 
is shown in Figure 3. All results above are shown in 
Table 4.

WSI-Level Classification
As shown in the confusion matrix in Figure 4A, the 
accuracy of the WSI-level classifier on the validation 
data is 88.16%, and the precision and sensitivity can also 
be derived with the same compression method. The ROC 
is shown in Figure 4B, which is also obtained by the same 
compression method applied at patch-level.

Then, we tested the WSI-level classifier on 115 
WSIs. As shown in the confusion matrix (Figure 5A), 
the accuracy (90.43%) of our model is higher than 
pathologists (86.09%, the average accuracy of five 
pathologists). The Kappa coefficient (an evaluation 
index of confusion matrix consistency)37 is 0.871, 

Figure 2 Results on the test data at patch-level. 
Notes: (A): Confusion matrix. The number represents the number of patches. (B): ROC.

Figure 3 The compression method.
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demonstrating that the proposed approach is practical. 
All classification results are shown in Table 5, and the 
ROC is shown in Figure 5B.

The influence of different WSI-level classifiers on the 
whole model (Table 6) shows that the XGBoost method 
achieves better results than other methods.

Table 4 Classification Effect at Patch-Level

Class Accuracy Precision Sensitivity AUC

Normal tissue 86.67% 80.77% 92.75% 0.9756

Benign lesion 80.95% 83.12% 0.9662

Carcinoma 

in situ

94.41% 87.78% 0.9837

Invasive 

carcinoma

92.88% 82.75% 0.9515

Table 5 Classification Effect at WSI-Level on the Test Data

Class Accuracy Precision Sensitivity AUC

Normal 90.43% 83.87% 96.30% 0.9844

Benign lesion 90.00% 85.71% 0.9757

Carcinoma 

in situ

90.32% 84.85% 0.9897

Invasive 

carcinoma

96.97% 94.12% 0.9989

Figure 4 Classification results on the validation data at WSI-level. 
Notes: (A): Confusion matrix. The number represents the number of WSIs. (B): ROC.

Figure 5 Classification results on the test data at WSI-level. 
Notes: (A): Confusion matrix. The number represents the number of WSIs. (B): ROC.
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Independent Verification
To verify the robustness of our model, we tested the trained 
model on two public datasets: BreakHis and BACH. 
BreakHis is composed of 7909 breast histopathology images 
with different magnifications.17 The images are divided into 
two main groups: benign and malignant. Considering the 
sizes of the images were similar to the size of the patches we 
extract from WSIs, we regarded these images as patches and 
applied our patch-level classifier to classify them as non- 
malignant and malignant. The classification accuracies of 
different magnifications are listed in Table 7, which are 
comparable to the related publication.16

The BACH dataset is composed of part A and part B.26 

Part A contains a total of 400 microscopic images, which are 
labeled as normal, benign, DCIS, or invasive carcinoma. We 
used our trained model to diagnose these microscopic 
images. The accuracy is listed in Table 7, which is also 
comparable to related publications.27 Part B comprises 30 
WSIs, 10 of which have been annotated according to the 
tissues. Then, we used our trained model to diagnose these 
WSIs and exported their heatmaps. We also plotted the labels 

given by BACH on the ten annotated WSIs (the color setting 
is the same as that of the heatmaps generated by our method) 
to compare them with the heatmaps. As shown in Figure 6, 
our approach detects the lesion area effectively.

Generalizability Verification
It is worth mentioning that the datasets we used above were 
all paraffin-embedded tissue WSIs. To verify the general-
izability of our model, we tested breast frozen sections based 
on the current classification model. Paraffin-embedded tis-
sues and frozen section tissues are both stained by H&E, but 
the images are different because of the different bedding 
methods. Moreover, the frozen section is considered impor-
tant in confirming pathologic diagnosis and determining the 
treatment during the operation in unclear settings.38 Figure 7 
shows the results of the frozen section dataset. It can be 
observed that the methods can achieve high accuracy of 
85.19% on classifying multi-class pathology images and 
96.30% on classifying non-malignant (normal and benign 
lesion) vs malignant (ductal carcinoma in situ and invasive 

Table 6 Comparison of Accuracies with Different WSI-Level 
Classifiers

WSI-Level Classifier Accuracy

Adaboost 73.91%

Decision Tree 85.22%

SVM 85.22%
Random Forest 87.83%

Gradient Boosting 88.70%

LightGBM 88.70%
XGBoost 90.43%

Note: The bolded figure represents the best result of all methods.

Table 7 Results of Independent Verification

Dataset BreskHis BACH Part A

Our approach 40x 96.7% 87.2%
100x 97.6%
200x 95.0%
400x 93.3%

Related publications 40x 95.8±3.1% 85%29 

87.1%27 

87.2%28

100x 96.9±3.1%

200x 96.7±2.0%
400x 94.9±2.8%16

Note: The bolded figures represent the best results of all methods.

Figure 6 Independent verification results. 
Notes: (A): A sample WSI with the labels given by BACH. (B): The heatmap of the sample WSI in the BACH generated by our method.
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carcinoma) pathology images, which is similar to that of 
paraffin-embedded tissues.

Visualization of Patch Classification 
Efficiency
Figure 8A shows the two-dimensional representation of 
patches. Figure 8B is the two-dimensional representation of 
activations on the second last fully-connected layer of the 
CNN went through by these patches. In these two figures, 
500 patches belonging to each of the four categories were 
randomly selected from the test data, and each point 

corresponded to a patch. The 2D distance between points 
approximated the actual Euclidean distance in the multidi-
mensional space. These representations were derived from 
the application of t-SNE, which was an efficient parametric 
embedding technique for dimensionality reduction that pre-
served the distance between samples.39 Compared with the 
patches in Figure 8A, patches in Figure 8B of the same 
category appear to be clustered together, and the difference 
between patches with different labels is noticeable. These 
facts indicate that inception V3 in the first step can extract 
relevant features from the initial data after training. 

Figure 7 Classification results of generalizability verification. 
Notes: (A): Confusion matrix of binary classification on frozen sections. (B): Confusion matrix of multi-class classification on frozen sections. The number represents the 
number of WSIs.

Figure 8 The 2D projection of patches. 
Notes: (A): 2D projection of raw patches. (B): 2D projection of activations on the second last fully connected layer of the CNN of these patches. The horizontal and 
vertical coordinates are the 2D coordinates normalized by min-max scaling.
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Conclusively, our model is effective in patch-level classifica-
tion, which lays a solid foundation for the WSI-level 
classifier.

Analysis of Morphological Characteristics 
of Patches Learned by the Model
To ascertain the morphological characteristics that the 
inception V3 had seized in patches of different breast 
tissues, we used gradient-weighted class activation map-
ping (Grad-CAM)40 to show the patch-level features of 
different classes. Grad-CAM can indicate the regions that 
contribute most toward maximizing the predicted probabil-
ity of that patch belonging to its “true” class. The warmer 
the color in the heatmap, the higher the possibility the area 
had to contribute to the prediction and vice versa. As 
shown in Figure 9, in the Grad-CAM of normal breast 

tissue (Figure 9A and B), benign lesions (Figure 9C and 
D), DCIS (Figure 9E and F), and invasive carcinoma 
(Figure 9G and H), the areas highlighted by the model 
are approximately as same as lesion areas identified by the 
pathologist under the light microscope, and these most 
warm-colored areas also typically reflect the morphologi-
cal characteristics of the different lesions. For example, in 
Figure 9D, the area with high prediction probability 
showed hyperplasia of breast stroma which is the morpho-
logical characteristics of breast fibroadenoma, and in 
Figure 9E and F, the warm-colored area in the patch also 
showed the non-invasive margin of DCIS.

Then we analyzed the misclassification between differ-
ent lesions by our model. Some patches of normal breast 
tissue could be mistaken as benign lesions (adenosis), 
while adenosis may also be misclassified as normal tissue. 

Figure 9 Visualization of different breast tissues by Grad-CAM. 
Notes: (A) and (B) Left: Patches extracted from normal tissue. Right: Grad-CAM presentation for these patches. (C) and (D) Left: Patches extracted from benign lesion. 
Right: Grad-CAM presentation for these patches. (E) and (F) Left: Patches extracted from carcinoma in situ. Right: Grad-CAM presentation for these patches. (G) and (H) 
Left: Patches extracted from invasive carcinoma. Right: Grad-CAM presentation for these patches.
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Some low-grade DCIS may also be mistaken as benign 
lesions. The misclassification may indicate that different 
breast lesion types share similar features in focal areas.

Discussion
A two-stage method might be the best solution to WSI 
diagnosis using the CAD system, limited by the computing 
power.19,41,42 In the first stage, local features were 
extracted, and in the second stage, all local information 
was collected to make the final diagnosis. However, with 
the development of science and technology, we believe 
that in the near future, the computing power of computers 
will be enough to process the whole WSI directly. On the 
other hand, with the maturity of distributed computing 
theory, deploying WSI direct diagnosis algorithm to multi-
ple servers may be another way to solve this problem.

The multi-class classification of breast WSIs is far 
from enough. In the future, we hope to analyze the 
changes in the morphological features of breast cancer 
at different stages to reveal the process of breast cancer 
evolution in the light of the existing detection and clas-
sification model. Understanding the evolution of the dis-
ease is critical for the prevention and treatment of breast 
cancer, especially for early diagnosis. Also, the grading 
of DCIS based on H&E slides remains complex and 
subjective but important to the prognosis, so we will 
subsequently explore the grading of DCIS using AI sys-
tem. Furthermore, subtype analysis of invasive cancer is 
an essential step of breast cancer diagnoses. Invasive 
breast cancers include a series of different subtypes, 
80–90% of which are non-special breast cancer (known 
as invasive ductal carcinoma), and the rest are special 
subtypes. The distinguishing among these special sub-
types has important implications on prognosis, as tubular 
carcinoma of the breast usually has a better prognosis 
than metaplastic carcinoma and inflammatory breast can-
cer. Because different cancer subtypes have different 
morphological characteristics, we believe that AI tech-
nology may play a more significant role. Besides, with 
the development of individualized treatment and the 
application of targeted medicines, immunohistochemical 
expression of estrogen receptor (ER), progesterone 
receptor (PR), and human epidermal growth factor recep-
tor 2 (HER2) in breast cancer are pivotal not only to 
indicate molecular subtype and prognosis but also to 
guide the clinical medication. Thus, quantitative interpre-
tation of the immunohistochemical profile is a key factor 
in making clinical decisions, and a machine learning 

method is usually advantageous to image quantitation 
interpretation beyond manual investigation. We hope 
that our current and future work can play a role in routine 
tasks and complex cases so that pathologists can focus on 
higher-level decisions, such as integrating histology and 
clinical information in order to guide treatment decisions 
for individual patients.

Conclusion
In this paper, a multi-class classification architecture of 
breast pathological images based on convolutional neural 
networks and XGBoost was designed. This approach 
aimed to detect and classify normal tissue, benign lesion, 
ductal carcinoma in situ, and invasive carcinoma of the 
breast. The experimental results demonstrated that our 
model had good accuracy and was comparable to manual 
inspection. In summary, this study demonstrated that deep 
learning could be a potentially feasible tool for assisting 
pathologists with breast cancer diagnosis.
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