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Background: To assess the value of radiomics based on multiphases contrast-enhanced 
magnetic resonance imaging (CE-MRI) for early prediction of pathological complete 
response (pCR) to neoadjuvant therapy (NAT) in patients with human epithelial growth 
factor receptor 2 (HER2) positive invasive breast cancer.
Methods: A total of 127 patients with newly diagnosed primary HER2 positive invasive 
breast cancer underwent CE-MRI before NAT and performed surgery after NAT. Radiomic 
features were extracted from the 1st postcontrast CE-MRI phase (CE1) and multi-phases CE- 
MRI (CEm),respectively. With selected features using a forward stepwise regression, 23 
machine learning classifiers based on CE1 and CEm were constructed respectively for 
differentiating pCR and non-pCR patients. The performances of classifiers were assessed 
and compared by their accuracy, sensitivity, specificity and AUC (area under curve). The 
optimal machine learning classification was used to discriminate pCR vs non-pCR in mass 
and non-mass groups, uni-focal and unilateral multi-focal groups, respectively.
Results: For the task of pCR classification, 6 radiomic features from CE1 and 6 from CEm 

were selected for the construction of machine learning models, respectively. The linear SVM 
based on CEm outperformed the logistic regression model using CE1 with an AUC of 0.84 
versus 0.69. In mass and non-mass enhancement groups, the accuracy of linear SVM 
achieved 84% and 76%. Whereas in unifocal and unilateral multifocal cases, 79% and 
75% accuracy were achieved by linear SVM.
Conclusion: Multiphases CE-MRI imaging may offer more heterogeneity information in 
the tumor and provide a non-invasive approach for early prediction of pCR to NAT in 
patients with HER2-positive invasive breast cancer.
Keywords: radiomics, breast cancer, neoadjuvant therapy, machine learning, magnetic 
resonance imaging

Backgrounds
HER2 (human epithelial growth factor receptor 2) positive breast cancer (non- 
luminal) is defined as HER2-positive and hormone receptor (HR)-negative tumor. 
It has high malignancy, more recurrence and poor prognosis, but is sensitive to 
neoadjuvant therapy (NAT, chemotherapy combined anti-HER2 therapy)1,2 which is 
widely used in HER2 positive breast cancer.3–5 NAT could improve the disease-free 
and overall survival, therefore the pathologic complete response (pCR) to NAT has 
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been proposed as a prognostic marker in HER2 positive 
breast cancer patients.6–9 Nevertheless, only about 40% of 
the patients could achieve pCR after the completion of 
NAT. Predicting pCR before NAT is desirable for identify-
ing patients who will not benefit from NAT. Identification 
of pCR can only be confirmed by histopathological speci-
mens which is traumatic and may not reflect the hetero-
geneity of the entire tumor. Thus, a method to predict pCR 
earlier and noninvasively remains a major challenge.

Compared with mammography and ultrasound, breast 
magnetic resonance imaging (MRI) was confirmed as the 
most reliable imaging tool for evaluating the response of 
tumor to chemotherapy.10,11 Many imaging modality of 
MRI, such as T2WI (T2 weighted imaging), DWI (diffu-
sion weighted imaging) and CE (contrast enhancement)- 
MRI, had been proposed to evaluate the response to NAT 
in patients with breast cancer.12,13 Besides, CE-MRI is 
sensitive to perfusion, permeability of tissue microvascular 
and angiogenic changes and has been identified as the 
most sensitive method for prediction of treatment response 
to NAT.14–22 While clinical MRI images depend on naked 
eyes, radiomics can translate medical images into high- 
dimensional data which reflect not only macroscopic but 
also the cellular and molecular properties of tissues.23,24 

Radiomics is the bridge to combine medical imaging and 
personalized medicine. The purpose of radiomic analysis 
is to generate image-driven biomarkers which can provide 
a deeper understanding of microenvironment and spatial 
heterogeneity in tumor noninvasively.

To date, previous studies have indicated that radiomics 
model can detect the pCR to NAT in breast cancer.13,14,21,25 

However, studies that specifically assess the performance of 
MRI radiomics in detecting pCR to NAT in HRE2 positive 
subtype has not been retrieved yet. In addition, these studies 
demonstrated the feasibility and potential benefits of radio-
mics in pCR prediction in breast cancer only using the 1st 

postcontrast CE-MRI phase (CE1) which only reflects the 
spatial heterogeneity of the tumor. Nevertheless, features 
derived from multi-phases of contrast enhanced MRI images 
(CEm) may imply much information changing over time 
points.26,27

In the present study, we utilized all phases of contrast 
enhanced MRI images to calculate new sequential texture 
features changing over time points, and then compared the 
predictive ability of features from CE1 and CEm. The 
aimed of this study is to assess the value of radiomics 
based on multiphases CE-MRI for early prediction of pCR 
to NAT in HER2 positive invasive breast cancer.

Materials and Methods
Patient Population
In total, 127 female patients who underwent conserving 
breast surgery or radical mastectomy between January 
2012 and December 2018 were consecutively enrolled in 
the study according to the inclusion and exclusion criteria. 
We have complied with the World Medical Association 
Declaration of Helsinki regarding the ethical conduct of 
research involving human subjects. This study was 
approved by the medical ethics committee of Fudan 
University Cancer Hospital. Written informed consents 
were waived due to the retrospective nature of our study 
and we confirmed that the data was anonymized and 
maintained with confidentiality. The flowchart of the 
study is shown in Figure 1.

Inclusion criteria were as follows: (1) patients had 
primary invasive HER2-positive breast cancers (≥T2, 
and/or positive nodal status) confirmed by biopsy; (2) 
patients received complete standard treatment (4~6 cycles 
of PCH) with no prior treatment before NAT; (3) pretreat-
ment MRI data obtained using the 1.5-T MR scanner 
(Aurora Dedicated Breast MRI System; USA; Aurora); 
(4) the course of NAT need to be monitored with MRI; 
(5) underwent modified radical mastectomy or breast con-
servation within one month after completion of NAT; (6) 
available clinicopathological data (age, menopausal status, 
tumor size, Ki-67 index, MRI-reported T stage, N stage, 
surgery type, FGT, BPE, numbers of lesion, enhancement 
pattern).

Exclusion criteria were as follows: (1) Metastasis else-
where in the body; (2) not complete standard treatment; 
(3) canceled surgery or not undergo surgery at our hospi-
tal; (4) poor MR image quality resulting from poor con-
trast injection or motion artifacts; (5) Occult breast cancer.

MRI Protocol
For all patients, axial breast CE-MR were performed 
before NAT on a 1.5-T MR scan (Aurora Dedicated 
Breast MRI System; USA; Aurora) using a breast unique 
transmit/receive coil in the prone position. The CE-MRI 
protocol included: (a) T1-weighted fat-saturated precon-
trast sequence, (b) multiple (3 phases) T1-weighted fat- 
saturated postcontrast sequences that were acquired after 
intravenous administration of a 0.1 mmol/kg dose of Gd- 
DTPA (Magnevist; Bayer-Schering Pharma, Berlin, 
Germany). Scan parameters were TR/TE=29.0/4.8ms; 
FOV=36 cm×36 cm; matrix=360×360; 108 slices; slice 
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thickness=1.5mm. The scanning time of each phase was 
about 3 minutes, and the number of single-phase scanning 
layers was 108.

Imaging Analysis and Pathological 
Evaluation
All images were retrospectively evaluated by two experi-
enced radiologists (QX and QL) according to the 5th 
edition of the American College of Radiology Breast 
Imaging Reporting and Data System (BI-RADS) in 2013. 
Mass is defined as a three-dimensional, space-occupying 
structure that protrude outward in contour. Non-mass 
enhancement (NME) is used to describe an area that is 
neither a mass nor a focus. NME may have areas or spots 
of normal fibroglandular tissue or fat between the abnor-
mal enhancing components. According to the type of 
tumor on CE-MRI, the patients were grouped into mass 
and non-mass group. According the number of tumors, the 
patients were grouped into uni-focal and unilateral multi- 
focal group.

Treatment Regimen and Criteria for pCR
All patients received 4~6 cycles of PCH regimen 
(paclitaxel + carboplatin + trastuzumab; paclitaxel: 
80mg/m2, carboplatin: AUC=2, trastuzumab was initi-
ally measured at 4mg/kg and maintained at 2mg/kg; 
Once a week, 3 times is a cycle of treatment) and 
then underwent radical mastectomy or breast 
conservation.

Pathological response was determined by pathologist. 
pCR was defined as the absence of residual invasive tumor 
cells in the breast and axillary lymph nodes (ypT0/is + 
ypN0), as determined microscopically, in surgical 
specimens.

Tumor Masking and Inter-Observer 
Reproducibility Evaluation
When drawing the outline of the tumor, we obey the 
following principles. First, regardless of whether the lesion 
presented mass or non-mass enhancement, tumor regions 
of interest (ROI) were delineated along the contour of the 
tumor on the 1st postcontrast CE-MRI scan (the peak 
enhanced phase of the multiphases CE-MRI where the 
border of lesion was the most obvious). Second, the 
ROIs of breast cancer were drawn manually on each 
slice including the necrosis and blood areas to get the 3D 
segmentation of the whole tumor. Last, if the tumor is 
unilateral multifocal lesion, the largest one will be selected 
as the object. And then the 3D segmented contouring 
based on the 1st postcontrast images were propagated to 
pre-contrast and the other two post-contrast phases of CE 
images. The segmentation of whole tumor was performed 
on the 3D-Slicer software (version 4.10.2, https://www. 
slicer.org).

Inter-observer reproducibility of ROI detection and 
radiomic feature extraction were measured using CE1 of 
30 randomly chosen samples. Two experienced radiolo-
gists (QL and QX) performed the ROI delineation 

Figure 1 Flow chart of patient recruitment in this study.
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independently, and then radiomic features extracted from 
the above two ROIs were compared to get the inter-class 
correlation coefficient. An ICC score greater than 0.8 was 
interpreted to reach satisfactory agreement. ICC for radio-
mic features was defined as high (ICC≥0.8), medium 
(0.8>ICC≥0.5), or low (ICC<0.5).

Feature Extraction
Radiomic shape and texture features were calculated 
with PyRadiomics package (https://pyradiomics.readthe 
docs.io/en/latest/index.html) in the Python software (v. 
3.7, Python Software Foundation, https://www.python. 
org/). In total, three groups of imaging features 
(Supplementary Material 1) for each patient were 
extracted from normalized pretreatment CE-MRI 
scans: Group 1(CEshape) consisted of 14 shape-based 
features derived from the 1st postcontrast CE images; 
Group 2(CEtexture) comprised 93 texture features based 
on each phase CE-MRI independently, yielding 372 
features; Group 3(CEsequential) comprised of 930 
sequential features, which were calculated from 93 
texture features to characterize the textural changes 
over time points. In group 3, ten new sequential fea-
tures from each texture feature were calculated 
(Algorithms for the ten new sequential features were 
shown in Supplementary Material 2). The first six 
features, including mean, variance, kurtosis, skewness, 
energy and entropy, were extracted from each indivi-
dual subject. The other four features, including 
Kendall-tau-b, conservation, stability, and dispersion, 
were calculated from the interactive information 
between the current subject and the remainder of the 

subjects. All these features have been used in previous 
radiomic studies.26,27 The source image of radiomic 
features is shown in Figure 2.

Feature Selection Method and Machine 
Learning-Based Classification 
Construction
To avoid severe multicollinearity or overfitting, a forward 
stepwise regression was used to select potential important 
features (stepwise fit function in Matlab 2016, The 
MathWorks, Natick, MA). And then, the number of 
selected features was determined by AIC (Akaike infor-
mation criterion). The penter was set as 0.05 while the 
premove was set as 0.10.

With useful features, machine learning models 
based on CE1 and CEm were constructed respectively. 
Twenty-three classifiers were constructed for discrimi-
nating pCR and non-pCR: including three decision tree 
classifiers (fine tree, medium tree, and coarse tree), two 
discriminant analysis classifiers (Linear Discriminant 
Analysis LDA and quadratic discriminant analysis 
QDA), one Logistic regression, six SVM classifiers 
(linear, quadratic, cubic, fine gaussian, medium gaus-
sian, and coarse gaussian), six k nearest neighbor 
(KNN) classifiers (fine KNN, medium KNN, coarse 
KNN, cosine KNN, cubic KNN and weighted KNN), 
and five ensemble learning classifiers (subspace discri-
minant, subspace KNN, Boosted Trees, Bagged Trees 
and the RUS Boost trees). All the models were con-
ducted using the 5-fold cross validation, whereby 80% 
of cases as training set while 20% as testing set. The 

Figure 2 The source images of radiomics features.
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procedure was repeated for ten rounds to average the 
estimates of performance.

The feature selection and machine learning classifica-
tion were achieved using the Statistics and Machine 
Learning Toolbox in MatLab (v. R2018a; The 
MathWorks, Natick, MA).

Performance of Optical Model in 
Different Types of Carcinoma
The performances of machine learning-based classifiers 
were assessed by their accuracy, sensitivity, specificity 
and AUC. The optical machine learning classifier was 
used for discriminating pCR vs non-pCR in mass and 
non-mass groups, uni-focal and unilateral multi-focal 
groups respectively.

Radiomics Signature Building
The Rad-score of each patient was calculated via a linear 
combination of potential features, weighted by their 
respective coefficients. The formula of Rad-score were 
shown in Supplementary Materials 3 and 4.

Statistical Analysis
Descriptive statistics were summarized as mean ± standard 
deviation (SD). Comparisons between pCR and non-pCR 
groups were made using the Student’s t-test or Mann– 
Whitney U-test for quantitative variables and the Χ2 test 
or Fisher’s test for qualitative variables. All statistical 
analysis and statistical drawing were performed by 
MATLAB 2018a software and Python 3.6. p less than 
0.05 was considered statistically significant.

Results
Clinical Characteristics
A total of 127 lesions from 127 women (mean age, 51.2 years; 
age range, 24–84 years) were ultimately evaluated. Fifty-four 
of 127 patients (42.52%) achieved pCR in the study. Among 
the 127 cases of HER2 positive breast cancer, 89 cases pre-
sented mass enhancement and 38 cases presented NME, while 
96 patients were with uni-focal cancers and 31 patients had 
unilateral multi-focal lesions. The differences in clinical fea-
tures and MRI morphology between pCR and non-pCR groups 
were not statistically significant (shown in Table 1).

Table 1 Clinical and Morphology Characteristics Between pCR and Non-pCR Group

Characteristics pCR (n=54) Non-pCR (n=73) p value

Age,mean(SD),Y 52.80±9.24 50.62±11.19 0.309

Menonpausal status 0.278
Premenopaual 15(27.78%) 26(35.61%)

Postmenopaal 39(72.22%) 47(64.39%)

Enhancement pattern 0.299

Mass 36(66.67%) 53(72.60%)

Non-mass 18(33.33%) 20(27.40%)

Multifocal or multicenter 0.242

Present 42(77.78%) 53(72.60%)
Absent 12(22.22%) 20(27.40%)

Pre-NAC T stage 0.468
T2 40(74.07%) 53(72.60%)

T3 14(25.93%) 20(27.40%)

Pre-NAC N stage 0.211

N0 16(29.63%) 23(31.50%)

N1 29(53.70%) 38(52.05%)
N2 5(9.26%) 2(2.74%)

N3 4(7.41%) 10(13.71%)

Abbreviations: NAC, neoadjuvant chemotherapy; PCR, pathological complete response; SD, standard deviation.
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ICC
The ICC for radiomic features ranged from 0.95 to 0.97 
between the two radiologists QL and QX.

Selected Features
For the CE1 and CEm, 6 features from CEtexture and 6 
features from CEsequential were selected for the final 
machine learning models respectively. The potential fea-
tures were shown in Supplementary Materials 5 and 6.

Performance of the Machine Learning- 
Based Classification
With the selected six features from CE1, the accuracy 
of 23 classifiers ranged from 57.5% to 68.5% 
(Table 2). The optimal model was Logistic regression 
yielding the highest accuracy of 68.5%, with an AUC 
of 0.69.

With the selected six features from CEm, the accuracy 
of 23 classifiers ranged from 40.9% to 79.5% (Table 3). 
The best accuracy was achieved by linear support vector 
machine (SVM) in conjunction with 6 sequential features 
based on CE time points, with an AUC of 0.84.

The linear SVM based on CEm showed a higher per-
formance, with an AUC of 0.84 (Figure 3) than Logistic 
regression using CE1 (AUC=0.69, Figure 4). (De-long test: 
p<0.05)

In mass and non-mass enhancement groups, the accu-
racy of linear SVM achieved 84% and 76%. Whereas in 
uni-focal and unilateral multi-focal cases, the accuracy of 
linear SVM achieved 79% and 75%.

Rad-Score Building
The Rad-score calculated from the two optical models 
were significantly higher in the pCR group than the non- 
pCR group (Figure 5). Besides, the linear SVM based on 
multiphase CE-MRI outperformed the Logistic Regression 
using the single 1st post-contrast CE-MRI sequence 
according to the boxplot.

Discussion
In the study, we investigated the ability of machine learn-
ing models based on pretreatment CE-MRI to predict pCR 
to NAT in patients with HER2 positive invasive breast 
cancer. Sequential texture features changing over time 
points of pretreatment CE-MRI were proposed with better 

Table 2 The Accuracy, Sensitivity, Specificity and AUC of Machine Learning Classification Based on Optimal Six Features from CE1

Classifier Model Accuracy Sensitivity Specificity AUC

Fine Tree 59.1% 48% 67% 0.61

Medium Tree 59.1% 48% 67% 0.62
Coarse tree 60.6% 31% 82% 0.61

Linear Discriminant 68.5% 52% 81% 0.69
Quadratic Discriminant 66.1% 43% 84% 0.66

Logistic Regression 68.5% 52% 81% 0.69

Linear SVM 65.4% 41% 84% 0.69
Quadratic SVM 59.1% 33% 78% 0.57

Cubic SVM 49.6% 48% 51% 0.49

Fine Gaussian SVM 59.8% 44% 71% 0.64
Medium Gaussian SVM 62.2% 35% 82% 0.70

Coarse Gaussian SVM 66.1% 29% 95% 0.68

Fine KNN 60.6% 54% 66% 0.60
Medium KNN 59.8% 44% 71% 0.67

Coarse KNN 57.5% 0% 100% 0.64

Cosine KNN 63.8% 59% 67% 0.62
Cubic KNN 59.8% 44% 71% 0.67

Weighted KNN 60.6% 52% 67% 0.64

Boosted Trees 61.4% 54% 67% 0.67
Bagged Trees 59.1% 52% 64% 0.65

Subspace Discriminant 68.5% 52% 81% 0.69

Subspace KNN 60.6% 54% 66% 0.60
RUS Boosted trees 63.0% 52% 71% 0.75

Abbreviations: KNN, k nearest neighbor; SVM, support vector machine; RUS, random undersampling; AUC, area under curve; CE, contrast enhancement.
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performance compared with traditional texture features 
based on the single 1st phase of postcontrast T1-weighted 
imaging at CE-MRI imaging. The outperformance of 
sequential texture features indicated that combining multi-
phases of pretreatment CE-MRI may be helpful for the 
early prediction of pCR to NAT in HER2 positive invasive 
breast cancer.

In order to predict response to chemotherapy in patients 
with breast cancer, previous studies13–15 utilize texture mea-
sures extracted from CE1. Herein, our study made full use of 
all phases of CE-MRI images and compared the prediction 
ability of machine learning models based on CE1 and CEm. 
For the 1st phase, the 6 radiomic features selected for the final 
models comprised 2 features from first order, 1 from GLCM, 

Table 3 The Accuracy, Sensitivity, Specificity and AUC of Machine Learning Classification Based on Optimal Six Features from CEm

Classifier Model Accuracy Sensitivity Specificity AUC

Fine Tree 69.3% 61% 75% 0.74
Medium Tree 69.3% 61% 75% 0.74

Coarse tree 77.2% 72% 81% 0.75

Linear Discriminant 79.5% 74% 84% 0.84
Quadratic Discriminant 78.7% 72% 84% 0.84

Logistic Regression 79.5% 74% 84% 0.84

Linear SVM 79.5% 74% 84% 0.84
Quadratic SVM 70.1% 61% 77% 0.74

Cubic SVM 40.9% 20% 56% 0.30
Fine Gaussian SVM 74.8% 69% 79% 0.77

Medium Gaussian SVM 78.7% 70% 85% 0.79

Coarse Gaussian SVM 78.7% 72% 84% 0.85
Fine KNN 67.7% 61% 73% 0.67

Medium KNN 74.0% 59% 85% 0.81

Coarse KNN 57.5% 0% 100% 0.78
Cosine KNN 78.7% 78% 79% 0.76

Cubic KNN 74.0% 59% 85% 0.81

Weighted KNN 66.9% 57% 74% 0.68
Boosted Trees 67.7% 61% 73% 0.76

Bagged Trees 67.7% 61% 73% 0.76

Subspace Discriminant 79.5% 74% 84% 0.84
Subspace KNN 67.7% 61% 73% 0.67

RUS Boosted trees 68.5% 65% 71% 0.75

Abbreviations: KNN, k nearest neighbor; SVM, support vector machine; RUS, random undersampling; AUC, area under curve; CE, contrast enhancement.

Figure 3 ROC of linear SVM predicting pCR and non-pCR. Figure 4 ROC of logistic regression predicting pCR and non-pCR.
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2 from GLSZM and 1 from GLRLM. The potential model 
based on CE1 yielded the highest accuracy of 68.5% with an 
AUC of 0.69, which was similar to the results of recent 
reports in HER2 positive subgroups.13–15 For multiphases, 
all the selected 6 radiomic features were obtained from 
CEsequential, comprising 2 features calculated from kurtosis, 
2 from entropy, 1 from dispersion and 1 from stability. 
Among them, kurtosis and entropy had been identified as 
biomarkers of response to neoadjuvant chemotherapy in 
previous reviews.13,28 The optimal model was able to per-
form robustly. Specifically, the AUC of the final model was 
0.84, which was significantly higher than that of previous 
reports12,25 based on the 1st phase. The result revealed that 
sequential texture features may captured more detailed infor-
mation of tumor complexity and heterogeneity that indistin-
guishable to the 1st phase. Besides, the sequential texture 
features changing over time points had been identified to be 
useful in the subtype classification of breast cancer26 and 
prediction of DFS (disease free survival) in HER2 positive 
breast cancer.27 Specially, the optimal model linear SVM 
performed well in predicting pCR to NAT in HER2 positive 
patients stratified by breast cancer enhancement pattern and 
number. In mass and non-mass enhancement groups, the 
accuracy for discriminating pCR achieved 76% and 84%. 
Whereas in uni-focal and unilateral multi-focal cases, the 
accuracies were 79% and 75% respectively. While in many 
studies,12,14,24,25 non-mass enhancement and unilateral mul-
tifocal cases were excluded, our model performed well with-
out regarding to tumor morphology and number. Several 

studies suggested that non-mass enhancement and multifocal 
or multicentric29–31 tumors were more frequently present in 
HER2-positive subtype. For patients with non-mass 
enhancement and multifocal breast carcinoma, neoadjuvant 
therapy was more recommended to downstage and improve 
prognosis.32,33 In our study, the rates of non-mass enhance-
ment and multifocal lesions were 28.35% (38/127) and 
25.20% (32/127), respectively. Therefore, it is more scientific 
to include non-mass enhancement and multifocal cases in the 
study of predicting the response to NAT in HER2 positive 
breast cancer.

In our research, all patients underwent MRI examination 
with the same scanner and treated with the consistent regi-
mens of 4–6 cycles of PCH. The linear support vector 
machine (SVM) was the optimal model with an AUC of 
0.84. The prediction performance was greater than a recent 
study12 on HER2 positive subgroup in which the correspond-
ing AUCs was 0.70. A possible explanation is that the treat-
ment regions for training set and validation are not uniform. 
Another study25 combining the HER2 positive and TN breast 
cancers as one subgroup concluded that the AUCs of model 
of predicting pCR to NAC were less than 0.80 not only in the 
training sets but also in the validation sets. Nevertheless, 
analysis suggested that there was a difference in pCR rates 
after NAC for HER2-positive and triple-negative breast can-
cers. To the end, a study14 concluded that a model using 
intratumor and peritumor radiomics was able to predict 
pCR with an AUC of 0.80 in HER2 positive breast cancers 
which was similar to our result. Previous studies34–36 have 

Figure 5 Rad-score box plot for pCR classification based on the CE1 and CEm. 

Note: ****Indicates p value (<0.0001).
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shown that radiological characteristics may be affected by 
differences in MRI magnetic intensity. So, the same scanner 
and uniform treatment regions can enhance robustness of the 
omics and were beneficial to the establishment of a better 
prediction model.

Rad-score were calculated for each patient with equation of 
the optical model. Our results indicated that the Rad-score in 
the pCR group was significantly higher compared to the non- 
pCR group. This was successfully confirmed in treatment 
evaluation in patients with locally advanced rectal cancer.37

The work presented in our study had several limita-
tions. First, this was a retrospective study and all patients 
were recruited from a single center. Second, we compared 
the performance of machine learning models based on 
radiomic of pretreatment the 1st postcontrast sequence 
and multiphases CE-MRI imaging. However, the study 
lacked an independent validation cohort, external valida-
tion of our results pending adequate patient follow-up will 
be entailed in the future work.

Conclusion
Multiphases CE-MRI imaging may offer more heteroge-
neity information in the tumor and provide a non-invasive 
approach for early prediction of pCR to NAC in patients 
with HER2 positive invasive breast cancer.
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