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Abstract: Circular RNAs (circRNAs) were originally thought to result from RNA 
splicing errors. However, it has been shown that circRNAs can regulate cancer onset 
and progression in various ways. They can regulate cancer cell proliferation, differ-
entiation, invasion, and metastasis. Moreover, they modulate glucose metabolism in 
cancer cells through different mechanisms such as directly regulating glycolytic 
enzymes and glucose transporter (GLUT) or indirectly regulating signal transduction 
pathways. In this review, we elucidate on the role of circRNAs in regulating glucose 
metabolism in cancer cells, which partly explains the pathogenesis of malignant tumors, 
and provides new therapeutic targets or new diagnostic and prognostic markers for 
human cancers. 
Keywords: circRNAs, glucose metabolism, Warburg effect, signaling pathway, targeted 
therapy

Background
Glucose metabolism is one of the most basic life properties. Under normoxia, 
most differentiated cells convert glucose into carbon dioxide and acetyl coen-
zyme A through oxidative phosphorylation to maintain energy metabolism. 
Besides, under anoxic conditions, glucose is directly reduced to lactic acid 
through glycolysis. In the 1920s, Otto Heinrich Warburg discovered that tumor 
cells exhibit unique reprogramming phenotypes,1–3 a phenomenon he named 
the “Warburg effect”.4,5 One of the main characteristic of Warburg effect is 
that, despite sufficient oxygen supply, cancer cells still produce energy through 
glycolysis instead of relying on mitochondrial oxidative phosphorylation, lead-
ing to elevated glucose uptake as well as ATP and lactic acid accumulation in 
cancer cells.4,6 Although more ATP can be produced by oxidative phosphor-
ylation, precursors or intermediates produced during glycolysis by the pentose 
phosphate pathway, the hexosamine pathway, and the serine/glycine biosynth-
esis pathway can provide carbon sources for various biosynthesis reactions, 
thereby meeting the needs for rapid DNA replication.7–11 Glycolysis produces 
less reactive oxygen species (ROS) when compared to mitochondrial oxidative 
phosphorylation, which can induce tumor cell apoptosis or senescence under 
oxygen stress.12 In addition, the lactic acid produced by glycolysis can lower 
the pH of the extracellular matrix (ECM).13 An acidic microenvironment 
promotes tumor cell invasion, metastasis, and enhances their resistance to 
radiotherapy.14,15 Therefore, it is beneficial for tumor cells to rely on 
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glycolysis to meet their energy needs because the 
Warburg effect is an optimized way through which 
tumor cells stimulate growth by cell stress.

Circular RNAs (circRNAs) were first discovered in 
ribonucleic acid (RNA) viruses in 1976,16 followed by 
their discovery in form of endogenous RNA splicing 
products in eukaryotes in 1979.17 circRNAs were ori-
ginally thought to result from RNA splicing errors, 
however, this theory was negated by the discovery of 
a large number of circRNAs in mammalian cells using 
RNA sequencing (RNA-seq) technology and bioinfor-
matics. Salzman et al18 confirmed that circRNA is the 
main transcript for a variety of human cell types. Jack 
et al19 identified more than 25,000 circRNAs in human 
fibroblasts, implying that they are stable, conservative, 
and non-random products of RNA splicing, which may 
be associated with complementary ALU repeats in 
adjacent introns. These findings reveal dynamic expres-
sion patterns of circRNAs in various developmental 
stages and physiological conditions. For example, 
they serve as scaffolds in the assembly of protein 

complexes,20,21 and are also involved in; the isolation 
of proteins from their natural subcellular 
localization,22,23 regulating the expression of parental 
genes,24–27 regulating other splicing processes,28,29 

RNA-protein interactions,30 and act as microRNA 
(miRNA) sponges31–33 (Figure 1).

The most direct strategy for manipulating glucose meta-
bolism is by affecting metabolic enzymes or kinases. Some 
signaling pathways, which play an important role in glucose 
metabolism can also be manipulated. Alterations in mRNA 
and protein levels are associated with glucose metabolism 
reprogramming in tumor cells.34–36 This implies that glyco-
lytic enzymes and signaling pathways may be targets for 
cancer treatment.34,37 (Figure 2 and Figure 3).

Therefore, this review focuses on the mechanisms 
through which circRNAs regulate glucose metabolism, 
with the aim of elucidating on the complex cancer meta-
bolism regulatory networks and providing a better theore-
tical basis for clinical diagnosis and treatment.

Table 1 summarizes circRNAs and their targets in the 
regulation of glucose metabolism in cancer.

Figure 1 Biogenesis of circRNAs. (A) Intron cyclization: intron is cleaved from the pre-mRNA to form a ciRNA; (B) intron pairing-driven circularization: intronic 
complementary base-pairs bring adjacent two exons close together. The exons and introns are then spliced by spliceosomes to form circRNAs; (C) Lariat-driven 
circularization: this model requires covalent binding between the splicing donor and the splicing acceptor, thereby forming an exon-containing lariat.
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Table 1 CircRNAs and Their Targets in the Regulation of Glucose Metabolism in Cancer

Items Target CircRNA Tumor Type Effect on 
Glycolysis

Type of Study References

GLUT GULT1 Circ0072995 Breast cancer Up In vitro, in vivo [42]

CircKLHL24 Breast Cancer Down In vitro, in vivo [135]

CircACACA Non-small-cell lung Cancer Up In vitro, in vivo. [83]
Circ0000376, Non-Small Cell Lung Cancer Up In vitro, in vivo [136]

Circ0002130 Non-Small Cell Lung Cancer Up In vitro, in vivo [137]

Circ100290 Oral squamous cell carcinoma Up In vitro [41]
CircKIAA0907 Oral squamous cell carcinoma Down In vitro, in vivo [138]

Circ0000140 Oral squamous cell carcinoma Down In vitro, in vivo [139]
CircFAT1 Colorectal Cancer Down In vitro, in vivo [140]

CircDENND4C Colorectal cancer cells Up In vitro, in vivo [141]

Circ0007534 Colorectal cancer Up In vitro, in vivo. [43]
CircPTN Glioma Down In vitro, in vivo [142]

CircTADA2A Lung cancer Up In vitro, in vivo [50]

CircPDE5A Neuroblastoma Up In vitro, in vivo. [143]
Circ0105346 Osteosarcoma Up In vitro, in vivo. [144]

CircPRKCI Hepatocellular carcinoma Down In vitro [145]

GULT3 CircMYLK Non-Small Cell Lung Cancer Up In vitro, [51]

Enzymes HK1 CircCDR1 Nasopharyngeal carcinoma Up In vitro, in vivo. [26]

HK2 CircZNF609 Nasopharyngeal carcinoma Up In vitro, in vivo. [55]
CircBICD2 Oral squamous cell carcinoma Up In vitro, in vivo [147]

CircPVT1 Oral squamous cell carcinoma Up In vitro, in vivo. [54]

CircMDM2 Oral squamous cell carcinoma Up In vitro, in vivo [148]
CircRNF20 Breast cancer Up In vitro, in vivo. [57]

Circ0069094 Breast cancer Up In vitro, in vivo. [149]

Circ0008039 Breast cancer Up In vitro, in vivo. [150]
CircRAD18 Breast Cancer Up In vitro, in vivo [151]

CircNFIX Non-Small Cell Lung Cancer Up In vitro, in vivo [152]

Circ0008928 Non-small Cell Lung Cancer Up In vitro [153]
CircPRMT5 Hepatocellular Carcinoma Up In vitro, in vivo [154]

Circ0046599 Hepatocellular Carcinoma Up In vitro, in vivo [155]

CircZNF652 Hepatocellular Carcinoma Up In vitro, in vivo [156]
Circ009157 Hepatocellular Carcinoma Up In vitro [157]

CircTTBK2 Glioma Up In vitro, in vivo [158][

CircNFIX Glioma Up In vitro, in vivo. [58]
Circ0001421 Lung cancer Up In vitro, in vivo [159]

Circ0080145 Chronic Myeloid Leukemia Up In vitro, in vivo [160]

Circ0001776 Endometrial cancer Down In vitro, in vivo [161]
Circ0006168 Esophageal cancer Up In vitro [62]

CircSLAMF6 Gastric cancer Up In vitro, in vivo [162]

Circ0016347 Osteosarcoma Up In vitro, in vivo. [163]
CircCDKN2B-AS1 Cervical squamous cell carcinoma Up In vitro, in vivo [164]

CircZNF609 Prostate Cancer Up In vitro, in vivo. [56]

PK Circ0025033 Ovarian cancer Up In vitro, in vivo. [63]

PKM2 CircMAT2B Hepatocellular carcinoma Up In vitro, in vivo. [61]

Circ0057553 Prostate Cancer Up In vitro, in vivo [165]

CircFOXM1 Melanoma Up In vitro, in vivo [166]
CircPOSTN Glioma Up In vitro, in vivo. [68]

Circ0005963 Colorectal cancer Up In vitro, in vivo [167]

(Continued)
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Table 1 (Continued). 

Items Target CircRNA Tumor Type Effect on 
Glycolysis

Type of Study References

LDHA CircECE1 Osteosarcoma Up In vitro, in vivo. [82]

Circ0056285 Osteosarcoma Cells Up In vitro, in vivo. [168]
Circ0000735 Non-small cell lung cancer Up In vitro, in vivo. [169]

CircARHGAP10 Non-small cell lung cancer Up In vitro, in vivo [170]

CircMEMO1 Non-small cell lung cancer Up In vitro, in vivo [171]
Circ0001610 Endometrial carcinoma Up In vitro, in vivo. [172]

CircSEC24A Cutaneous Squamous Cell Carcinoma Up In vitro, in vivo. [173]

CircDUSP16 Esophageal Squamous Cell Carcinoma Up In vitro, in vivo. [174]
Circ403658 Bladder cancer Up In vitro, in vivo [175]

CircMYC Melanoma Up In vitro [176]

Circ0136666 Colorectal Cancer Up In vitro, in vivo [177]
CircGDI2 Oral Squamous Cell Carcinoma Down In vitro, in vivo [178]

Circ0000376 Gastric cancer Up In vitro [179]

Circ0004913 Hepatocellular Carcinoma Up In vitro, in vivo [180]
CircYY1 Breast Cancer Up In vitro, in vivo. [181]

CircSMARCA5 Prostate Cancer Up In vitro, in vivo. [182]

CircPRKCI Papillary thyroid cancer Up In vitro, in vivo. [183]

PDK PDK1 CircCNST Osteosarcoma cells Up In vitro, in vivo. [73]

Circ0002711 Ovarian cancer Up In vitro, in vivo. [74]
CircEPHB4 Gliomas Up In vitro, in vivo. [75]

PDK2 Circ0091579 Hepatocellular carcinoma Up In vitro, in vivo. [76]

PDK4 CircCCDC66 thyroid cancer Up In vitro [77]

Oncogenes C-Myc CircENO1 Lung adenocarcinoma Up In vitro, in vivo. [87]

ENO1 CircCUX1 Neuroblastoma Up In vitro, in vivo. [90]

CircABCB10 Breast Cancer Up In vitro [69]
CircSEMA5A Bladder cancer Up In vitro, in vivo [184]

HIF HIF-1a CircNRIP1 Gastric Carcinoma Up In vitro [99]

CircMAT2B Gastric Carcinoma Up In vitro, in vivo [185]

CircDENND4C Breast cancer Up In vitro, in vivo. [98]
CircZFR Breast cancer Up In vitro, in vivo [186]

CircPITX1 Glioma Up In vitro, in vivo [187]

CircSEPT9 Glioma Up In vitro, in vivo. [188]
Circ03955 Pancreatic cancer Up In vitro, in vivo. [189]

CircAKT3 Lung cancer Down In vitro, in vivo [190]

CircSLC25A16 Non-small cell lung cancer Up In vitro, in vivo [191]

Wnt/Snail EMT CircFNDC3B Colon cancer Down In vitro, in vivo [110]

Circ0072387 Oral Squamous Cell Carcinoma Down In vitro, in vivo [111]
Circ0035483 Renal Cell Carcinoma Up In vitro, in vivo. [192]

Circ0085616 Cervical Cancer Up In vitro, in vivo [193]

Circ0001721 Osteosarcoma Up In vitro, in vivo [194]
Circ0000517 Hepatocellular carcinoma Up In vitro, in vivo [195]

PI3K/AKT/ 

mTOR

CircRHOBTB3 Ovarian cancer. Down In vitro [121]

CircHIPK3 Lung cancer Up In vitro, in vivo [120]
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CircRNAs Regulate the Enzymes, 
Regulatory Molecules, and Oncogenes 
Involved in Glucose Metabolism in 
Cancer
CircRNAs Regulate Glucose Uptake by 
Altering the Expression of Glucose 
Transporter (GLUT)
Glucose transporter (GLUT) is a membrane protein that 
regulates cellular glucose metabolism. Under normal phy-
siological conditions, GLUT promotes passive glucose 
transport by quickly transporting glucose from capillaries 
to cells. Among the 14 identified GLUT subtypes, GLUT1, 
GLUT3, and GLUT4 are up-regulated in malignant tumor 
cells, implying that they accelerate glucose transport in 
malignant tumors.38,39 This feature has been used in posi-
tron emission tomography for non-invasive diagnostic 
imaging of human cancer using radiolabeled glucose ana-
logues and computer tomography.40

CircRNAs are involved in the regulation of GLUT1 
expression. Circ100290, as a competitive endogenous 
RNA (ceRNA), elevates GLUT1 expression through mir- 
378a, thereby promoting glycolysis, proliferation, and 
invasion of oral squamous cell carcinoma cells.41 Qi et al42 

found that circ0072995, as a type of carcinogenic circular 
RNA, induces malignant phenotype of cells through the 
mir-149-5p/SHMT2 axis. Therefore, circ0072995 
enhances glucose uptake and lactic acid production, and 
promotes anaerobic glycolysis in breast cancer by promot-
ing GLUT expression. circ0007534 significantly regulates 
protein levels of glycolysis-related genes (GULT1) in 
colon cancer through the mir-613/SLC25A22 axis, thereby 
affecting the efficiency of glycolysis and colon cancer cell 
progression.43 Propofol is the most widely used intrave-
nous anesthetic in clinical surgery.44,45 In addition to var-
ious anesthetic effects, propofol exhibits anti-cancer 
affects46,47 against breast cancer48 and stomach cancer.49 

Zhao et al50 found that, propofol regulates protein levels of 
GLUT1 by regulating circTADA2A expression through 
the mir-455 - 3p/FOXM1 axis, which suppresses glucose 
uptake by cancer cells, lactic acid production, and extra-
cellular acidification, and inhibits lung cancer cell prolif-
eration. Xiong et al51 reported that in non-small cell lung 
cancer cells (NSCLC), circMYLK is a molecular sponge 
for miR-195-5p while glucose transporter member 3 
(GLUT3) is the target gene of miR-195-5p. Suppression 
of GLUT3 reduces lactic acid production in cancer cells. 

The decrease in lactic acid production was attributed to 
a decreased efficiency of aerobic glycolysis or the conver-
sion of pyruvate to acetyl-CoA (Figures 2 and 4).

CircRNA Affects Glycolysis by Regulating 
Enzymes or Kinases
Hexokinase (HK) is the first rate-limiting enzyme in the 
glycolytic pathway and is associated with cancer 
progression.52 It transforms glucose into 6-phosphate- 
glucose and promotes glucose transport into cells by glu-
cose transporter 1 (GLUT1). In addition to the widely 
expressed HK1, cancer cells also overexpress HK2, 
which can enhance glycolysis.53

Expression of circPVT1 in highly invasive oral squa-
mous cell carcinoma (OSCC) cells was found to be sig-
nificantly elevated, and was associated with increased 
HK2 expression and suppressed mir-106a-5p 
expression.54 In vitro, HK2 was shown to be a direct target 
of mir-106a-5p while circPVT1 reversely regulated mir- 
106a-5p at the transcriptional level. These findings show 
that mir-106a-5p is a key factor between circPVT1 and 
HK2. In nasopharyngeal carcinoma and prostate cancer 
cells, the circRNA of the ZNF609 gene promotes cancer 
cell occurrence and development by up-regulating HK2 
expression. Knockout of the HRAS gene inhibited HK2 
expression and suppressed glucose consumption, lactate 
production, and ATP levels in nasopharyngeal carcinoma 
cells.55 Besides, the HK2 gene is the target of mir-501-3p 
in prostate cancer cells. Transfection of mir-501-3p can 
inhibit the expression of the HK2 protein, promote glyco-
lysis, and improve radiation resistance of prostate cancer 
cells.56 In addition to the above-mentioned circRNA, 
circRNF20 occurs in breast cancer,57 circENO1 in lung 
adenocarcinoma,57 and circNFIX in glioma.58 These 
circRNAs can affect HK2 expression and promote cancer 
cell progression (Figures 2 and 4).

Pyruvate kinase (PK) is the last rate-limiting enzyme in 
glycolysis. Its activity can be affected by metamorphism 
and covalent modification. PK converts phosphoenolpyru-
vic acid (PEP) to pyruvic acid, where the first and second 
steps consume ATP while the last step produces ATP. 
Currently, four PK isoenzymes have been identified: M, 
K, L, and R types. The aberrant expression of pyruvate 
kinase M2 (PKM2) is very common in tumor cells.59 It is 
a splicing isoform of a dimeric pyruvate kinase involved in 
aerobic glycolysis, and it determines the proportion of 
carbon derived from glucose during energy production 
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through glycolysis.60 Dysregulated circRNAs in cancer 
influence PKM2 expression. In liver cancer, mir-338 - 3p 
was found to be down-regulated despite PKM2 
overexpression.61 This can be attributed to elevated 
expressions of circular RNA MAT2B, which acts as 
a molecular sponge for capturing mir-338-3p. Therefore, 
the MAT2B/mir-338-3p axis promotes glycolysis and liver 
cancer progression under hypoxic conditions by regulating 
PKM2 expression. Furthermore, circ0006168 regulates the 
mir-384/RBBP7 axis by activating the S6K/S6 pathway, 
and regulates PK protein levels in order to promote eso-
phageal cancer cell growth, migration, invasion, and 
glycolysis.62 Hou et al63 knocked out circ0025033 in ovar-
ian cancer cells and found that glucose consumption and 
lactic acid production were inhibited while si-circ0025033 
transfection significantly suppressed PKM2 expression 
when compared to si-NC transfection (Figures 2 and 4).

Lactate dehydrogenase A (LDHA) is one of the sub-
units of lactate dehydrogenase (LDH) isoenzyme, which 
was first identified as one of the glycolytic genes induced 
by the myc gene.64 Its expression levels are associated 
with survival outcomes of various cancers, and it modu-
lates tumor cell proliferation and invasion.45,65 Moreover, 
it can catalyze reversible conversion of pyruvate and lactic 

acid, resulting in lactic acid accumulation, which leads to 
tumor microenvironment acidification and enhanced tumor 
invasion. Secreted lactic acid can also be absorbed by 
adjacent tumor-associated stromal cells, ultimately produ-
cing pyruvate.66,67 CircRNAs modulate glycolysis by reg-
ulating the expression of the LDHA gene. Long et al68 

reported that circPOSTN elevates the expression of LDHA 
in glioma cells. The underlying mechanism involves lactic 
acid production regulation through the circPOSTN/mir- 
361-5p /TPX2 axis, which provides an acidic environment 
for cells and eventually, promotes glioma cell proliferation 
and invasion. circABCB10 knockout in breast cancer cells 
negatively regulates glycolysis through the mir-223 - 3P/ 
PFN axis, thereby reducing glucose consumption and lac-
tic acid production, suppressing LDH-A activity and ATP 
level, promoting infrared treatment sensitivity, and provid-
ing a new direction for breast cancer radiotherapy69 

(Figure 2).
The pyruvate dehydrogenase complex (PDC) is essen-

tial in metabolic homeostasis and is regulated by pyruvate 
dehydrogenase kinases (PDKs). The PDKs control PDC 
activity by phosphorylating its specific serine residues and, 
subsequently, deactivating the system if present in excess. 
There are four known isoforms of PDK’s (PDK1, PDK2, 

Figure 2 CircRNAs regulate the molecules involved in glucose metabolism in cancer. CircRNAs regulate glucose uptake and glycolytic flux by modulating GLUTs and 
glycolic enzymes.
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PDK3, and PDK4), that have different binding affinities to 
the complex.70 The isozymes bind phosphates to specific 
serine residues present within the α-subunits of the E1 of 
the complex.71,72 Hu et al73 reported that Circ-CNST 
regulates PDK1 expression by sponging miR-578 and 
glucose consumption. Moreover, lactate production and 
ATP/ADP ratios were found to be suppressed in Circ- 
CNST upregulated osteosarcoma cells. Xie et al74 knocked 
out Circ_0002711 in ovarian cancer cells and found that 
they could significantly inhibit glucose consumption, lactic 
acid production and PDK1 expression by modulating the 
miR-1244/ROCK1 axis. In gliomas, CircRNA EPHB4 
modulates significantly promoting glucose consumption, 
lactate production and PDK1 expression levels by spong-
ing miR-637.75 In Hepatocellular carcinoma, Circ0091579 
enhances PDK2 protein expression under hypoxic stress 
conditions and promotes glucose uptake as well as lactic 
acid production.76 Moreover, PDK4 protein expression is 
enhanced by CircCCDC66 in thyroid cancer77 (Figures 3 
and 4).

CircRNA Affects Glycolysis by Regulating 
Oncogenes
Molecular mechanisms of metabolic abnormalities are 
associated with oncogene activation or tumor suppressor 
loss, eventually leading to elevated expression levels of 
hypoxia inducible factor 1α (HIF-1α) or the c-Myc onco-
gene. Studies64,78,79 have shown that aberrant regulation of 
the MYC oncogene is common during tumorigenesis. 
Notably, c-Myc is a transcription factor that is encoded 
by the MYC oncogene. Under normal oxygen conditions, 
regulation of the glycolytic genes by c-Myc promotes 
glucose metabolism as well as cell growth and 
proliferation.

Kim et al80 reported that dysregulated hypoxia-inducible 
factor-1 (HIF-1) can cooperate with dysregulated c-Myc to 
induce catalase hexose kinase 2 (the first key enzyme of 
glycolysis) and inactivate lactate dehydrogenase, thereby 
suppressing mitochondrial respiration and promoting glyco-
lysis. TXNIP is an effective negative regulator of glucose 

Figure 3 Role of CircRNA-mediated HIF and S6K/S6 pathways in glucose metabolism in tumor cells. CircRNAs can regulate HIF-1α protein synthesis and stability, thereby 
modulating HIF-1-mediated metabolic reprogramming. HIF-1α plays a key role in stimulating glycolic enzymes and in blocking mitochondrial activity. CircRNAs can also 
regulate S6K pathways. S6K may elevate oxidative phosphorylation by enhancing metabolic coupling between glycolysis and oxidative phosphorylation and increases glucose 
uptake and flux.
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uptake and aerobic glycolysis.81 Shen et al82 found that 
mRNA and protein expression levels of TXMP were sig-
nificantly elevated in osteosarcoma cells with circECE1 
knock out when compared to control cells. This indicates 
that TXNIP is mainly regulated by circECE1 transcription. 
Moreover, circECE1 interacts with c-Myc to prevent spop- 
induced c-Myc ubiquitination and degradation, and activates 
the c-Myc-TXNIP signal-regulated Warburg effect. There is 
a feedback loop between c-Myc and circECE1 - TXNIP, 
which regulates c-Myc protein expression and glucose meta-
bolism. Circ-ACACA regulates the PI3K/PKB signaling 
pathway in non-small cell lung cancer (NSCLC) cells by 
interacting with MIR-1183, and suppresses protein expres-
sion levels of c-Myc, MMP9, and GLUT-1 genes in tumor 
cells, thereby promoting glycolysis.83

Enolase (ENO1) is a glycolytic enzyme that acts as 
a metabolic tumor promoter of the Warburg effect in cancer 
cells. It plays a vital role in aerobic glycolysis by converting 

2-phosphoglyceride into phosphoenolpyruvate.84–86 In lung 
adenocarcinoma, ENO1 is the main target of miR-22-3p, and 
miR-22-3p transfection can suppress ENO1 protein expres-
sion. Therefore, circRNA of the ENO1 gene elevates protein 
expression levels of ENO1 as well as promote glycolysis and 
tumor progression of lung adenocarcinoma by up-regulating 
miR-22 - 3p.87

Phosphate isomerase (PI) is a cytoplasmic enzyme 
responsible for catalyzing mutual conversions between 
glucose-6-phosphatase and fructose-6-phosphatase. 
Therefore, it plays a key role in the glycolytic pathway.88 

Phosphoglycerate kinase 1 (PGK1) contributes to ATP 
production and is involved in tumor occurrence and 
development.89 In addition, overexpression or knockdown 
of p200 CUX1 (CUX1) elevated or suppressed expression 
levels of p110 CUX1, ENO1, glucose-6-phosphate isomer-
ase (GPI), or PGK1.90 The binding of circ-CUX1 to the 
RRM region of EWSR1 leads to EWSR1-mediated MAZ 

Figure 4 The ceRNA network of circRNA-miRNA-mRNA. Spherical indicate circRNA, diamond represent miRNA, and rectangles indicate mRNA.
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reverse activation, implying that the circ-CUX1/ EWSR1/ 
MAZ axis promotes aerobic glycolysis and tumor progres-
sion (Figures 3 and 4).

CircRNAs Affect Glucose 
Metabolism by Regulating 
Cancer-Associated Signal Pathways
The HIF Signaling Pathway
Hypoxia inducible factor (HIF) is a nuclear transcription 
factor produced by cancer cells that have adapted to 
hypoxic environments. HIF1 is an oxygen-sensitive tran-
scription complex composed of the oxygen regulatory 
subunit (HIF-1a) and the constitutive expression subunit 
(HIF-1b). Under hypoxia stress and PI3K activation, HIF- 
1a combines with the HIF-1b dimer to form active HIF-1 
complexes, which regulate the transcription of various 
genes by binding hypoxia response elements.91 In 
a hypoxic environment, most tumor cells carry out aerobic 
glycolysis, thereby promoting the expression of glucose 
transporters, which increase glucose uptake by activating 
HIF-1.92 Moreover, it increases the expression of glycoly-
tic enzymes,93,94 inhibits oxidative phosphorylation,95 and 
up-regulates LDHA, resulting in an acidic tumor 
microenvironment.93,96,97 In breast cancer, 
circDENND4C and HIF-1a form a positive feedback 
loop, which contributes to the Warburg effect. Under 
hypoxic stress conditions, elevated HK2, MMP9, and 
MMP2 protein expressions promote glucose uptake and 
lactic acid production. In the hypoxia-inducible chain, 
circDENND4C, a direct transcription target of HIF-1 was 
shown to promote glycolysis by elevating HK2, MMP9, 
and MMP2 levels. However, this effect was reversed by 
ectopic expressions of HIF-1a, indicating that the function 
of circDENND4C was dependent on HIF-1.98 Xu et al99 

showed that circNRIP1 sponged miR-138-5p through HIF- 
1α dependent glucose metabolism, thereby maintaining the 
resistance of gastric carcinoma (GC) cells to 5-FU under 
hypoxia. Therefore, the combination of targeted 
circNRIP1 and 5-FU can significantly improve the prog-
nosis of GC patients (Figures 3 and 4).

The Wnt/Snail Signaling Pathway
Wnt signaling regulates embryonic development and its 
imbalance is closely associated with the occurrence of 
many malignant tumors (including breast and colon can-
cers). Moreover, it induces snail-dependent epithelial- 

mesenchymal transition (EMT), which is the main cause 
of tumor invasion and metastasis.100–104

Metabolic changes can control the EMT process and 
trigger tumor malignancies, commonly referred to as the 
Warburg effect.105–107 Su et al108 revealed that Wnt 
inhibits mitochondrial respiration by inhibiting cyto-
chrome C oxidase and promotes glycolysis by inducing 
pyruvate carboxylase (a key peroxidase). This process 
depends on the β-catendon/T cytokine 4/Snail signaling 
pathway. Inhibition of E-cadherin inhibits mitochondrial 
respiration and stimulates glycolysis through snail acti-
vation, implying that EMT contributes to Wnt/snail- 
mediated regulation of mitochondrial respiration and 
glucose metabolism. FBP1 is one of the gluconeogen-
esis-related restriction enzymes that modulates glucose 
metabolism.109 Pan et al111 identified a novel protein 
encoded by circFNDC3B, which inhibits tumor progres-
sion and epithelial-mesenchymal transition in colon can-
cer by alleviating the inhibitory effect of snail on the 
FBP1 gene. Therefore, it has been postulated that 
circFNDC3B plays a tumor suppressor role through the 
snail/FBP1/EMT axis.110 Han et al111 found that hsa_-
circ_0072387 expression was significantly downregu-
lated while miR-503-5p was upregulated in OSCC cells 
and tissues. The gain of hsa_circ_0072387 or knock-
down of miR-503-5p was shown to suppress OSCC 
cell proliferation, migration and invasion, EMT, as well 
as glycolysis. hsa_circ_0072387 targeted miR-503-5p 
and inversely regulated it expression. Moreover, upregu-
lation of miR-503-5p partially reversed the tumor sup-
pressive effects of hsa_circ_0072387 on OSCC cells 
(Figure 3).

The PI3K/AKT/mTOR Signaling Pathway
The phosphoinositide 3-kinase (PI3K) signaling pathway 
is involved in glucose metabolism. PI3K indirectly ele-
vates the expression of GLUTs and enzymes by modulat-
ing Akt and mammalian target of rapamycin (mTOR). 
Akt-related metabolic factors include apoptosis-related 
kinases and GLUTs. Activation of Akt can elevate cellular 
ATP production and oxygen consumption.112 Akt regulates 
glycolysis and can elevate the expression of GLUTs113 and 
glycolytic enzymes such as HK2, PKM2112,114,115 or inhi-
bit mitochondrial oxidative phosphorylation116,117 or acti-
vate mTORC1, which in turn elevates HIF-1 levels.118,119

CircHIPK3 is upregulated in lung cancer and promotes 
glucose uptake and utilization during aerobic glycolysis by 
enhancing Akt phosphorylation and activating the mTOR 
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signaling pathway, resulting in the upregulation of HK2.120 

Besides, Yalan et al found that CircRHOBTB3 plays 
a suppressor role and inhibits tumorigenesis by inactivating 
the PI3K/AKT pathway in ovarian cancer. Lentivectors for 
short hairpin RNA (shRNA) against circRHOBTB3 (sh- 
circRHOBTB3) or pcDNA-circRHOBTB3 were used to 
downregulate or upregulate circRHOBTB3 expression in 
an animal tumor model. It was found that the protein expres-
sions of GLUT1, HK2 and LDHA were altered.121(Figure 3).

Therapeutic Potential of CircRNA 
in Targeted Cancer Treatment
High rates of aerobic glycolysis in cancer cells are impor-
tant for proliferation. Although oxidative phosphorylation 
is more beneficial for ATP production, high ATP produc-
tion rates but at low efficiencies is uncommon in cancer 
cells. Instead, cancer cells may benefit from elevated 
levels of glycolysis intermediates such as nucleotides, 
amino acids, lipids, and NADPH.122

Identifying key nodes in the pathway network that 
regulates aerobic glycolysis can lead to the discovery of 
new targets for anti-tumor therapy. Among the various 
enzymes involved in the glycolysis cascade, GLUT-1, 
HK2, LDHA, and PKM2 are potential targets because 
they are overexpressed in cancer cells.123–126 In addition, 
targeting the Warburg effect through precision medicine, 
a multi-pronged approach, may be an effective anti-cancer 
treatment strategy. For example, the Warburg effect was 
reversed in lung adenocarcinoma cells by inhibiting the 
EDFR signaling pathway.127 Another treatment strategy 
involves combining targeted glycolysis drugs and mTOR 
inhibitors to prevent metabolic reprogramming from indu-
cing cancer cell apoptosis.128 For instance, the combina-
tion of acarbinidine (AICAR) and methotrexate 
(glucosamine) reversed the Warburg effect in MCF-7 
breast cancer cells.129 Although single drug therapy may 
induce resistance, combined therapy can induce AMPK 
and FOX1 expression, resulting in increased mitochondrial 
oxidative phosphorylation and reduced glycolysis. These 
metabolic changes indicate that the anti-Warburg effect 
prevents G1/S and G2/M transitions and slows cell cycle 
progression. A previous study performed on kidney and 
ganglion cell tumors reported germline mutations of suc-
cinate dehydrogenase and fumarate hydratase in the TCA 
cycle.130 The role of one of these mutations is to activate 
HIF-1α-regulated glucose metabolism. Collectively, these 

findings imply that targeting glucose metabolism-related 
genes or pathways has great potentials in cancer treatment.

Interactions between circRNAs and key transcription 
factors or metabolic enzymes involved in glycolysis can 
effectively regulate glucose metabolism and promote 
tumor progression. In addition to these key molecules, 
other metabolic pathways are also crucial for glucose 
metabolism in cancer, especially the PI3K/AKT/ mTOR 
and the AMPK pathways. Considering glucose metabo-
lism reprogramming, targeting circRNAs may have an 
important impact on cancer cell invasion and proliferation. 
Therefore, the circRNAs associated with aerobic glycoly-
sis may be diagnostic and prognostic biomarkers for repro-
gramming glucose metabolism. Moreover, elucidation of 
circRNA-mediated glucose metabolism regulation in 
tumor cells may inform the development of circRNA 
inhibitors and prevent tumor progression.

Therefore, circRNA, as a regulator of metabolites, is 
more likely to provide novel targets for cancer treatment. 
However, there are many challenges associated with these 
methods. First, cells can recruit other glycolytic enzymes to 
promote glycolysis despite enzyme inhibitors being highly 
specific. Second, key target pathways must be identified. 
However, this may be difficult to achieve because of the 
phenotypic and functional heterogeneity between cancer and 
a single tumor. Third, it is necessary to clarify the toxic 
effects of inhibiting glycolytic enzymes in normal cells 
since aerobic glycolysis is a key process in immune and 
stem cells. Fluorodeoxyglucose positron emission tomogra-
phy (FDG-PET) has previously been used to measure glu-
cose metabolism, detect cancer, and predict prognosis.131 

Current methods, including positron emission tomography 
(PET), autoradiography and magnetic resonance imaging 
(MRI) can measure the primary metabolic rate of glucose. 
However, these methods are limited by the fact that they 
cannot distinguish between markers and intermediates.

Conclusion
Implementation of integrated treatment strategies for 
patients based on their genetic backgrounds is becoming 
a reality in cancer treatment. Advances in systematic biol-
ogy, such as reconstruction of genome-scale metabolic mod-
els (GEMs), can enhance the accuracy of systematic 
assessment of cancer cell type-specific metabolic 
profiles.132–134 Transgenic bio-integromics data can reveal 
the biomarkers and anti-metabolites of potential specific 
patients and cancer types. Furthermore, reprogrammed glu-
cose metabolism is a recently identified marker for cancer 
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cells. Therefore, elucidation of the roles of circRNAs in 
glucose metabolism and their mechanisms will help in 
development of new strategies for controlling abnormal 
metabolic phenotypes and for inhibiting the Warburg effect.
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