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Purpose: To discover the possible target of biochanin A (BCA) in the lipid metabolism 
pathway and further explore its mechanism to nonalcoholic fatty liver disease (NAFLD).
Methods: We adopted a high-fat and high-glucose diet for 12 weeks to build the NAFLD rat 
model, which was then treated with different proportions of BCA for 4 weeks. General 
condition, body weight, Lee index, and liver index were then evaluated. Furthermore, blood 
lipid level and insulin resistance (IR) were detected. Moreover, hematoxylin and eosin and 
oil red O staining were used to observe the pathological changes in the liver. Finally, Western 
blotting was used to detect the protein expression levels of CYP7A1, HMGCR, LDLR, 
PPAR-α, PPAR-γ, and SREBP-1c in the liver.
Results: The vital signs of rats in each group were stable. The treatment with BCA 
effectively reduced Lee index and liver index (F = 104.781, P < 0.05); however, the weight 
was not effected in each group. Additionally, BCA effectively reduced the related lipid 
metabolism indexes of NAFLD, such as total cholesterol (TC), triglyceride (TG), low- 
density lipoprotein (LDL), blood glucose, insulin, IR (F =12.463 (TC), 6.909 [TG], and 
15.3 effected 75 [LDL], P < 0.05), and increased HDL (F = 11.580, P < 0.05). We observed 
that BCA could significantly improve steatosis and inflammatory cell infiltration in liver 
slices. Furthermore, BCA significantly increased the CYP7A1, LDLR, and PPAR-α protein 
expression in the liver and downregulated the HMGCR, SREBP-1c, and PPAR-γ protein 
expression.
Conclusion: BCA could delay the liver damage of NAFLD induced by a high-fat diet, 
regulate the blood lipid level, and improve the expression of lipid metabolism-related genes 
in rats.
Keywords: biochanin A, nonalcoholic fatty liver disease, NAFLD, cholesterol metabolism

Introduction
At present, the incidence of nonalcoholic fatty liver disease (NAFLD) is increasing 
annually.1 According to literature, the incidence of NAFLD increased to 30% in 
Europe and 20%–30% in Asia.2,3 This disease refers to a clinical-pathologic syndrome 
characterized by liver steatosis in addition to alcohol and other definite liver damage 
factors. Its disease spectrum includes nonalcoholic steatohepatitis, liver fibrosis, liver 
cirrhosis, and hepatocellular carcinoma.4 Therefore, the prompt treatment of NAFLD 
is warranted. A patient is prone to serious consequences, such as abnormal glucose, 
lipid metabolism, liver fibrosis, and loss of liver cell function, if the NAFLD is not 
well controlled.5 However, thus far, no specific drugs that treat this disease in clinical 
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practice are available. Therefore, it is necessary to focus on 
the mechanism of NAFLD and further develop correspond-
ing medicines.

The “second hit” doctrine is the classical hypothesis of 
the pathogenesis of NAFLD,6 wherein insulin resistance 
(IR) can cause lipid accumulation in the liver, which is 
“the first hit,” whereas oxidative stress and lipid peroxida-
tion further trigger a second blow to the liver, which is 
“the second hit.” The theory of the “second hit” was 
gradually replaced with the proposal of “multiple 
strikes.”7 However, lipid metabolism disorder is key in 
both “second hit” and “multiple hit,” and cholesterol meta-
bolism is vital in lipid metabolism disorder.8 Therefore, 
a comprehensive study of cholesterol synthesis, absorp-
tion, and excretion is necessary. For cholesterol synthesis, 
the primary regulatory proteins are sterol regulating ele-
ment-binding protein (SREBP) and 3-Hydroxy-3-methyl-
glutaryl-coenzyme A reductase (HMGCR).9 For 
cholesterol absorption, it is primarily achieved through 
the endocytosis of exogenous cholesterol by low-density 
lipoprotein receptor (LDLR) and peroxisome proliferator- 
activated receptor (PPAR).10 The excretion of cholesterol 
is primarily through the bile acid pathway, which is regu-
lated by cholesterol 7α-hydroxylase (CYP7A1).11 If med-
icine can regulate the expression of the aforementioned 
proteins, it can effectively reduce the liver fat content. 
Biochanin A (BCA) is an ox methylated isoflavone com-
pound (Figure 1 shows the structure of BCA).12 It is 
widely presented in some edible plants, such as soybeans, 
red clover, alfalfa, peanuts, chickpeas, etc.13 The molecule 
structure of BCA is similar to that of animal estrogen; 
therefore, it can competitively bind to estrogen receptors 
to play an estrogen-like effect.14 In addition, it is an 
important phytoestrogen and has several beneficial effects 
on human and animal health.15 It can be used for bone 
quality and the prevention or treatment of diseases, such as 
porosity and menopausal syndrome.16 In addition, it has 

antitumor, anti-inflammatory, antibacterial, hypoglycemic, 
antioxidant, neuroprotective, and other pharmacological 
effects.17 Studies have found that BCA has a significant 
effect on lowering blood lipids and is particularly closely 
related to isoflavones.18 However, those studies did not 
elaborate on its effect on cholesterol and its regulation 
mechanism.

Therefore, our study aimed to construct a NAFLD rat 
model and use BCA to intervene. Moreover, it aimed to 
further clarify whether BCA has a therapeutic effect on 
this disease. Furthermore, this study aimed to observe the 
three pathways of cholesterol synthesis, absorption, and 
excretion related to the enzyme protein expression char-
acteristics of CYP7A1, HMGCR, LDLR, PPAR-α, PPAR- 
γ, and SREBP-1c.

Materials and Methods
Experimental Materials
BCA was purchased from the Shaanxi Yongyuan 
Biotechnology Co., Ltd. (CAS: 491–80-5, Xi’an, China). 
The following are the characteristics of the experimental 
animals: 68 male clean Sprague Dawley rats, weighing 
150–170 g, purchased from the SPF Animal Laboratory 
Center of Kunming Medical University (animal certificate 
number SCXK [Dian]-2015-0002). Animals were also man-
aged in SPF experimental requirements. The following were 
the feeding conditions: 12/12 hours light–dark cycle, 22°C– 
25°C temperature, 50% ± 10% humidity, and free food and 
water intake. Ordinary feed fat, protein, and carbohydrate 
calories accounted for 10%, 14.1%, and 75.9%, respec-
tively, whereas high-fat feed fat, protein, and carbohydrate 
calories accounted for 45%, 14.1%, and 40.9%, respec-
tively. The feed was purchased from the Nantong Trofe 
Feed Technology Co., Ltd (Nantong, China).

Animals and Grouping
After purchasing the rats, they were fed with ordinary feed 
and adaptively reared for 1 week. The rats were then 
randomly divided into five groups: normal diet group 
(ND, n = 16), high-fat diet group (HFD, n = 16), high- 
fat diet + BCA 10 mg/kg group (HFD + 10 mg/kg BCA, 
n = 12), high-fat diet + BCA 20 mg/kg group (HFD + 
20 mg/kg BCA, n = 12), and high-fat diet + BCA group 
(HFD + 40 mg/kg BCA, n = 12). The following was the 
criteria for successful modeling, which was implemented 
at 10 am every day: after a 12-week high-fat feed, four rats 
in the ND and HFD groups were randomly selected and 
sacrificed; their liver oil red O staining showed several Figure 1 The structure of biochanin A.
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fatty vacuoles, and liver function was abnormal. After 
implementing the criteria, each intervention group was 
treated by intragastric administration. The rats in the ND 
and HFD groups were administered with the same amount 
of normal saline in other intervention groups by gavage. 
The treatment time was 4 weeks. After 4 weeks, all rats in 
each group were sacrificed for follow-up experiments. All 
animal experimentation procedures were performed 
according to the Chinese Guidelines for Animal Care 
(Published by Chinese Society of Laboratory Animals), 
which comply with the internationally accepted uses of 
experimental animals, and the protocols were reviewed 
and approved by the Animal Experiment Ethics 
Committee of the Yunnan University of Chinese Medicine.

Animal Growth Indicators
General Indicators for Monitoring Animals
The feed was weighed daily and the amount of drinking 
water was recorded. Furthermore, the hair, activity, fecal 
volume, and death of rats in each experimental group were 
observed.

Animal Weight Change and Lee Index
The weight of the rats was regularly measured every week for 
each experimental group, and the weight change data were 
recorded. When the rats were sacrificed, the body length of 
the rats was measured and recorded, and the Lee index of the 
experimental rats was calculated according to the formula: 
Lee index = ∛(weight × 1000)/body length (cm).

Liver Index
When the rats were sacrificed, they were anesthetized with 
sodium pentobarbital, and the liver was subsequently 
weighed. The following formula was used to calculate 
the rat liver index: liver index = liver weight/body weight.

Liver Function and Blood Lipids
The day before the death, blood was collected from the 
abdominal vena cava and stored at room temperature for 2 
hours. After the blood coagulated, it was centrifuged at 
4°C and 3000 r/min for 20 min. Then, the upper serum 
was collected, aliquoted, and frozen in a refrigerator at 
20°C. Enzyme-linked immunosorbent assay kit was used 
to detect the levels of aspartate aminotransferase (AST; 
ml059334, Shanghai Enzyme Link Biotechnology Co., 
Ltd., Shanghai, China), alanine aminotransferase (ALT; 
ml059335, Shanghai Enzyme Link Biotechnology Co., 
Ltd.), total cholesterol (TC; A111-2-1, Nanjing Jiancheng 
Institute of Biological Engineering, Nanjing, China), 

triglycerides (TG; A110-2-1, Nanjing Jiancheng Institute 
of Biological Engineering), high-density lipoprotein 
(HDL; ml037095, Shanghai Enzyme Link Biotechnology 
Co., Ltd.), and low-density lipoprotein (LDL; ml037144, 
Shanghai Enzyme-Linked Biotechnology Co., Ltd.) of the 
rats.

Detection of Blood Glucose and IR Levels 
in Rats
Rat Abdominal Glucose Tolerance Test
The rats were made to fast without water for 24 hours. 
First, blood was collected from the tail vein using a Roche 
blood glucose meter to detect the fasting blood glucose 
level of the rats. A 50% glucose solution was then intra-
peritoneally injected into the rat at a dose of 2 g/kg. The 
blood from the tail vein of the rat was extracted at 0, 1, 2, 
3, and 4 hours, and the blood glucose levels were rapidly 
detected using a Sannuo blood glucose meter (GA3, 
Sannuo Biosensor Co., Ltd., Changsha, China).

Rat Serum Insulin Test
We used enzyme-linked immunosorbent assay kit operat-
ing instructions to detect serum insulin levels in rats.

Homeostatic Model Assessment 
(HOMA)-IR
We assessed the level of IR according to the results of 
blood glucose experiments using the formula to calculate 
the homeostatic model assessment of IR: (insulin [m IU/L] 
× fasting blood glucose [mmol/L] ÷ 22.5).

Pathological Examination (Hematoxylin 
and Eosin [HE] and Oil Red Staining)
A small piece of liver tissue was sliced, soaked in 4% 
neutral formalin buffer for 24 hours, washed with purified 
water, and then dehydrated. After processing and embed-
ding with paraffin, the tissue was cut to a thickness of 5 
μm and stained with conventional HE.

Oil red O staining was used to observe the accumula-
tion of triglycerides in the liver. The images were collected 
using an ordinary optical microscope (Olympus, Tokyo, 
Japan), and four different fields of view were selected for 
each image.

Detection of Protein Expression
Proteins were extracted from liver tissues by using 
a solution of PMSF and RIPA buffer. A bicinchoninic 
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acid protein quantification kit (Thermo Scientific, 
Waltham, Massachusetts, USA) was used to measure 
the protein concentration. Western blotting was per-
formed as previously described. The primary antibodies 
included antibodies SREBP-1c (sc-366, Santa Cruz 
Biotechnology, Dallas, Texas, USA), CYP7A1 (sc- 
25536, Santa Cruz Biotechnology), HMGCR (sc- 
271595, Santa Cruz Biotechnology), LDLR (sc-18823, 
Santa Cruz Biotechnology), PPAR-α (sc-1985, Santa 
Cruz Biotechnology), PPAR-γ (sc-7196, Santa Cruz 
Biotechnology), and glyceraldehyde-3-phosphate dehy-
drogenase (sc-59540, Santa Cruz Biotechnology). Goat 
antirabbit IgG (HRP) (ZB2301, Beijing Zhongshan 
Golden Bridge Biotechnology Co., Ltd., Beijing, 
China) was used as the secondary antibody. The mem-
branes were scanned with an enhanced chemilumines-
cence system (Protein Simple, Santa Clara, CA, USA).

Statistical Analysis
Data obtained are expressed as means ± standard devia-
tions (�x ± SD). SPSS 22.0 software (SAS Institute Inc., 
Cary, North Carolina, USA) was used according to the 
type of data. Data were analyzed using repeated- 
measures analysis of variance. A P value of < 0.05 was 
considered statistically significant.

Results
Living Conditions of Rats
Throughout the experiment, the vital signs of the rats in 
each group were stable The rats in the HFD group had 
yellowish, dim, and decreased mobility. The rats in other 
groups had smooth coat color and normal mobility. The 
dietary intake in each group was approximately 20–30 g/ 
day, and no significant difference in water intake was 

noted. During the breeding period, no accidental deaths 
were observed.

After feeding with an HFD for 12 weeks, the oil red 
staining of liver slices revealed that the livers in the ND 
group had no fat infiltration, whereas those of the HFD 
group were diffused with a large amount of fat. In addi-
tion, the HFD group showed a significantly higher liver 
function (AST and ALT) than the ND group, indicating 
that the NAFLD model was successfully constructed. The 
results are shown in Figure 2.

Results of Rat’s Body Weight, Lee Index, 
and Liver Index
The initial weight of the rats was approximately 160–170 g, 
and no significant difference was noted. Under different 
intervention conditions, the weight of the rats significantly 
changed; the weight of the rats in the HFD group increased 
by ~400 g, whereas in the ND group, it increased by ~300 g, 
which is the most significant (F = 6.659, P < 0.05). Although 
the three treatment groups had a certain degree of reduction, 
no significant difference with the rats in the HFD group was 
observed. The results are shown in Figure 3A.

After 4 weeks of intervention in each group, the Lee 
index was calculated according to the weight and length of 
the rats. The results showed that the Lee index was the 
highest in the HFD group and the lowest in the ND group. 
The three dose groups of HFD + BCA were significantly 
lower in the HFD group, and the difference was statisti-
cally significant (F = 104.781, P < 0.05). The results are 
shown in Figure 3B.

The liver index results showed significant differences 
between the HFD and the ND groups (P = 0.013, P < 
0.05). In addition, the three BCA intervention groups were 

Figure 2 Evaluation of the HFD-induced NAFLD mice. (A) Histological sections of liver tissues of the ND group. (B) Histological sections of liver tissues of the HFD group 
(stained with oil red O and ×400). (C) The liver function indexes (AST and ALT); *P < 0.05 for the comparison between the ND and HFD groups.
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significantly lower in the HFD group (F = 10.232, P < 
0.05). The results are shown in Figure 3C.

The Rat Liver Functions and Blood Lipid 
Test Results
After the 4-week treatment, the AST, ALT, TC, TG, LDL, 
and HDL levels were evaluated. The results are shown in 
Figure 4. Among them, the AST, ALT, TC, TG, and LDL 
levels in the HFD group were significantly higher than 
those in the ND group (P = 0.003 [AST], 0.005 [ALT], 
0.013 [TC], 0.010 [TG], and 0.008 [LDL], P < 0.05), 
whereas the HDL level was significantly reduced (P = 
0.042, P < 0.05). After treatment, the AST, ALT, TC, 
TG, and LDL levels were significantly lowered to varying 
degrees (F = 17.287 [AST], 29.862 [ALT], 12.463 [TC], 
6.909 [TG], and 15.375 [LDL], P < 0.05), whereas the 
HDL level was increased (F = 11.580, P < 0.05). The HFD 
+ 40 mg/kg BCA group had the most significant effect.

The Rat Blood Glucose and IR
The rats in the HFD group had a significantly increased 
fasting blood glucose level compared with those in the ND 
group (P = 0.032, P < 0.05), whereas those in the ND 
group had a significantly lower fasting blood glucose than 
those in the HFD group (F = 47.334, P < 0.05). The results 
are shown in Figure 5A.

The glucose tolerance experiment of the rats in each 
group is shown in Figure 5B. In the observation period of 
0–4 hours, the HFD group had a significantly higher 
glucose tolerance than the ND group (P = 0.006, P < 
0.05), whereas the BCA group had a significantly lower 
glucose tolerance than the HFD group (F = 52.104, 
P < 0.05).

Figure 5C and D show that the HFD group has 
a significantly higher insulin and IR index than the ND 
group (P = 0.012 [insulin] and 0.008 [IR index], P < 0.05), 
whereas BCA could be significantly reduced (F = 42.000 
[insulin] and 38.313 [IR index], P < 0.05).

The Results of HE and Oil Red O Staining
Liver cells and lobules of the rats in the ND group 
(Figure 6A) were found to have a clear and complete 
structure, with no lipid infiltration. However, the rats in 
the HFD group (Figure 6B) showed obvious steatosis, 
severe lipid infiltration, fatty vacuoles, disappearance of 
the liver lobule structure, and inflammatory cell infiltra-
tion. BCA could reduce lipid and inflammatory cell infil-
tration (Figure 6C–E). The HFD + 20 mg/kg BCA 
(Figure 6D) and HFD + 40 mg/kg BCA groups 
(Figure 6E) recovered a part of the liver lobule structure, 
of which the HFD + 40 mg/kg BCA group had the best 
improvement effect.

The Changes of Lipid Metabolism-Related 
Proteins
The expression of HMGCR and SREBP-1C proteins in 
the model group was significantly increased compared 
with that of the ND group, whereas the three dose 
groups of BCA significantly reduced their expression, 
as shown in Figure 7A and 7B. The expression of 
LDLR in the model group was significantly increased 
compared with that of the ND group. Moreover, the 
expression of LDLR in the BCA group was further 
increased compared with that of the model group, as 
shown in Figure 7C.

The expression of PPAR-α in the HFD group was 
significantly reduced compared with that of the ND 

Figure 3 Results of rat’s body weight, Lee index, and liver index. Results of the rat’s (A) body weight, (B) liver index, and (C) Lee index. *P < 0.05 for the comparison 
between the ND and HFD groups; #P < 0.05 for the comparison between the treatment and HFD groups.
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group, whereas in the BCA intervention groups, the 
expression of PPAR-α increased compared with that of 
the HFD group, as shown in Figure 7D.

In addition, the expression of PPAR-γ protein in the 
liver of the rats in the HFD group was significantly 
increased compared with that of the NC group; moreover, 
the BCA intervention group decreased the expression of 
PPAR-γ, as shown in Figure 7E.

The expression of CYP7A1 in the liver of the rats in 
the HFD group was significantly reduced compared with 
that of the ND group; the BCA group had different degrees 
of increase, as shown in Figure 7F.

Discussion
At present, the following are the three most common 
methods for building the NAFLD model:19 the HFD 

Figure 4 The rat liver functions and blood lipid test results. (A) The AST, (B) ALT, (C) TC, (D) TG, (E) HDL, and (F) LDL of the rats. *P < 0.05 for the comparison between 
the NC and HFD groups; #P < 0.05 for the comparison between the treatment and HFD groups.
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construction method, the feed-feeding type that lacks 
methionine and choline, and the genetically modified 
rat or mouse model. The feed-feeding type lacks 

methionine and choline and the genetically modified rat 
or mouse model type are suitable for observing specific 
drugs or signal pathways;20 however, they are expensive, 

Figure 5 Rat blood glucose and insulin resistance. (A) The fasting blood glucose, (B) AST, (C) insulin, and (D) IR of the rats. *P < 0.05 for the comparison between the ND 
and HFD groups; #P < 0.05 for the comparison between the treatment and HFD groups.

Figure 6 The liver HE and oil red O staining (×400). (A–E) correspond to the ND, HFD, HFD + 10 mg/kg BCA, HFD + 20 mg/kg BCA, and HFD + 40 mg/kg BCA groups, 
respectively.
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and thus not widely promoted. NAFLD rats induced by 
HFD are cheap and effective in basic research. In gen-
eral, this method is fanatical to better replicate the dis-
ease spectrum of human NAFLD.21 Hence, we adopted 
a HFD for 12 consecutive weeks. It can be seen from 
liver oil red staining, AST, and ALT that this study 
successfully established the NAFLD rat model, which 
ensures the reliability of subsequent drug observations.

Lee index, body weight, and liver/body ratio are one 
type of core indicator for evaluating drugs that can 
improve lipid metabolism in rats.22,23 Lee index and liver 
index are similar to the human body mass index.24 At 
present, they are used to evaluate obesity and visceral 
properties. Results revealed that HFD significantly 
increased the body weight, liver weight, and Lee index 

in rats. This suggests that HFD can cause obesity in the 
body while acting on the liver to make lipids in the body, 
which accumulates and causes visceral obesity. BCA can 
effectively improve the degree of obesity in the body and 
internal organs of rats. However, the results found that the 
weight did not significantly change; the specific reasons 
still need to be further explored. However, results that 
BCA may become a novel way to improve NAFLD can 
be evaluated.

Abnormal liver function and blood lipids are the pri-
mary features of NAFLD, and the elevation of AST and 
ALT levels can directly reflect the signs of liver damage.25 

In this study, it can be noted from the NAFLD rats induced 
by HFD that the serum liver function indicators, such as 
AST and ALT, as well as blood lipids, such as TC, TG, and 

Figure 7 Protein expression levels of SREBP-1c, HMGCR, LDLR, PPAR-α, PPAR-γ, and CYP7A1 in the livers of the rats. Protein expression levels of (A) SREBP-1c, (B) 
HMGCR, (C) LDLR, (D) PPAR-α, (E) PPAR-γ, and (F) CYP7A1 in the livers of the rats. *P < 0.05 for the comparison between the ND and HFD groups; #P < 0.05 for the 
comparison between the treatment and HFD groups.
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LDL levels, were significantly higher than those in the NC 
group, whereas the blood lipid HDL levels were signifi-
cantly lower than those in the NC group. By applying the 
BCA intervention to the NAFLD rats, the blood lipid 
levels were reduced and the liver function was improved. 
Furthermore, there are several studies on the ability of 
BCA to improve liver function and blood lipids. For 
example, H Park and colleagues26 used a HFD to construct 
an obese mouse model and found that after intervention 
with BCA, hepatic steatosis and IR were improved by 
regulating the hepatic lipid and glucose metabolic path-
ways. In addition, Z Xue and colleagues27 used a HFD to 
construct an obese mouse model. After intervention with 
BCA, it was found that BCA could improve hepatic 
inflammation by regulating the hepatic lipid metabolic 
pathways. All these confirm that BCA has an obvious 
protective effect on NAFLD.

IR is also one type of the core mechanisms of 
NAFLD.28 Hyperlipidemia and lipid metabolism disorders 
can reduce insulin sensitivity and enhance the body’s IR.29 

IR also acts on lipid metabolism, further aggravating lipid 
metabolism disorders.30 Hence, this study observed the 
effect of BCA on NAFLD. The result showed that com-
pared with the rats of the ND group, the blood glucose, 
serum insulin levels, and IR of the rats in the HFD group 
significantly increased, which further confirmed that HFD- 
induced NAFLD rat models have a serious IR. BCA can 
improve IR. This may be achieved by BCA increasing the 
sensitivity of insulin.

The primary pathology of NAFLD is the destruction of 
lipid metabolism homeostasis in the body.31 Among them, 
cholesterol metabolism disorder is the most common.32 

Large amounts of unmetabolized cholesterol cause lipid 
deposition in the liver and further induce fatty degenera-
tion and inflammation in liver cells.33 The steady state of 
cholesterol metabolism depends on its synthesis, absorp-
tion, and excretion pathways.34,35 Cholesterol synthesis is 
regulated by SREBP and HMGCR. As the rate-limiting 
enzyme for cholesterol synthesis, HMGCR primarily reg-
ulates the production of cholesterol by catalyzing the 
synthesis of mevalonate from HMG-Co A at the post- 
transcriptional level.36 In addition, several lipid-lowering 
drugs improve the level of lipid metabolism by regulating 
the activity of HMGCR. SREBP can promote the tran-
scription of genes, such as HMGCR, thereby promoting 
the production of cholesterol.37 In our experiment, we 
found that a long-term HFD has a certain promotion effect 
on the expression of HMGCR in the liver. It may be due to 

the accumulation of a large number of lipids caused by 
a long-term, which increases the synthesis of cholesterol in 
the liver, thereby upregulating the expression of HMGCR 
and allowing excess lipids to be converted into cholesterol 
to promote lipid metabolism. Furthermore, HFD promotes 
the expression of SREBP-1c in the liver, which is directly 
proportional to the expression of HMGCR. It may be that 
SREBP-1c promotes the expression of HMGCR, thereby 
enhancing the synthesis of cholesterol. Compared with the 
HFD group, BCA intervention reduced the expression of 
HMGCR and inhibited the production of SREBP-1c. It 
shows that BCA can improve NAFLD by downregulating 
the expression of HMGCR and inhibiting the production 
of SREBP-1c, thereby reducing the synthesis of 
cholesterol.

Cholesterol absorption is achieved through PPAR 
family proteins and LDLR.38,39 PPAR can regulate the 
expression of several target genes involved in lipid meta-
bolism inside and outside the cell. Among them, PPAR-α 
primarily regulates the uptake of lipids and the β-oxidation 
of peroxisomes,40 whereas PPAR -γ is primarily involved 
in the formation of fat.41,42 Studies have found that by 
promoting the expression of PPAR-α, the β oxidation of 
lipids and the excretion of bile acids can be accelerated, 
thereby promoting lipid metabolism,10,43 and by inhibiting 
the expression of PPAR-γ, the outflow of cholesterol in the 
cell is reduced and also plays a role in regulating lipid 
metabolism. The primary function of LDLR is to enter the 
cell through the uptake of cholesterol for cell proliferation 
and the synthesis of sterol hormones and bile salts.44 

Therefore, PPAR and LDLR have become one of the 
main targets of several lipid-lowering drugs.45 We ana-
lyzed the expression of PPAR-α, PPAR-γ, and LDLR 
proteins in the liver of each group of rats and found that 
the expression of PPAR-α in the HFD group was signifi-
cantly lower than that in the normal group, whereas PPAR- 
γ was significantly increased. It is due to the hyperlipide-
mia state of the body, which causes the body to reduce the 
intake of exogenous fat, while inhibiting the outflow of 
intracellular cholesterol, promoting the conversion of 
endogenous lipids that the body cannot metabolize, and 
depositing in the liver. BCA can both upregulate PPAR-α 
and downregulate the expression of PPAR-γ, which may 
be due to the promotion of liver cholesterol to bile acid 
metabolism and the reduction of cholesterol outflow from 
liver cells. In addition, the LDLR and HFD groups were 
compared with the ND group; they increased further after 
BCA treatment. This suggests that the increase in 
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cholesterol in the liver can cause an increase in LDLR, 
which further promotes the absorption of cholesterol. This 
may be the body’s self-protection effect. After BCA treat-
ment, the expression of LDLR further increased, which 
suggests that BCA can increase the expression of LDLR 
and promote cholesterol absorption and metabolism.

Cholesterol excretion is achieved through CYP7A1. 
Cholesterol is converted into bile acid in the liver and 
excreted from the intestine, which is the primary pathway 
for cholesterol in the body.46 CYP7A1 is the rate-limiting 
enzyme of bile acid synthesis and plays an important role 
in regulating the conversion of cholesterol into bile acid 
metabolism. Studies have found that promoting the expres-
sion of CYP7A1 can accelerate the body’s cholesterol 
metabolism, convert it into bile acid, and then excrete it 
from the body.47 We also evaluated the expression of 
CYP7A1 in the liver and found that the expression of 
CYP7A in the HFD group increased compared with the 
ND group. This result suggests that HFD increases cho-
lesterol in the body, promotes the expression of CYP7A1, 
and accelerates the process of conversion and excretion 
from cholesterol to bile acids. BCA upregulates the 
expression of CYP7A1 in the liver, which may be due to 
the promotion of bile acid production and the acceleration 
of cholesterol excretion in feces. This suggests that BCA 
can improve NAFLD by upregulating the expression of 
CYP7A1 and promoting the excretion of cholesterol.

This study was based on basic application research 
to observe the possible therapeutic targets of BCA in the 
treatment of NAFLD. Focusing on cholesterol metabo-
lism, we clarified its specific mechanism of action and 
provided some references for clinical medication. The 
following is believed to be the specific mechanism: 
upregulating the expression of CYP7A1 and LDLR in 
the liver, inhibiting the production of SREBP-1c, and 
promoting cholesterol absorption and excretion. In addi-
tion, downregulating the HMGCR protein in the liver 
reduces cholesterol synthesis. Moreover, promoting the 
expression of PPAR-α in the liver, inhibiting the expres-
sion of PPAR-γ, and promoting cholesterol metabolism 
can be another mechanism, thereby regulating the 
expression of blood lipid metabolism and improving 
IR. However, there are still some limitations to this 
study, such as the lack of cell experiments for further 
verification, the lack of clinical implementation cases, 
and others. We need to further expand the scope of the 
study and make further validation tests.

Conclusion
BCA can improve the NAFLD induced by HFD by reg-
ulating the blood lipid level and the expression of lipid 
metabolism-related genes in rats. The following may be 
the specific mechanism: upregulating the expression of 
CYP7A1 and LDLR in the liver, inhibiting the production 
of SREBP-1c, and promoting cholesterol absorption and 
excretion as well as downregulating the expression of 
HMGCR in the liver to reduce cholesterol synthesis. At 
the same time, BCA promotes the expression of PPAR-α 
in the liver, inhibits the expression of PPAR-γ, promotes 
cholesterol metabolism, and reduces its outflow. 
Therefore, BCA plays a role in regulating the level of 
blood lipid metabolism in rats, improving the state of IR, 
and reducing the release of liver inflammatory factors and 
intestinal endotoxins. Altogether, these results indicate that 
the BCA intervention in the NAFLD rats has an improved 
effect, which may be directly or indirectly related to these 
targets; however, lipid metabolism in the body is 
a complex process with multiple factors, links, and targets. 
Therefore, the specific mechanism by which BCA 
improves NAFLD warrants further research.
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