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Abstract: Colorectal cancer (CRC) is a major health burden worldwide, and thus, optimised 
diagnosis and treatments are imperative. E2F transcription factors (E2Fs) are a family of 
transcription factors consisting of eight genes, contributing to the oncogenesis and develop-
ment of CRC. Importantly, E2Fs control not only the cell cycle but also apoptosis, senes-
cence, DNA damage response, and drug resistance by interacting with multiple signaling 
pathways. However, the specific functions and intricate machinery of these eight E2Fs in 
human CRC remain unclear in many respects. Evidence on E2Fs and CRC has been scattered 
on the related regulatory genes, microRNAs (miRNAs), and competing endogenous RNAs 
(ceRNAs). Accordingly, some drugs targeting E2Fs have been transferred from preclinical to 
clinical application. Herein, we have systemically reviewed the current literature on the roles 
of various E2Fs in CRC with the purpose of providing possible clinical implications for 
patient diagnosis and prognosis and future treatment strategy design, thereby furthering the 
understanding of the E2Fs. 
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Introduction
Cancer is a major leading cause of death in the 21st century globally. Despite 
remarkable advancements that have been made in the diagnosis and treatment of 
CRC in recent years, the number of new cases of colorectal cancer (CRC) reached 
1.8 million across the world in 2018, with 881,000 reported deaths.1 Furthermore, 
about 30–50% of patients exhibit local recurrence or metastasis after radical 
resection.2 Since, the principal obstacles to CRC treatment are tumor recurrence, 
metastasis, and resistance, the 5-year survival rate remains less than 65%.3,4 

Unfortunately, the classic biomarkers have limited predictive and clinical value. 
Thus, there is an urgent need to discover novel diagnostic and prognostic biomar-
kers for this lethal disease.

In 1986, it was found that the E2F transcription factors (E2Fs) could bind to the 
promoter of the adenoviral gene E2. Based on their molecular structure and 
transcriptional properties, the E2F family can be categorized into three groups: 
transcriptional activators (E2F1, E2F2, and E2F3a), canonical repressors (E2F3b 
and E2F4-E2F6), and atypical repressors (E2F7 and E2F8).5 The E2Fs are becom-
ing increasingly complex owing to several E2F isoforms, including two splice 
variants of E2F3a (E2F3c and E2F3d).6 The E2Fs had come to the frontiers of 
cancer research when they were found to be regulated by the retinoblastoma gene 
product, composed of pRB (RB1), p107 (RBL1), and p130 (RBL2).7,8 Aberrant 
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E2F transcriptions have been identified in many human 
malignancies. Mechanistically, dysregulated E2Fs can 
activate or silence some oncogenes or tumor suppressors 
at multiple levels, including transcriptional level, post- 
transcriptional level, translational level, protein-protein 
interaction level, and transcriptional activity level, and 
further causing the carcinogenesis in human malignancies, 
including CRC.9 Importantly, in addition to the classic 
cell-cycle-intrinsic regulation, E2Fs control apoptosis,10 

senescence,11 DNA-damage response,6,12 autophagy,13 

metabolism,9 angiogenesis,9 and drug resistance.14 (see 
Figure 1) However, the specific functions and intricate 
machinery of these eight E2Fs in human CRC remain 
unclear in many respects. Thus, further studies need to 
be comprehensively reviewed for a greater understanding 
of their detailed regulatory mechanisms in CRC. In this 
review, we have systematically searched Web of Science, 
EMBASE, PubMed, Wanfang, China National Knowledge 
Infrastructure (CNKI), VIP databases, and SinoMed data-
bases to investigate the current state of knowledge of the 
roles of various E2Fs in CRC with the purpose of provid-
ing possible clinical implications for patient diagnosis, 
prognosis, and future treatment strategy design.

E2F-Related RNAs in CRC
Long non-coding RNAs (lncRNAs) are RNA transcripts 
with a length of more than 200 nucleotides (nts).15 

LncRNAs regulate microRNAs (miRNA) as competing 
endogenous RNAs (ceRNAs). For instance, colorectal 
neoplasia differentially expressed (CRNDE) promotes 
metastasis and oxaliplatin resistance by hijacking miR- 
136 and regulating E2F1 expression in CRC.16 Similarly, 
SNHG6, located at chromosome 8q13.1, acts as a ceRNA 
by sponging miR-181a-5p, promoting E2F5-mediated pro-
liferation of CRC cells.17 Recently, the E2F1-mediated 
MNX1-AS1-miR-218-5p-SEC61A1 feedback network 
was discovered to be also pivotal for CRC 
tumorigenesis.18 Oncogenic H19, another interesting 
lncRNA, is an independent predictor of CRC survival. It 
interacts with macroH2A and promotes CRC growth and 
migration by targeting RB1/E2F1 signaling and cyclin- 
dependent kinases (CDK)-β-catenin activity.19

Several circular RNAs (circRNAs) also exhibit oncogenic 
properties by functioning as ceRNAs. For example, MAT2B, 
a novel circRNA, was found to increase E2F1 expression 
through sponging miR-610, resulting in tumorigenesis or 
further development.20 Similarly, cir_001569 upregulates 
E2F5 by sponging miR-145 and is correlated with the 

aggressive character of CRC.21 Furthermore, the 
circCAMSAP1/miR-328-5p/E2F1 axis is also essential for 
CRC progression.22

MiRNAs are key components of the multi-level regu-
latory system. They are a class of short (20–22 nts) non- 
protein-coding endogenous RNAs that regulate CRC 
oncogenesis by binding to complementary sequences (3ʹ- 
untranslated regions, 3ʹ-UTRs) of target mRNAs to direct 
their post-transcriptional repression.23–27 For example, 
both miR-342-3p and miR-377 target the E2F1 3ʹ-UTRs 
to inhibit the proliferation of glioma cells.28 Additionally, 
miR-526b-3p is related to a better prognosis in CRC 
patients and directly targets the 3ʹ-UTRs of E2F1 
mRNA, leading to reduced E2F1 expression.29 It is note-
worthy to mention that unique miRNAs expression pro-
files can be observed in different stages of the CRC 
progression.30 Similarly, miR-4711-5p dramatically 
induces G1 arrest by downregulating the downstream 
molecules of the E2F-TFDP1 complex in HCT-116 cells, 
including cell division cycle protein 6 (CDC6), CDT1, and 
MCM7.24 MiR-106a and miR-362-3p are two other pro-
mising miRNAs that act as negative upstream regulators of 
E2F1 and improve patient survival.31,32 It has been well 
documented that miR-31 and miR-155 drive CRC devel-
opment by decreasing E2F2.33,34 This suggests that they 
might become targets for anti-tumour drug design. 
Furthermore, some known miRNAs, such as miR-194,26 

miR-377,35 miR-449b,36 and miR-503,37 play a role in 
growth suppression through modulating E2F3 in CRC. It 
has been reported that miR-34a might serve as the key 
upstream negative regulators of E2F1, E2F3, and E2F5 
and enhanced 5-Fluorouracil (5-FU) cytotoxicity in 
CRC.38–42 The 1,2-diaminocyclohexane carrier ligand- 
mediated p53-miR-34a-E2F signaling pathway also 
appears to have an important mechanism.42 Moreover, 
circulating miR-34a combined with miR-150 has been 
reported to be capable of distinguishing patients with 
polyps, adenomas, and advanced cancer.43 The miR-3666 
has been identified as a tumor suppressor in breast 
cancer44 and thyroid carcinoma.45 Specifically, the miR- 
3666/E2F7 is suggested to play a crucial role in modulat-
ing HCT116 cell viability, apoptosis, and migration by 
inhibiting the signaling activation of mitogen-activated 
protein kinase (MAPK)/extracellular regulated protein 
kinases (ERK).46 MiR-1258 negatively controls E2F8 by 
influencing several cell-cycle factors, including cyclin D1 
and cyclin-dependent kinase inhibitor 1A in CRC.47 
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Figure 1 Graphical illustration showing that the regulatory mechanisms for E2Fs in CRC. For instance, E2Fs function in CRC is modulated via multiple levels including the 
transcriptional level (NFYB, KRT23, and ChoKa inhibitors-mediated transcription of the E2F gene), post-transcriptional regulation (E2F mRNA targeted by different miRNAs 
and ceRNAs), post-translational modifications (deacetylation and acetylation of E2F protein), protein–protein interaction level (phosphorylation and dephosphorylation of 
RB protein), and transcriptional activity level (XIAPΔRING, TRIP-Br2, cIAP1, NLK, and NPTX1 regulate the transcriptional activity of E2Fs protein). Solid arrows represent 
promoted effects, while dashed arrows represent inhibitory effects. Different colored lines showed different signaling pathways or targets. 
Abbreviations: DDR, DNA damage response; CSC, cancer stem cell; EMT, epithelial-mesenchymal transition.
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However, the miRNAs targeting E2F4 and E2F6 in CRC 
have not yet been discovered.

In cancer cells, the E2F-miRNA regulatory loops have 
been described.27,48 For instance, miR-26a and E2F7 con-
stitute a reciprocal regulatory network in which miR-26a 
inhibits E2F7 expression, while E2F7 targets MYC and 
decreases miR-26a.48 Similarly, E2F7 suppresses miR- 
199b expression in SW403 cells, and miR-199b targets 
ubiquitin-specific protease 47 (USP47) that stabilizes 
MAPK, promoting colon cancer stem cell activity and 
subsequently accelerating colon cancer progression.49 

Furthermore, Gao et al summarized the bidirectional cross- 
link between E2F3 and 29 miRNAs in human cancers and 
elucidated how this regulation occurs.27 This review 
unfolds a series of RNA interaction profiles (see 
Figure 1). Collectively, we think the miRNA-based cancer 
therapeutic method is a promising next-generation treat-
ment strategy since miRNAs can be readily detected in 
various biofluids and tissues, such as blood, serum, 
plasma, saliva, and stools.50,51

Upstream or Downstream Proteins 
Involved in E2Fs Regulation in CRC
It has been well known that E2Fs can either activate or 
inhibit gene transcription, depending on the cell type, the 
target genes, the expression levels of co-regulator partners, 
and the external environment.52–54 In particular, the CDK- 
RB-E2F pathway is important for cell fate determination. 
More specifically, the CDK and cyclin complexes phos-
phorylate RB and release E2Fs. Re-establishing cell cycle 
regulation through direct or indirect inhibition of CDK is 
suggested as an attractive option of the molecularly tar-
geted therapy.55,56 (see Figure 1) As reported, the CDK4/6 
inhibitors in human CRC are currently being tested, 
including tetrandrine,56 abemaciclib,57 ganetespib,58 and 
palbociclib.59 These inhibitors inhibit tumorigenesis, at 
least partially by reducing the expression of E2F target 
genes. (see Figure 1) Former studies focused on regulatory 
components modulating the CDK-RB-E2F axis and gained 
lots of valuable insights.9 Particularly, over-expressed 
TRIP-Br2 was found to promote anchorage-independent 
growth of HCT-116 cells by activating the RB/E2F/DP1- 
mediated transcription through upregulation of cyclin E, 
cyclin A2, CDC6, and DHFR of the key E2F-responsive 
partners.60 Likewise, the cellular inhibitor of apoptosis 1 
also seems to be crucial for optimal E2F1 mediated-cyclin 
A and cyclin E expression.54 Another powerful gene, 

X-linked inhibitor of apoptosis protein (XIAP) with 
RING (Really Interesting New Gene) domain deletion 
(XIAPΔRING) translocates into nuclear and promotes can-
cer cell-autonomous growth by targeting the E2F1/cycle 
E axis.61 Moreover, Neuronal pentraxin 1 (NPTX1), 
a member of the long pentraxin family (NPTX1, NPTX2, 
and NPTXR), suppresses the growth of colon cancer cells 
through decreasing cyclin A2 and CDK2 expression.62 As 
reported, histone deacetylases (HDACs) function as the 
negative regulator of E2F1 through deacetylation. Nemo- 
like kinase boosts CRC progression by releasing E2F1 
from the E2F1/HDAC1 complex.63

Importantly, the cross-talk between the RB/E2F and 
Wnt/β-catenin signaling pathways in human malignancies 
has already been characterized.64 Identification of the cri-
tical effectors of the cross signaling pathway is beneficial 
for CRC management. In particular, E2F1 suppresses Wnt/ 
β-catenin activity through inhibitor of β-catenin and TCF4 
(ICAT). Phospholipase D1 (PLD1) controls the cross-link 
among E2F-miR-4496 and Wnt/β-catenin pathways and 
the tumor-initiating program of CRC cells.65 

Furthermore, PLD1 also regulates the Wnt/β-catenin sig-
naling by selectively downregulating ICAT via the 
Phosphoinositide 3-Kinase (PI3K)/Akt-TopBP1-E2F1 sig-
naling axis.66,67

E2Fs are targeted by different proteins (see Figure 1). 
For instance, Keratin 23 is strongly expressed in colon 
adenocarcinomas compared to normal colon mucosa, and 
its depletion leads to a reduced expression of many key 
molecules including E2F1.68 Spinophilin is a previously 
recognized novel tumor suppressor gene. Ress et al pro-
posed that spinophilin expression modulates cellular 
growth, cancer stemness, and 5-FU resistance in CRC 
cells by inhibiting E2F1 activation.69 ChoKα specific inhi-
bitors, MN58b and TCD-717 modulate the expression 
levels of TS and TK1 through the inhibition of E2F 
production.70 Aldose reductase (AR), an NADPH- 
dependent Aldo ketoreductase, is involved in colon carci-
nogenesis. Ramana et al reported that inhibition of AR 
inhibits the related growth factor-induced G1-S phase 
transition via the AKT/PI3K/E2F1 signaling pathway in 
human colon cancer cells.71,72

E2Fs activates numerous downstream regulatory genes 
(see Figure 1). E2F1 overexpression has been identified to 
promote the transformation of aggressive phenotypes in 
CRC cells by activating the ribonucleotide reductase small 
subunit M2.73 Ubiquitin-like with PHD and ring-finger 
domain 1 (UHRF1) expression has been discovered to be 
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upregulated by E2F1 and involved in the cellular prolif-
eration of CRC. Particularly, enhanced UHRF1 expression 
appears to be involved in carcinogenesis of the right com-
pared to the left hemicolon.74 The MDM2 antagonists 
nutlin-3 and nutlin-3a can induce cancer cell apoptosis in 
a p53-dependent manner.42,75,76 Interestingly, they also 
initiate apoptosis by activating E2F1- and p73-mediated 
expression of Siva-1 and p53 upregulated modulator of 
apoptosis (PUMA) regardless of p53 status in CRC.75 

Moreover, CDCA3 is referred to as a trigger of mitotic 
entry, mediates p21-dependent proliferation of CRC by 
regulating E2F1 expression.77 It has been reported that 
KNK437 is a heat shock protein inhibitor that inhibits 
the DNAJA1-induced CRC proliferation and 
metastasis.78 Mechanistically, DNAJA1 is activated by 
E2F1 and then promotes the cell cycle by stabilizing 
CDC45. More importantly, the combined application of 
KNK437 with 5-FU/L-OHP shows a synergistic inhibitive 
effect on DNAJA1-mediated liver metastasis. Li et al 
found that E2F2 acts as a tumor suppressor in CRC by 
repressing CCNA2, C-MYC, CDK2, and MCM4.33 

A recent study also demonstrated that the small nuclear 
ribonucleoprotein polypeptide N accelerates the malignant 
progression of CRC regulated by E2F8.79

Immune Microenvironment and 
E2Fs in CRC
The tumor microenvironment (TME) constitutes immune 
cells, stromal cells, and extracellular matrix, which func-
tions as an immunologic battleground for tumor cells and 
the immune system during tumor formation.80 The TME 
and the related inflammatory response play an imperative 
role in cancer development and progression. It should be 
noted that chronic intestinal inflammation such as inflam-
matory bowel disease promotes pRB hyperphosphoryla-
tion and E2F1 activation, directly increasing the CRC 
risk.81–84 Multiple pro-inflammatory cytokines, including 
interleukin (IL)-6, IL-8, IL-13, and IL-17 released by 
diverse infiltrating cells, such as neutrophils, macrophages, 
and lymphocytes, have been found to induce CRC 
metastasis.82,85–88 Remarkably, Chen et al proposed 
a model that the E2F1/SP3/STAT6 axis induced by IL-4 
promotes the epithelial-mesenchymal transition (EMT) of 
CRC cells.89 (see Figure 1) The microbiota has been 
identified as an important part of TME. It has been 
reported that changes in the microbiota in TME mediate 
chronic inflammation and CRC initiation.90 Thompson 

et al found H. influenza to be significantly related to 
genes in the G2M checkpoint, E2F transcription, and 
mitotic pathways in breast cancer.91 Similarly, commensal 
gut microbiota also shapes the colonic immune environ-
ment in CRC.92 However, little is known about the rela-
tionships between E2Fs and microbiota in CRC.

The human genome is constantly exposed to both 
endogenous and exogenous stresses, such as hypoxia, 
ionizing radiation, and acidosis, which can lead to geno-
mic instability and the subsequent increased mutation rate, 
thereby accelerating the tumorigenesis.93–99 Changes in 
the TME, such as hypoxia and nutrient deprivation has 
been discovered to cause mitochondrial damage.100 Araki 
et al found that a distinctive product, E2F3d triggers the 
hypoxia-induced fragmentation and mitophagy in cancer 
cells.6 Furthermore, hypoxia causes elevated 
mutagenesis,94 diminished capacity of DNA repair,94 

reduction in the expression of the key mismatch repair 
genes, MLH195 and MSH2,97 and of the homologous 
recombination (HR) gene.99 Mechanistically, E2Fs could 
mediate the down-regulation of BRCA1 or RAD51 
expression in response to hypoxic stress and consequently 
suppress HR activity.98,99 Moreover, overexpression of 
RAD51 is considered to be a poor prognostic predictor 
in CRC patients.101

Cancer stem cells (CSCs) are a small subset of cells in 
tumors with the potential of self-renewable, differentia-
tion, and tumor-initiation.102,103 Emerging evidence sug-
gests that adult stem cell populations with high 
proliferation rates have a higher cancer rate than less 
proliferative stem cell populations independently of onco-
gene expression.104,105 Importantly, around two-thirds of 
mutations in cancer are caused by replicative errors. E2F 
family members sometimes work in opposition, including 
copy number gains of E2F1 and E2F3 or copy number 
deletion of E2F7 and E2F8, inducing cancer in mice.106,107 

One promising miRNA, miR-4711-5p, can inhibit CSC 
properties by downregulating Kruppel-like factor 5 expres-
sion and MDM2.24 Similarly, the E2F7-regulated miR- 
199b/USP47/MAPK axis promotes the stemness of colon 
CSCs49 (see Figure 1).

E2F-Induced Metabolic 
Dysregulation in CRC
Metabolic reprogramming is considered an emerging hall-
mark of cancer. Accordingly, several metabolism-targeted 
therapies have been proven to the promising anti-tumor 
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strategies. It is known that the cellular metabolic changes 
may precede somatic mutations in CRC. For example, 
oncogene activation and tumor suppressor loss further 
reprogram CRC cells and upregulate glycolysis, glutami-
nolysis, one-carbon metabolism, and fatty acid 
synthesis.108 Mutated metabolic features occur in CRC at 
multiple levels, including tumor cells, CSCs, TME, and 
host–microbiome interactions.108 E2Fs have been reported 
to contribute to global metabolic homeostasis in a cell- 
cycle independent manner. E2F1 promotes glycolysis, 
lipogenesis, bile acid synthesis, and insulin secretion in 
related normal cells.109 Especially, the mentioned TRIP- 
Br2 and CDK4-pRB-E2F1 are vital for adipogenesis and 
maintaining adipocyte function.109,110 Conversely, E2F1 
has been reported to repress lipolysis, thermogenesis, and 
oxidative metabolism of cancerous cells and contribute to 
the Warburg effect.109,111,112 It is important to note that 
insulin receptor substrate-4 is overexpressed in CRC cells 
and increases the RB-cyclin-dependent kinase pathway.113 

Although E2Fs is rarely reported in the metabolic signal-
ing pathway of CRC, the above-mentioned studies suggest 
a possible three-way interaction between E2Fs, metabo-
lism, and CRC.

E2Fs-Target Drugs in CRC
Some pharmacological agents at least partially modulate the 
CRC progression by targeting E2Fs (see Table 1 and 
Figure 1). The siE2F1 loaded cationic nanoliposomes 
(small unilamellar vesicles, SUVs) have been found to 
exhibit very low cytotoxicity in human CRC cell lines and 
be effective in silencing E2F1 and in the consequent reduc-
tion of cell growth.114 Developing plant-derived products as 
potential anticancer agents has attracted considerable inter-
est in recent years throughout the world. For instance, 
resveratrol,115,116 brassinin,117 eguelin,118 tetrandrine,56 

ethanol extract of Inonotus obliquus,119 and the non- 
digestive fraction of beans120 have been identified as anti-
tumor agents. Especially, 3,3ʹ-Diindolylmethane (DIM), as 
one of the natural indole derivatives originating from broc-
coli and other cruciferous vegetables, has been shown to 
exert antitumor effects in both in vivo and in vitro models. 
Choi et al indicated that DIM restricted CDK2 activity and 
RB phosphorylation, reducing the levels of the E2F1 pro-
tein in HT-29 human colon cells.121 Furthermore, ixocarpa-
lactone A isolated from the Mexican tomatillo was found to 
manifest potent antiproliferative and apoptotic activity in 
SW480 cells by modulating E2F1 and Bcl-2 family.122 

Recently, a herbal formulation Huang Qin Ge Gen Tang 

(HQGGT), was discovered to enhance 5-FU cytotoxicity 
and antitumor activity through the suppression of the E2F1/ 
TS signaling pathway in CRC.123 Generally, curcumin 
induced reactive oxygen species down-regulation of E2F4 
expression and consequently lead to apoptotic cell death in 
HCT116 colon cancer cells.124 In addition, the curcumin 
and its analogues EF31 and UBS109 induce apoptosis and 
inhibit growth by downregulating E2F1 and its target gene 
thymidylate synthase (TS).125 Similarly, cobimetinib, 
a MEK inhibitor seems to improve the efficacy of 5-FU 
by decreasing TS.126 Fucoidan, a natural sulfated polysac-
charide that exists in brown seaweed, exerts anticancer 
effects by inhibiting pRB phosphorylation and enhancing 
binding pRB with E2Fs in HCT116 cells.127 In general that 
triptolide can initiate programmed cell death by activating 
apoptosis or autophagy.128 More interestingly, its water- 
soluble analogue named minnelide induces cell death by 
apoptosis at low concentrations and E2F-dependent G1 
phase arrest at higher concentrations.129 Likewise, tradi-
tional Chinese medicine PHY906,130 methylselenol,131 and 
irinotecan132 serve oncogenic roles by decreasing the 
expression of E2Fs.

Resistance and E2Fs in CRC
Currently, surgery and chemoradiotherapy (CRT) are con-
sidered to be standard treatment options for CRC. 
However, the fact that most patients develop resistance 
to standard therapies poses a significant challenge in the 
treatment of CRC.133 Therefore, it is crucial to elucidate 
the underlying mechanisms for CRT in clinical practice.

Mounting evidence suggests that enhanced E2F activ-
ity is a key mechanism of the CRT resistance (see 
Figure 1). For instance, E2F1 regulates multiple down-
stream target genes that are related to DNA synthesis 
and repairs genes that are involved in resistance, including 
the BRCA1, RAD51, TS, excision repair genes (ERCC-1), 
and forkhead box M1 (FOXM1).134–136 It is no exaggera-
tion that 5-FU is the backbone of CRC first-line therapy 
and exerts crucial anti-tumor activities, at least partially, 
via E2F1/TS downregulation.134,136–139 This signaling 
pathway can be interrupted by diverse stimuli, including 
glycogen synthase kinase 3β (GSK-3β) inhibitor (2ʹZ,3ʹE)- 
6-bromo- indirubin-3ʹ -oxime (BIO),140 curcumin analo-
gues (EF31 and UBS109),125 as well as RB-reactivating 
agents (trametinib (MEK inhibitor), fenofibrate (PPARα 
agonist), and LY294002 (PI3K inhibitor)).141 Of note, the 
combined E2F1+TS+immunophenotype in CRC manifests 
a poor prognosis.139 These findings suggest that the 
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Table 1 E2Fs-Target Agents Summary in CRC

Agents Properties Target Anticancer Effects Reference

Nanoliposomes SUVs loaded with siE2F1 E2F1 Inhibiting the growth of colon carcinoma cells. [116]

Resveratrol Polyphenolic compound (isolated 

from grapes, peanuts or berries)

E2F1 

E2F3

1. Enhancing the growth inhibition of colon carcinoma cells 

and cell apoptosis by targeting miR-34a/E2F3/Sirt1 and 
PI3K/Akt signaling pathway. 2. Enhancing the TTP inhibitory 

activity in CRC cells by negatively regulating cIAP2, E2F1, 

LATS2 and Lin28 expression.

[117,118]

Tetrandrine Bis-benzylisoquinoline alkaloid 
(isolated from the root of Stephania 

tetrandra)

E2F1 Inducing early G1 arrest by downregulating E2F1 and 
upregulating p53/p21Cip1.

[58]

Ethanol extract 

of Innotus 

obliquus

Bioactive compounds E2F1 Inducing G1 cell arrest and inhibiting cell proliferation by 

decreasing RB phosphorylation and E2F1 expression.

[121]

Non-digestible 

fraction of beans

Common beans extraction E2F1 Exhibiting apoptosis induction, cell-cycle arrest, inhibition of 

cell proliferation and inflammation and induction of DNA 
repair.

[122]

3,3ʹ- 
Diindolylmethane

Indole derivative E2F1 Inducing G1 and G2/M phase cell cycle arrest mediated by 
reduced CDK activity and E2F1.

[123]

Ixocarpalactone 
A

A withanolides extract from Mexican 
tomatillo

E2F1 Exerting potent antiproliferative and apoptotic activity in 
SW480 cells by modulating E2F1 and Bcl-2 family.

[124]

HQGGT Traditional Chinese Herbal Medicine E2F1 Suppressing CRC cell growth and promoting apoptosis 
in vivo and vitro xenografts; enhanced CRC cell sensitivity 

to 5-FU via suppressing the E2F1/TS signaling pathway.

[125]

Curcumin A polyphenolic phytochemical 

isolated from the plant Curcuma 

longa

E2F4 ROS produced by curcumin is responsible for the cell 

growth inhibition and the downregulation of E2F4 

expression.

[126]

EF31 and 

UBS109

Curcumin analogues E2F1 Inducing cell cycle arrest through downregulation of 

signaling proteins

[127]

Cobimetinib MEK inhibitor E2F1 Inhibiting cell proliferation and inducing G1 phase arrest and 

apoptosis in HCT116 cells; enhancing the efficacy of 5-FU.

[128]

Fucoidan Natural sulfated polysaccharide 

present in various brown algae

E2Fs Exhibiting anticancer effects through the induction of cell 

cycle arrest and apoptosis regardless of the p53 status.

[129]

Triptolide/ 

Minnelide

A natural compound isolated from 

the Chinese herb Tripterygium 
wilfordii/Its soluble analog

E2F1 Inducing apoptosis at low concentrations and E2F- 

dependent G1 phase arrest at higher concentrations.

[130,131]

PHY906 Traditional Chinese Herbal Medicine E2F1 Protecting the epithelial barrier against tumor cell invasion 
by modulating IFN-γ level and mediating cancer cell death.

[132]

Methylselenol A selenium metabolite E2F1 Regulating the expression of key genes related to cell cycle 
and apoptosis and inhibiting colon cancer cell proliferation 

and tumor growth.

[133]

Irinotecan Topoisomerase I inhibitor E2F1 Overcoming the resistance to 5-FU in combination with 

5-FU pro-drugs on 5-FU-resistant colon tumors.

[134]

Abbreviations: SiE2F1, siRNA against the transcription factor E2F1; SUVs, small unilamellar vesicles; TTP, tristetraprolin; cIAP2, baculoviral IAP repeat containing 3; Lin 28, 
lin-28 homolog A; LATS2, large tumor suppressor kinase 2; HQGGT, Huang Qin Ge Gen Tang; TS, thymidylate synthase; ROS, reactive oxygen species; MEK, mitogen- 
activated protein kinase.
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downregulation of TS expression might be a promising 
method of improving the efficacy of 5-FU. Recently, 
Lavitrano et al identified a novel oncogenic isoform of 
Bruton’s tyrosine kinase, namely p65BTK.142 Silencing 
p65BTK was found to overcome the 5-FU resistance of 
CRC cell lines and restore the E2F-dependent apoptosis. 
The aberrant activation of nuclear transcription factor 
Y subunit beta (NFYB)-E2F1-checkpoint kinase 1 
(CHK1) was identified to maintain the tumorigenicity in 
oxaliplatin-resistant CRC and significantly related to 
a poor prognosis.143 Chen et al revealed that antagonism 
of CDK8 inhibits the fractional survival of CRC cells and 
increases radiotherapy-induced apoptosis in vivo and 
in vitro through potentiating the transcription of E2F1 
target gene apaf1.144 Apart from their roles in CRC carci-
nogenesis, MiRNAs may also be involved in affecting the 
chemosensitivity by targeting E2Fs in CRC. For example, 
miR-329 attenuates the chemoresistance of CRC to 5-FU 
by degrading E2F1.145 Similarly, miR-34a enhances the 
sensitivity of human CRC cells to 5-FU by inhibiting Sirt1 
and E2F3, which is correlated with inactive PI3K/AKT 
signaling pathway.39,40 The liposomal miR-34a mimic, 
MRX34, is the first synthetic miRNA that has been already 
entered into clinical trials, providing a proof-of-concept 
for mi-RNA-based cancer therapy.51 Some miRNAs, such 
as miR-200b, miR-21, and miR-192, were successively 
found to induce apoptosis and restore chemosensitivity in 
an E2F-dependent manner. Recently, Lin et al have con-
structed an adenoviral vector (AdCMVE2F-1) to trans-
fected an ectopic E2F1 into human CRC cells. The 
findings showed that the upregulated E2F1 exerts 
a synergistic anticancer effect with gemcitabine.146 It was 
suspected that the apoptotic effect of E2F1 is due to its 
unscheduled entry into the S phase. Importantly, the exo-
genous E2F1 exhibits clinical chemosensitizing effects in 
CRC cells by inducing pro-apoptotic behavior.147,148 In 
conclusion, targeting the inhibition of E2F or killing onco-
genes that drive E2F activity could be a good complement 
to current treatment strategies.9

Conclusions and Perspectives
Taken together, the E2Fs are a quite complex family of the 
transcription factor. They have been found to appear in 
many emerging fields of CRC in addition to classic cell- 
cycle regulation, such as CSCs, TME, and metabolism. 
Importantly, they can exert different biological functions 
depending on context. Some pharmacological agents indir-
ectly or directly regulate the CRC progression by targeting 

E2Fs. Accumulating evidence has shown that enhanced 
E2F activity is a critical mechanism of CRT resistance in 
CRC. Therefore, targeting the inhibition of E2F or killing 
oncogenes that drive E2F activity could be a good com-
plement to current treatment strategies.

However, further studies are warranted to more thor-
oughly examine the effect and mechanisms further of E2Fs 
in CRC.

1. The endogenous carcinogenic and exogenous pro- 
apoptotic effects of E2F1 are an ongoing paradox for 
the scientific community. How to explain the pro- 
apoptotic molecular mechanism of E2Fs in CRC?

2. How E2Fs specifically mediate metabolism and 
TME in CRC?

3. More clinical agents can be designed for targeting 
E2Fs, and the related CRT mechanisms can be 
further studied.

Collectively, E2Fs are thought to be a promising target 
in CRC. More prospective research is needed to verify this 
conclusion.
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