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Abstract: Antiviral drugs (AvDs) are the primary resource in the global battle against 
viruses, including the recent fight against corona virus disease 2019 (COVID-19). Most 
AvDs require multiple medications, and their use frequently leads to drug resistance, since 
they have poor oral bioavailability and low efficacy due to their low solubility/low perme-
ability. Characterizing the in vivo metabolism and pharmacokinetic characteristics of AvDs 
may help to solve the problems associated with AvDs and enhance their efficacy. In this 
review of AvDs, we systematically investigated their structure-based metabolic reactions and 
related enzymes, their cellular pharmacology, and the effects of metabolism on AvD phar-
macodynamics and pharmacokinetics. We further assessed how delivery systems achieve 
better metabolism and pharmacology of AvDs. This review suggests that suitable nanosys-
tems may help to achieve better pharmacological activity and pharmacokinetic behavior of 
AvDs by altering drug metabolism through the utilization of advanced nanotechnology and 
appropriate administration routes. Notably, such AvDs as ribavirin, remdesivir, favipiravir, 
chloroquine, lopinavir and ritonavir have been confirmed to bind to the severe acute 
respiratory syndrome-like coronavirus (SARS-CoV-2) receptor and thus may represent 
anti-COVID-19 treatments. Elucidating the metabolic and pharmacokinetic characteristics 
of AvDs may help pharmacologists to identify new formulations with high bioavailability 
and efficacy and help physicians to better treat virus-related diseases, including COVID-19. 
Keywords: antiviral drug, delivery systems, metabolism, pharmacokinetics, 
pharmacodynamics

Introduction
Many infectious diseases have rapid propagation and high infection rates with poten-
tial for human pandemics. Emerging infectious diseases caused by such viruses as 
severe acute respiratory syndrome (SARS), Middle East respiratory syndrome 
(MERS) and Ebola virus, present major threats to public health.1 The current outbreak 
of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) continues to spread.2 COVID-19 may cause 
severe cytokine storm and aggravate immunopathological damage, which make anti-
viral treatment more complicated. The related cytokines include but not limited to 
TNF-α, IL-1 and IL-6.3–5 With the explosive growth of confirmed cases, the World 
Health Organization (WHO) declared the outbreak to be a public health emergency of 
international concern on January 30, 2020.6 At present, COVID-19 has spread to more 
than 200 countries and regions around the world, and the outbreak of COVID-19 has 
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caused serious damage worldwide. As of 14:00 on July 19, 
2021, there were a total of 191,229,635 diagnosed cases of 
COVID-19 diagnosed, and 4,105,799 deaths globally. 
Compared with SARS and MERS, the spread rate of 
COVID-19 is more rapid, probably due to the increased 
globalization and virus adaptability to various 
environments.7

At present, drugs employed to fight viral infections 
include natural medicines8–11 (eg, liquorice, Scutellaria 
baicalensis and forsythia), chemical drugs12 (eg, ribavirin, 
remdesivir, favipiravir) and biotechnology-derived drugs3 

(eg, IFN-α, IFN-β and peptide). Natural antiviral medi-
cines have multiple targets and moderate effects, and they 
usually contain complex ingredients but exhibit only lim-
ited efficacy.13 Biotechnology-derived AvDs have high 
curative effects and induce low drug resistance, but they 
usually need to be administered by injection due to their 
poor stability and bioavailability, and they are very easily 
inactivated in vivo.14 Chemical AvDs inhibit viruses 
quickly and strongly, and as most are administered orally, 

their use and storage are convenient. Chemical AvDs are 
the main treatment employed in antiviral therapy.15 The 
physicochemical properties of these drugs, as well as their 
metabolism, affect their efficacy to varying degrees.16–18 

To improve the antiviral efficacy of AvDs, we need to 
comprehensively understand the characteristics of AvDs. 
In this review, we systematically investigated the struc-
tural, physicochemical, metabolic, kinetic and bioactive 
characteristics and pharmacological effects of popular 
nucleoside analogs (NA-AvDs) and non-nucleoside ana-
logs of AvDs (NN-AvDs) currently on the market 
(Figure 1).

The scientific community is urged to explore and 
develop novel potent antiviral agents. Considering that 
vaccine development is time-consuming and that viruses 
mutate quickly, antivirals remain the main treatment for 
viral infections. To date, there are α-interferon, lopinavir/ 
ritonavir, ribavirin, chloroquine phosphate, and arbidol 
have been proven to possess effectiveness in the general 
treatment of COVID-19, and tocilizumab (biological 
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drugs) is used in severe/critical immunotherapy in accor-
dance with the guidelines of the Chinese Diagnosis and 
Treatment Protocol on the government website (Trial 
Vers ion  7)  (h t tps : / / ch ina .huanqiu .com/ar t ic le /  
9CaKrnKpIEe. Available on October 19, 2020). Most 
AvDs currently on the market are oral tablets. Poor phar-
macokinetic profiles and high resistance are already 
known to the main disadvantages of these AvDs. 
Therefore, loading antiviral drugs into advanced delivery 
systems, such as lipid-based, macromolecule-based, and 
nanoparticle-based systems, may conducive to overcoming 
the abovementioned disadvantages. In this review, 16 typi-
cal AvDs currently on the market are investigated by 
retrieving their data from available databases (Table 1).

Solubility, Permeability and 
Structural Properties of AvDs
Solubility and Permeability Limits of AvDs
The dose number (D0) and oil-water partition coefficient 
(log P) were employed to estimate the biopharmaceutics 
classification system (BCS) for AvDs. The D0 value > 1 is 
the defining criterion of low solubility and log P ≤ 1.632 is 
the defining criterion of low permeability.23 According to 
the solubility and permeability, the AvDs are classified into 
3 groups (Figure 2). Among these drugs, 50% belong to 
BCS II with low solubility, 44% belong to BCS III with 
low permeability, 6% belong to BCS IV with low 

solubility and low permeability. These parameters illus-
trate the low absorption of AvDs in vivo.

Structural Characteristics of AvDs
According to molecular structure, AvDs are divided into 2 
types (Figure 3). (1) NA-AvD, which are modified nucleo-
sides with a structure that mimics the structure of natural 
nucleosides. NA-AvDs are recognized by cellular or viral 
enzymes and lead to disruption/termination of replication 
or other biological processes due to incorrect structural 
modifications.24 NA-AvDs are further classified into 3 
subtypes: (i) purine NA-AvDs (eg, adefovir, entecavir 
and acyclovir), (ii) pyrimidine NA-AvDs (eg, zidovudine 
and lamivudine), and (iii) other NA-AvDs (eg, ribavirin, 
remdesivir and favipiravir). (2) NN-AvDs, include 4 sub-
types: (i) quinolines, such as chloroquine phosphate, (ii) 
amides, such as lopinavir, oseltamivir (neuraminidase inhi-
bitor: cyclohexene derivative) and palamivir (neuramini-
dase inhibitor: cyclopentane derivative), (iii) indoles, such 
as abidol, (iv) thiazoles (ritonavir), and (v) others (balox-
avir marboxil and letermovir).

Relationship Between Structure and 
Solubility/Permeability of AvDs
Seventy-five percent of the abovementioned NA-AvDs (such 
as ribavirin, adefovir, entecavir, acyclovir, zidovudine, lami-
vudine) and approximately 12% of the NN-AvDs (such as 

Figure 1 The schematic diagram for antiviral drug delivery systems to improve bioactivity, increase metabolism and pharmacokinetic characteristics. (A) AvDs have poor 
absorption due to low solubility/low permeability. (B) drug delivery systems are used to enhance absorption and bioavailability of AvDs. (C) AvDs are metabolized by hepatic 
microsomal enzymes. (D) The pharmacodynamics activities of AvDs are enhanced. The upward arrows (↑↑↑): refers to an increase in the absorption/bioavailability of the 
drug.
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oseltamivir) had low permeability, probably due to the hydro-
xyl groups in their molecular structures, which increase their 
polarity. Also, 25% of NA-AvDs (such as remdesivir, favi-
piravir) and 88% of NN-AvDs (such as chloroquine, lopina-
vir, arbidol, ritonavir, peramivir, baloxavir marboxil and 
letermovir) had low solubility due to their hydrophobic 
macromolecular structures.

Pharmaceutical Technology to 
Improve Solubility and Permeability
Oral drugs require sufficient solubility and intestinal 
absorption to enable drug molecules to reach action 
sites and exert therapeutic effects.25 Solubility is 
a prerequisite to confirm drug absorption and clinical 
response for drugs given orally.23 Permeability repre-
sents the speed and extent of oral drug diffusion through 
the mucus layer and then through the submucosa and 
epithelial cell barriers into the blood or lymphatic 
circulation.26 Currently, numerous advanced pharmaceu-
tical technologies have been applied to increase the 
solubility and permeability of AvDs, including adding 
auxiliary ingredients (such as latent solvents and pene-
tration enhancers) and applying cutting-edge preparation 
methods (such as inclusion technology, solid dispersion 
technology and micronization technology and 
nanotechnology).

Pharmaceutical Technology to Increase 
Both Solubility and Permeability
Adding Auxiliary Ingredients
Lopinavir solid dispersions were developed by using 
Soluplus as a polymeric solubilizer.27 An in vitro char-
acterization study showed that Soluplus solubilized lopi-
navir in water almost linearly as a function of 
concentration by creating H-bonds of water with the 
drug carbonyl group and forming micelles in water. 
A Caco-2 cell transport study demonstrated that 
Soluplus significantly enhanced the permeability of lopi-
navir through the rat intestine via H-bond or micelle 
formation and P-glycoprotein (P-gp) inhibition. The 
bioavailability of lopinavir in Soluplus matrixed extru-
date was 3.70-fold that of lopinavir crystal. Soluplus 
(polyvinyl caprolactam-polyvinyl acetate-polyethylene 
glycol grafted copolymer) is a new amphiphilic nonionic 
medicinal polymer material that not only changes the 
interface state of the solution system but also increases 
the solubility of poorly soluble drugs.28Ta
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Preparing Polymeric Micelles
The polymeric micelles enhanced the solubility and 
permeability of acyclovir.29 The apparent solubility 
value (1.39 mg/mL) of acyclovir polymeric micelles 
was 1.36-fold that of acyclovir. The amount of acyclo-
vir in the polymeric micelles that passed through the 
cornea in 6 h was approximately 10 times greater and 
the lag time was apparently shorter than that of aqu-
eous solution. Polymeric micelles are colloidal struc-
tures of block copolymers: hydrophobic fragments 
form the spherical inner core, encapsulating poorly 

water-soluble drugs, while hydrophilic fragments form 
the outer shell.30

Preparing Solid Dispersion
A lyophilized milk-based solid dispersion was developed 
to enhance the solubility and permeability of ritonavir.31 

Ritonavir was dispersed in an amorphous polymer matrix 
and existed primarily in a molecularly dispersed state.32 

This formulation (drug:carrier mass ratio of 1:4) exhibited 
higher dissolution efficiency (~55.26 ± 1.29%, represent-
ing a 10-fold increase compared to pure ritonavir). Ex vivo 

Figure 2 The classification ratio of antiviral drugs (AvDs) according to the biopharmaceutics classification system (BCS) criteria.

Figure 3 Structures of AvDs. Basic structures of (A) adenine nucleotide analog, (B) guanine nucleotide analog, (C) thymine nucleotide analog, (D) cytosine, (E) quinolones, 
(F) indoles, (G) thiazoles nucleotide analog; (H) baloxavir marboxil; (I) letermovir.
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permeation research indicated that the permeation extent 
of ritonavir formulation (33~75% w/w) was ~1.5~3.7-fold 
greater than that of pure ritonavir (~20%).

Pharmaceutical Technology to Increase 
Solubility Alone
Preparing Cyclodextrin Inclusion
The use of γ-cyclodextrin (a cyclodextrin derivatization) 
resulted in an 87-fold increase in lopinavir 
solubilization.33 Cyclodextrin is a class of cyclic oligo-
saccharides of α (1→4) glucopyranosides, having 
a hydrophilic outer surface and a considerably less hydro-
philic central cavity that enable it to form complexes with 
drug molecules, thereby enhancing the aqueous solubility 
and bioavailability of the drug.34

Preparing Nanosuspension
The use of ritonavir nanosuspension increased up the dis-
solution rate of ritonavir. The area under the plasma con-
centration-time curve (AUC) values of ritonavir 
nanosuspension were 1.40-, 6.16- and 12.40-fold higher, 
and the maximum plasma concentration (Cmax) values 
were 1.90-, 3.23- and 8.91-fold higher, than those of the 
commercial product, physical mixture and coarse powder 
of ritonavir, respectively.35 Nanosuspensions containing 
surfactants or polymers as stabilizers may be employed 
to address drug delivery issues.36

Preparing a self-microemulsifying drug delivery sys-
tem (SMEDDS). The solid SMEDDS tablets (completely 
dissolved in 60 min) markedly enhanced the drug dissolu-
tion rate (30%), Cmax (160.63%) and oral bioavailability 
(196.46%) compared to free ritonavir.37 SMEDDS is 
a promising approach to deliver lipophilic drugs due to 
their self-dispersion characteristics. The small droplet 
sizes observed upon dispersion have shown that drug 
absorption benefited from the large interfacial area.38

Pharmaceutical Technology to Increase 
Permeability Alone
Adding Penetration Enhancer
Caco-2 cell permeation studies showed that the permeabil-
ity of acyclovir increases by 30 to 40 times in the presence 
of chitosan.39 Chitosan is an unbranched binary heteropo-
lysaccharide consisting of the two units N-acetyl-d-gluco-
samine and d-glucosamine, which can increase or 
accelerate drug penetration.17,40

Adding an Absorption Enhancer
Gelucire 44/14 (at a concentration of 0.05% or 0.1% w/v) 
is able to increase the apparent permeability coefficient 
(Papp) by 6.47-fold and promote ocular bioavailability by 
5.40-fold compared to free ribavirin.41 Gelucires are 
a series of amphiphilic pharmaceutical excipients that are 
widely used as powerful solubilization agents and bioa-
vailability enhancers via oral and topical routes.

Preparing Prodrugs
Oseltamivir carboxylate formed a valyl amino acid pro-
drug via an isopropyl-methylenedioxy linker. This oselta-
mivir prodrug had a 9-fold enhanced Papp value in Caco-2 
cells compared to that of the parent drug.42 The ethanol 
and butanol prodrugs of lamivudine increased permeability 
2- and 10-fold, respectively.43

Metabolic Enzyme, Reaction and 
Metabolite of AvDs
AvDs are converted into active ingredients or metabolites 
with high polarity and high-water solubility, mainly in the 
liver and intestine. Phase I biotransformation involves 
oxidation, reduction or hydrolysis reaction of the func-
tional group of drug molecules. Phase II biotransformation 
(combination reaction) combines the polar groups pro-
duced by phase I with endogenous components in the 
body through covalent bonds.23,44 The produced combina-
tion, possessing high polarity, is easy to dissolve in water 
and discharge from the body. Renal clearance is mainly 
controlled by membrane transport proteins and is an 
important elimination pathway for antiviral agents.

Enzymatic System Related to Metabolism 
of AvDs
The main metabolic enzymes of AvDs are microsomal 
enzymes existing in the liver, lung, kidney, small intestine, 
placenta and skin, mainly in intestinal epithelial cells and 
hepatocytes. Cytochrome P450 enzyme system (CYP450) 
mainly exists on the smooth endoplasmic reticulum and 
mitochondria of hepatocytes and in the small intestinal 
epithelia or the proximal tubules of the kidneys to 
a lesser extent. CYP450 is mainly involved in phase 
I reactions of AvDs.45 Approximately 40–70% of all clin-
ical drugs are subjected to glucuronidation reactions meta-
bolized by uridine diphosphate-glucuronosyl transferases 
(UGTs) in humans.46 UGTs are a superfamily of mem-
brane-bound enzymes that catalyze the formation of 
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a chemical bond between a nucleophilic O-, N-, S-, or 
C atom and uridine-5’-diphosphate-α-D-glucuronic acid 
(UDPGA).47

Metabolic Reaction and Metabolite in the 
Liver and Intestine
Metabolic Reaction of NA-AvDs
NA-AvDs enter cells through specific plasma membrane 
nucleoside transporters, such as the SLC22, SLC15, SLC28 
and SLC29 gene family.48 After entering the cells, NA-AvDs 
are phosphorylated by cellular nucleoside kinase to form 
nucleoside monophosphate, diphosphate and triphosphate. 
Nucleoside triphosphates are the active form of NA-AvDs, 
which work by inhibiting cellular or viral enzymes (such as 
DNA/RNA polymerase).49 Most NA-AvDs are activated 
in vivo through 5’-phosphorylation. NA-AvDs are subjected 
to phosphorylation (7/8, ie, 7 of a total of 8), glucuronidation 
(1/8), oxidation (1/8), and reduction (1/8) (Table 2).

Purine NA-AvDs: (1) Phosphorylation. Adefovir with 
hydroxyl groups was phosphorylated to the diphosphate 
compound, which competes with deoxyadenosine tripho-
sphate kinase for incorporation by HBV reverse transcriptase 
to exert its antiviral effect.55 Entecavir undergoes intracellu-
lar phosphorylation to form di- and triphosphate metabolites 
by the natural substrate deoxyguanosine triphosphate and is 
then incorporated into HBV DNA polymerase to inhibit 
replication.56 (2) Oxidation. Acyclovir with the primary 
hydroxyl group in the side chain underwent oxidation, result-
ing in the formation of active carboxy-acyclovir.62

Pyrimidine NA-AvDs: (1) Phosphorylation. Zidovudine 
undergoes intracellular phosphorylation to form monopho-
sphate, diphosphate and active triphosphate compounds by 
thymidine, thymidylate kinase and nucleoside diphosphate 
kinase, respectively.53 Lamivudine formed monophosphate, 
diphosphate and active 5’-triphosphate by deoxycytidine 
kinase, deoxycytidylate kinase and nucleoside diphosphate 
kinase, in turn.54 (2) Glucuronidation. Zidovudine underwent 
glucuronidation by UGT2B7 to form inactive metabolites 
excreted in urine.53 (3) Reduction. CYP450s and CYP450 
reductase have been applied in the reduction of the azido 
moiety of zidovudine. The metabolite 30-amino-3’-deox-
ythymidine of zidovudine has been shown to be approxi-
mately 5- to 7-fold more toxic to human hematopoietic 
progenitor cells.53

Other NA-AvDs: Phosphorylation. Favipiravir first forms 
ribonucleoside 5’-monophosphate and then forms ribonu-
cleosides 5’-diphosphate and 5’-triphosphate under the 

action of guanine phosphoribosyltransferase. In addition, 
another active metabolite, nicotinamide adenosine favipira-
vir, was formed by nicotinamide mononucleotide 
adenylyltransferase.52 Remdesivir is metabolized through 
the following 3 pathways: forming nucleoside triphosphate 
by phosphorylation, forming alanine metabolite by depheny-
lization, and forming nucleoside monophosphate by 
deamination.51 Ribavirin forms 5’-phosphorylation com-
pounds by adenosine kinase catalysis.63 Phosphorylated riba-
virin metabolites have exhibited broad antiviral activity.50

Metabolic Reaction of NN-AvDs
The whole 8 NN-AvDs investigated in this article are 
subjected to oxidation (3/8), reduction (2/8), hydrolysis 
(1/8) and conjugation (1/8).

Oxidation: Lopinavir is mainly catalyzed by CYP3A to 
undergo oxidative metabolism. The predominant meta-
bolic site was carbon-4 of the cyclic urea moiety, with 
subsequent secondary metabolism occurring on the diphe-
nyl core moiety.58 Arbidol contains sulfide, which forms 
sulfinylarbidol by sulfoxidation. The oxidation was cata-
lyzed by flavin-containing monooxygenases.60 Ritonavir 
undergoes several oxidations, including hydroxylation at 
the isopropyl group by CYP2D6 to form the major meta-
bolite and the oxidation of the thiazole rings on the eastern 
and western side of the molecule catalyzed by CYP2J2.61 

CYP3A4 was the major isoform involved in arbidol meta-
bolism in the liver and intestines.60

Reduction: Chloroquine was rapidly dealkylated into 
the pharmacologically active desethylchloroquine, bisde-
sethylchloroquine and 7-chloro-4-aminoquinoline. The 
main metabolic enzymes were two major isoforms, 
CYP3As and CYP2D6.57 Ritonavir underwent dealkyla-
tion by CYP3A4 to form demethylation metabolites.61

Hydrolysis: Oseltamivir was metabolized to GS4071, 
(3R,4R,5S)-3-(1-ethylpropyloxy)-4-acetamido-5-amino- 
cyclohexene-1-carboxylate (an active neuraminidase inhi-
bitor) through ester hydrolysis.59

Conjugation: Arbidol was conjugated with glucuronide 
and sulfate via free hydroxyl groups on the indole ring by 
UGT1A9.64 The obtained conjugates were major metabo-
lites in human urine.

Pharmacological Activity of AvDs 
and Their Delivery Systems
Pharmacological Activity of AvDs
AvDs usually reduce viral synthesis by interfering with the 
synthesis cycle of viral RNA (Figure 4). Among all 14 
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Table 2 Main Metabolic Pathway of AvDs in Liver and Intestine

AvD Structure Phase I Reaction Phase II Reaction Ref.

Oxidation Reduction Hydrolysis Binding

Ribavirin – Deribosylation at 2: 

—N—C→—N—H

Amide 

hydrolysis 
at 3: — 

NH2→— 

COOH

Phosphorylation at 1: 

—OH→—OPO3→ 
—O(PO3)2→—O 

(PO3)3

[50]

Remdesivir – – – Phosphorylation at 1: 

—OH→—OPO3→ 
—O(PO3)2→—O 

(PO3)3

[51]

Favipiravir – – – Phosphorylation at 1: 

—OH→—OPO3→ 
—O(PO3)2→—O 

(PO3)3 

Glucuronidation at 1: 
—C—F→—C— 

ADP

[52]

Zidovudine – CYP-450/P450 

reduction at 2: 

—N—N2→—N— 
H2

– Phosphorylation at 1: 

—OH→—OPO3→ 
—O(PO3)2→—O 
(PO3)3 

Glucuronidation at 1: 

—OH+;Glucuronic 
acid →Glucuronides

[53]

Lamivudine – – – Phosphorylation at 1: 
—OH→—OPO3→ 
—O(PO3)2→—O 

(PO3)3

[54]

Adefovir – – – Phosphorylation at 1: 
—OPO3→—O 

(PO3)2→ 
—O(PO3)3

[55]

(Continued)
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AvDs, 5 AvDs are broad-spectrum AvDs, 3 AvDs are 
mainly for HBV, 2 are mainly for HIV, 2 are mainly for 
CoV, 2 are mainly for influenza and 1 is for HSV 

(Table 3). In particular, half of the abovementioned 
AvDs, including ribavirin,65 remdesivir,66 favipiravir,67 

chloroquine,68 lopinavir, ritonavir69 and arbidol,12 

Table 2 (Continued). 

AvD Structure Phase I Reaction Phase II Reaction Ref.

Oxidation Reduction Hydrolysis Binding

Entecavir – – – Phosphorylation at 1: 
—OPO3→—O 

(PO3)2→ 
—O(PO3)3

[56]

Chloroquine – Dealkylate at 

1,2,3: —N—C→— 

N—H

– – [57]

Lopinavir Hydroxylation at 
1: —NH→—C— 

OH→—C—O=O

– – – [58]

Oseltamivir Hydroxylation at 

2: —C—H→C— 
OH 

Carbonylation: 

—C—H→—C=O

– Hydrolysis 

at 1: —O— 
C→—O— 

H

– [59]

Arbidol S-Oxidation at 4; 

Hydroxylation at 

5: —C—H→ 
—C—OH

N-demethylation,di- 

N-demethylation at 

1: 
—N—C→—N— 

H; 

N-demethylation at 
3: 

—N—C→—N—H

– O-Glucuronide 

conjugation, 

O-Sulfate conjugation 
at 2,5.

[60]

Ritonavir Hydroxylation at 2: 

—C—H→ 
—C—OH; 
S-oxide,N-oxide, 

epoxide at 3,5

Dealkylation at 

1,4,6: 

—N—C→—N—H

– – [61]
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exhibited potential efficacy for COVID-19 treatment. 
Ribavirin interfered with the replication of DNA and 
RNA viruses and boosted the antiviral Th1 arm of the 
immune system to regulate T cells. In addition, ribavirin 
was proven to be effective for COVID-19 in several clin-
ical trials.70 Recently, remdesivir in the triphosphate form 
was found to compete with the natural counterpart ATP 
and cause SARS-CoV RNA synthesis arrest at a specific 
position; thus, remdesivir might resist COVID-19.71 

Favipiravir was effective in reducing the SARS-CoV-2 
infection in vitro.12 Favipiravir stopped the disease pro-
gression of COVID-19 by inhibiting and clearing SARS- 
CoV-2 virus to achieve good treatment outcomes in 
COVID-19 patients.72 Chloroquine was a potential drug 
for COVID-19, since it altered the crosstalk of SARS- 
CoV-2 molecules with target cells because the inhibition 
capability of p38 mitogen-activated protein kinase 
(MAPK) interfered with proteolytic processing of the 
M protein and altered virion assembly and budding.73 

Both lopinavir and ritonavir bound well to the SARS- 
CoV 3C-like protease.74 The combination of lopinavir 

and ritonavir represent a potential treatment for COVID- 
19. Arbidol effectively acted against SARS-CoV-2 in vivo 
and in vitro study.75

(1) Five AvDs exhibited broad-spectrum antiviral 
effects. Three NA-AvDs (ribavirin,99 remdesivir100 and 
favipiravir101) are inhibitors of RNA-dependent RNA 
polymerase. NN-AvD chloroquine69 inhibited phosphory-
lation of MAPK in THP-1 (a human monocytic leukemia) 
cells, as well as caspase-1, and then blocked the virus 
replication cycle.102 The NN-AvD arbidol103 had broad- 
spectrum activity, since it interacted with both membranes 
and with viral/cellular proteins.104

(2) Three AvDs exhibited anti-HBV effects. Three NA- 
AvDs (lamivudine,85 adefovir,86 entecavir87) effectively 
inhibited the replication of HBV virus. Lamivudine also 
reduced viral load and reversed fibrosis, and entecavir was 
also a highly selective inhibitor of HBV DNA 
polymerase.105

(3) Two AvDs exhibited anti-HIV effects. Two NA- 
AvDs (zidovudine106 and lamivudine107 are inhibitors of 
reverse transcriptase enzymes. Zidovudine also inhibited 

Figure 4 The antiviral mechanisms of AvDs include reverse transcription inhibition, integration inhibition, maturation interference. NRTIs refer to nucleoside reverse 
transcriptase. (1)-(6), (9), (10) belong to nucleoside analogues antiviral drugs (NA-AvDs) written in the color ; (7), (8), (11)-(16) belong to non-nucleoside analogues 
antiviral drugs (NN-AvDs) written in the color .
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Table 3 Pharmacological Activities of AvDs

AvD Anti-Virus Type Mechanism Cell Parameter Ref.

EC50 (μM) CC50 (μM) IC50 (μM) SI

Ribavirin Anti COVID-19 Prevented viral replication 

by inhibiting viral DNA 

polymerase, inhibited viral 

penetration and viral 

protein synthesis

Vero E6 105.90 >400.00 – >3.65 [12]

Anti influenza 

virus

Acted by GTP depletion 

via inosine monophosphate 

dehydrogenase (IMPDH) 

inhibition.

Canine 

Kidney 

(MDCK) 

epithelial

0.34E-02 – – – [76]

Anti influenza 

virus

Acted by GTP depletion 

via IMPDH inhibition.

MDCK 

epithelial

0.37E-02 – – – [76]

Anti-HCV Inhibited IMPDH HuH6 87.00 >135.00 – >1.55 [77]

Anti-RSV Inhibited virus replication HEp2 11.00 42.00 – 3.82 [78]

Anti Lassa virus (1) Limited the infectivity of 

new virions; (2) Reduced 

viremia by impairing viral 

production; (3) Modulated 

cell damage, and (4) 

Enhanced antiviral 

immunity.

Vero E6 – – 26.00 – [79]

Anti CCHF virus Inhibited virus replication Vero E6 – – 2.80µg/mL – [80]

Anti Chikungunya 

virus

Reduced viral burden HUH-7 2.58 µg/mL 11.95 µg/mL – 4.63 [81]

Remdesivir Anti COVID-19 Incorporated into nascent 

viral RNA chains and 

results in premature 

termination

Vero E6 0.77 >100.00 – >129.87 [12]

Anti Ebola virus Acted as an alternative 

substrate and RNA-chain 

terminator

Primary 

macrophages

0.09 – – – [51]

Anti MERS Reduced viral loads and 

improves pulmonary 

function

Calu-3 0.09 >10.00 – >100.00 [82]

Anti SARS Inhibits virus replication HAE 0.07 >10.00 – >142.86 [83]

Favipiravir Anti COVID-19 Reduced viral infection Vero E6 61.88 > 400.00 – 6.46 [12]

Anti Lassa virus Disrupted viral replication Vero E6 – – 29.00 – [79]

Anti CCHF virus Suppressed virus 

replication

Vero E6 – – 1.10 µg/mL – [80]

Anti Chikungunya 

virus

Reduced viral burden HUV-7 20.00 μg/mL >1000.00 μg/mL – >50.00 [81]

Zidovudine Anti-HIV Nucleoside reverse 

transcriptase inhibitor

CEM-GFP – >1000.00 0.52 – [84]

(Continued)
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Table 3 (Continued). 

AvD Anti-Virus Type Mechanism Cell Parameter Ref.

EC50 (μM) CC50 (μM) IC50 (μM) SI

Lamivudine Anti-HIV Inhibited HIV-1 reverse 

transcriptase via DNA 

chain termination

MDCK – >1000.00 0.04 – [84]

Anti-HBV Terminated DNA chain Hep-G2 0.45 >1000.00 – – [85]

Adefovir Anti-HBV Prevented viral replication 

by inhibiting viral DNA 

polymerase

Hep-G2 0.96 471.10 – 490.73 [86]

Entecavir Anti-HBV Inhibited the replication of 

HBV virus and exhibit 

a highly selective inhibitor 

of HBV DNA polymerase.

Hep-G2 3.75E-03 30.00 – 8000 [87]

Aciclovir Anti-HSV-1 Activated by the viral 

thymidine-kinase (TK), 

preventing viral genome 

replication.

WI 38 0.80 μg/mL > 200.00 μg/mL – > 

250.00

[88]

Anti-HSV-2 Activated by the viral 

thymidine-kinase (TK), 

preventing viral genome 

replication.

WI 38 1.38 μg/mL > 200.00 μg/mL – > 

145.00

[88]

Chloroquine Anti COVID-19 Function at both entries, 

and at post-entry stages of 

the COVID-19 infection, 

immune-modulating 

activity.

Vero E6 1.13 > 100.00 – > 

100.00

[12]

Anti SARS-CoV Increased endosomal pH is 

required for virus/cell 

fusion as well as interfering 

with the glycosylation of 

cellular receptors of SARS- 

CoV.

Vero 4.10 >128.00 – >31.00 [89]

Anti MERS-CoV Inhibited the replication of 

virus

Vero 3.00 58.10 – 19.40 [90]

Anti HCoV-229E- 

GFP

Inhibited the replication of 

virus

Vero 3.30 >50.00 – >15.00 [90]

Anti Zika virus (1) Inhibited endosomal 

disassembly of the 

internalized virus and 

reducing the release of 

viral RNA to the 

cytoplasm for replication; 

(2) inhibited ZIKV RNA 

replication through 

blocking ZIKV induced 

autophagy.

Vero 9.82 134.54 – 13.70 [91]

(Continued)
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Table 3 (Continued). 

AvD Anti-Virus Type Mechanism Cell Parameter Ref.

EC50 (μM) CC50 (μM) IC50 (μM) SI

Lopinavir Anti MERS-CoV Inhibited CoV-virus 

replication

Vero 8.00 24.40 – 3.10 [90]

Anti SARS-CoV Inhibited CoV-virus 

replication

Vero 17.10 >32.00 – >2.00 [90]

Anti HCoV-229E- 

GFP

Inhibited CoV-virus 

reolication

Vero 6.60 37.60 – 5.70 [90]

Oseltamivir Anti-H1N1 Prevented viral replication 

by inhibiting viral DNA 

polymerase; binding to 

specific cell-surface 

receptors and inhibiting 

viral penetration or 

uncoating; inhibiting viral 

protein synthesis; or 

blocking late stages of virus 

assembly.

MDCK 90.60 >900.00 – >9.90 [92]

Anti-H3N2 Prevented viral replication 

by inhibiting viral DNA 

polymerase; binding to 

specific cell-surface 

receptors and inhibiting 

viral penetration or 

uncoating; inhibiting viral 

protein synthesis; or 

blocking late stages of virus 

assembly.

MDCK 0.10 >900.00 – >9000 [92]

Arbidol Ant-COVID-19 Against SARS-CoV-2 Vero E6 4.11 31.79 – 7.73 [75]

Anti-HSV-2 Viral entry inhibitors Hep-2 - - 5.05 µg/mL 6.46 [93]

Anti-H1N1 Blocked the fusion 

between the viral envelope 

and the endosomal 

membrane; modulating 

virus-induced 

inflammatory cytokines, 

including

MDCK 4.40 59.39 – 13.40 [94]

Anti-H3N2 Blocked the fusion 

between the viral envelope 

and the endosomal 

membrane; modulating 

virus-induced 

inflammatory cytokines, 

including

MDCK 11.80 59.39 – 5.10 [94]

(Continued)
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viral replication by interfering with chain elongation of the 
viral DNA.108 Lamivudine also exerted antiviral effects by 
acting as a DNA chain terminator.107

(4) Two AvDs exhibited anti-CoV effects. Two NN- 
AvDs (lopinavir109 and ritonavir82) were combined to treat 
coronavirus infections. Lopinavir was a protease inhibitor 
which mainly inhibited the 3C-like protease of CoV-virus 
and modulated apoptosis in human cells.110 While ritona-
vir inhibited the CYP3A mediated metabolism of lopinavir 
and thereby potentiated the serum level of lopinavir.111

(5) Two AvDs exhibited anti-influenza effects. Two 
NN-AvDs contained oseltamivir112 and peramivir96). The 
former mainly targeted a glycoprotein neuraminidase on 

the surface of influenza virus.113 Peramivir is an effica-
cious nucleoside analog inhibitor to treat influenza.96

(6) 1 AvDs exhibited anti-HSV effects. NA-AvD 
acyclovir88 was activated by viral thymidine kinase and 
then di- and tri-phosphorylated by cellular kinases. The active 
tri-phosphorylated forms of acyclovir specifically interfered 
with viral DNA polymerase and caused chain termination.88

Effect of Metabolism on Pharmacological 
Activity
The in vivo metabolization of AvDs had a large influence 
on viral replication processes and pharmacological 
function.

Table 3 (Continued). 

AvD Anti-Virus Type Mechanism Cell Parameter Ref.

EC50 (μM) CC50 (μM) IC50 (μM) SI

Anti-H9N2 Blocked the fusion 

between the viral envelope 

and the endosomal 

membrane; modulating 

virus-induced 

inflammatory cytokines, 

including

MDCK 6.50 59.39 – 9.10 [94]

Anti Ebola virus Inhibited virus entry and 

replication

HepG2 2.70 24.40 – 9.00 [95]

Anti poliovirus 

type 3

Inhibited virus entry and 

replication

HepG2 4.10 28.60 – 7.70 [95]

Anti-HBV Inhibited virus entry and 

replication

HepG2 17.90 >188.00 – >11.00 [95]

Anti arenavirus Inhibited virus entry and 

replication

HepG2 5.80 31.00 – 6.20 [95]

Anti human 

herpesvirus 8

Inhibited virus entry and 

replication

HepG2 1.60 >60.00 – >37.00 [95]

Ritonavir Anti MERS-CoV HIV-1 protease inhibitor Calu-3 24.90 >50.00 – >2.00 [82]

Peramivir Anti-H1N1 Neuraminidase inhibitor MDCK 643.00nM >E+05nM 0.48nM >155.52 [96]

Baloxavir 

Marboxil

Anti-H1N1 Polymerase acidic protein 

inhibitor inhibited cap- 

dependent endonuclease, 

inhibited viral mRNA 

synthesis

MDCK 1.2±0.83 nM – – 2500 [97]

Letermovir Anti-CMV Inhibited viral replication HELF 5.0E-03 64.00 – 12,903 [98]

Abbreviations: Calu-3 cell, cultured human airway epithelial cell; CC50, half-cytotoxic concentration; CCHF, crimean-congo hemorrhagic fever virus; CMV, cytomegalo-
virus; CoV, coronavirus; COVID-19, coronavirus disease 2019; EC50, half-maximal effective concentration; HBV, hepatitis C virus; HCV, hepatitis C virus; HEV, hepatitis 
E virus; HELF, human embryonic lung fibroblast cells; HIV, human immunodeficiency virus; HSV, herpes simplex virus; IFN, interferon; MDCK, Madin Darby canine kidney 
cell; MERS, Middle East respiratory syndrome; RSV, respiratory syncytial virus; SI, selectivity index; Vero E6 cell, monkey kidney cell line; SARS-CoV-2, severe acute 
respiratory syndrome coronavirus 2.
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(1) Generation of active metabolites. Eight inactive or 
low-activity AvDs were transformed into active or high- 
activity forms through metabolism in the body.

Typically, NA-AvDs are prodrugs that must be con-
verted to nucleotide triphosphate metabolites to exert anti-
viral activity. Ribavirin was phosphorylated to form 
monophosphate by adenosine kinase and triphosphate by 
nucleoside mono- and diphosphate kinases.114 The tripho-
sphate metabolite of remdesivir markedly increased the 
plasma half-life time (t1/2) value (14 h versus 0.39 h for 
remdesivir) and antiviral activity (> 40 times) compared to 
the free drug.115 Favipiravir showed no inhibitory effect on 
influenza, whereas its active metabolite (favipiravir tripho-
sphate) strongly inhibited influenza virus RNA 
polymerase.116 Zidovudine was phosphorylated at the 
intracellular site, and zidovudine triphosphate was the 
inhibitor of reverse transcriptase activity required for 
viral replication.117 Lamivudine was phosphorylated to 
lamivudine triphosphate, which was able to inhibit viral 
reverse transcriptase and terminate proviral DNA chain 
extension due to the lack of the 3’-hydroxyl group 
required for nucleic acid replication.118 Entecavir-formed 
triphosphate inside cells inhibited replication of the hepa-
titis B virus.119

In the case of NN-AvDs, desethylchloroquine was an 
active metabolite of chloroquine. Both chloroquine and its 
metabolite acted against Zika virus at low concentrations 
(ie, at the micromolar level).120 Oseltamivir was converted 
into oseltamivir carboxylate (a potent neuraminidase 
inhibitor).121 The active metabolites of arbidol, sulfinylar-
bidol and sulfonylarbidol, increased the t1/2 values (25 h, 
26 h versus 15.7 h for arbidol) and peak time (Tmax) values 
(13 h, 19 h versus 1.38 h), respectively.122

(2) Generation of inactive/low-active metabolites. 
Zidovudine was metabolized quickly to the inactive form 
glucuronide with a t1/2 value of 1 h.123 Lopinavir was 
primarily mediated by CYP3A enzymes and yielded meta-
bolites that were less potent as protease inhibitors.124

(3) Generation of toxic metabolites. Zidovudine’s 
metabolite (30-amino-3’-deoxythymidine) was approxi-
mately 5- to 7-fold more toxic to human hematopoietic 
progenitor cells.53

Delivery System to Improve 
Pharmacological Activity of AvDs
Most AvDs had poor solubility/permeability and low oral 
bioavailability. Appropriate drug delivery systems might 

be able to overcome the shortcomings of AvDs and 
improve pharmacological activity.

(1) Preparing nanocarriers to lessen the side effects of 
AvDs. Ribavirin caused hemolytic anemia due to the accu-
mulation inside red blood cells. Poly(glycerol-adipate) 
nanoparticles (NPs) delivered ribavirin to the targeted 
liver and subsequently decreased the red blood cell uptake 
rate, which overcame the side effects of ribavirin (hemo-
lytic anemia caused by ribavirin due to its accumulation 
inside red blood cells).125 Lamivudine has low bioavail-
ability in the brain (0.05–1.14%) and cannot kill viruses 
completely. Mannosylated polymeric NPs improved brain 
bioavailability and targeted mannose receptors on the 
macrophage surface to improve the therapeutic outcome 
and reduce toxicity.126 Oseltamivir loaded into the surface 
of selenium NPs improved antiviral activity and increased 
the viability of cells infected with a virus to 83.2%.127

(2) Preparing nanocarriers to extend the dose interval 
of AvDs. Zidovudine had low bioavailability and biologi-
cal t1/2 value that led to dose-dependent anemia and first- 
pass metabolism. Amide-functionalized alginate NPs were 
used to encapsulate zidovudine to realize slow and sus-
tained drug release.123

(3) Other delivery systems to improve pharmacological 
activity of AvDs. Acyclovir was loaded onto activated 
carbon particles. The highly porous carbon structures 
trapped virions, blocked infection and thus improved effi-
cacy with acyclovir.128 Ribavirin was coupled to macro-
molecular carriers and delivered the drug to the targeted 
site liver, which may reduce systemic complications. 
Hemoglobin-ribavirin conjugates had greater antiviral 
activity on both isolated hepatocytes and macrophages, 
and they significantly reduced viral replication at 1 μM, 
while free ribavirin was ineffective at the same 
concentration.129

Pharmacokinetic Characteristics of 
AvDs and Their Delivery System
Pharmacokinetic Behavior of AvDs
Most AvDs belong to BCS II, III or IV types with low 
solubility/permeability. Therefore, their AUC, Cmax, tmax, 
t1/2 or mean retention time (MRT) values are low 
(Table 4). These adverse pharmacokinetic behaviors are 
often unfavorable to the pharmacological action of AvDs. 
The bioavailabilities of orally administered adefovir were 
1% in monkeys and 8–11% in rats. The low bioavailability 
was mainly attributed to the low passive permeability 
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across the intestinal membrane.130 It is crucial to apply 
appropriate drug delivery systems to improve the bioavail-
ability and enhance the pharmacological effects of AvDs.

Nanotechnology to Improve 
Pharmacokinetics of AvDs
Delivery System to Improve 
Pharmacokinetics
Iron-catechol-based nanoscale coordination polymers with 
antiretroviral ligand functionalization served as 
a promising strategy for the bioavailability enhancement 
of zidovudine. These polymers offered long-lasting drug 
release and improved colloidal stabilities, as well as 
enhanced cellular uptake (ie, an increase of up to 50- 
fold).144

The proliposomes increased the MRT of adefovir dipi-
voxil in the liver by approximately 3-fold compared with 
the adefovir suspension.145

The poly (lactic acid)-poly (ethylene glycol)-ligand 
NPs targeted the intestinal transporter PepT1 and 
increased permeability by 2.7-fold compared with free 
acyclovir.146

The triglyceride-mimetic superficially modified meso-
porous silica NPs increased the AUC, Cmax and MRT values 
of lopinavir by 9.65-, 3.87- and 2.70-fold, respectively. The 
NPs improved poor solubility and avoided the first-pass 
metabolism of oral lopinavir to achieve high oral bioavail-
ability with no side effects.147 The lopinavir-loaded bioadhe-
sive protein NPs increased the oral bioavailability by 4- and 
1.5-fold compared to the free lopinavir suspension and lopi-
navir/ritonavir formulations, respectively.140 The poly (lac-
tic-co-glycolic acid) NPs increased the permeability and oral 
bioavailability of lopinavir by 3.04- and 13.9-fold in rats.139 

The lopinavir in hydrophobically modified pullulan NPs was 
metabolized to a lesser extent in the gut. The NPs increased 
the bioavailability twofold.148

Effect of Prodrugs on Pharmacokinetics of 
AvDs
Prodrugs usually offer a versatile strategy to overcome the 
flaws of antiviral drugs. The prodrugs strategy improved 
the pharmacokinetic properties, efficacy and safety profile 
of many viable drugs.149 Effective prodrug strategies 
include ester prodrugs, targeted delivery prodrugs, macro-
molecular prodrugs and nucleoside conjugates.16 

Zidovudine prodrug (the ester conjugation of zidovudine 
with ursodeoxycholic acid) permeated considerably more 

efficiently, and remained in murine macrophages longer, 
than the parent drug. The MRTs for zidovudine and its 
prodrug were 6.5 min and 19.6 min, respectively.150 

Entecavir ester prodrugs prolonged the therapeutic period. 
After subcutaneous injection of the entecavir prodrug in 
beagle dogs, the plasma drug concentration was markedly 
protracted (T1/2 is 129.3 h) with a lower maximum plasma 
concentration (Cmax is 4.7 ng/mL) compared to entecavir 
(oral administration, T1/2 is 4.09 h and Cmax is 15.4 ng/ 
mL).136 The chloroquine prodrug hydroxychloroquine had 
higher accumulation in cells and a longer elimination half- 
life, resulting in a more effect against SARS-CoV-2 
infection.151

Effect of Administration Route on 
Pharmacokinetics of AvDs
The current primary administration route for AvDs is oral 
administration, which has the advantages of convenience, 
safety and cost-effectiveness. However, the oral bioavail-
ability of most AvDs was not satisfactory due to poor 
solubility and permeability. Therefore, it was very impor-
tant to choose the appropriate administration route152 

according to the treatment needs and safety assessment 
to maximize the efficacy of AvDs (Table 5).

Ribavirin nasal spray consisting of spray-dried excipi-
ent particles was suitable for nasal deposition. This 
method provided effective mucosal adhesion and penetra-
tion enhancement. In vivo results confirmed that the agglu-
tination rate was nearly 6 times higher than conventional 
intravenous administration, suggesting that the preparation 
has the potential to deliver a highly brain-targeted antiviral 
from the nose to the brain.160 Adefovir suspension after 
intravenous administration increased the AUC 5.45-fold 
compared with oral administration.135 After subcutaneous 
injection of entecavir in beagle dogs, the Cmax (4.70 ng/ 
mL) was protracted, and the t1/2 value was lengthened 
(129.30 h) compared to oral administration (15.40ng/mL, 
4.1 h).136

After intravenous administration of acyclovir solution, 
there was 90-fold higher Cmax (~26.23 μg/mL) and con-
siderably shorter Tmax (~8.00 min) compared to that of 
acyclovir suspension by oral administration (Cmax was 
~0.29 μg/mL and Tmax was ~26.00 min).137 After intrave-
nous administration of oseltamivir solution92 or peramivir 
solution,141 there were 1.50- and 2.26-fold AUC increases 
compared to oral administration.
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Conclusion and Prospects
As the main resource in the effort to treat viruses, AvDs have 
advantages such as convenient use, accurate dosage, clear 
targets and strong antiviral efficacy. However, insufficient 
solubility/permeability of AvDs (most belong to BCS II and 
III), has a great impact on their oral absorption and results in 
lower oral bioavailability and requires multiple medications. 
A better understanding of the in vivo metabolism and phar-
macokinetic process of AvDs may help researchers to 
develop new formulations to overcome these problems. In 
this review, we investigated the structure-based metabolic 
reactions of AvDs mainly in the liver and intestine. 
Phosphorylation (one conjugation reaction) is the most com-
mon reaction of NA-AvDs; other reactions, such as oxidation 
and reduction, also occur, but no hydrolysis occurs. For NN- 
AvDs, in addition to oxidation, reduction and conjugation 
reactions, hydrolysis also occurs. Enzymatic systems (CYPs 
and phosphokinase) are mainly produced by epithelial cells. 
Most AvDs are activated, and a small number are inactivated 
or maintain activity through metabolic reactions. The phar-
macological activity and pharmacokinetics of AvDs are 
improved by loading into suitable delivery systems with 
nanotechnology, prodrug strategy and administration route 
consideration. The mechanisms of action of AvDs are gen-
erally to inhibit the key enzymes (such as RNA-dependent 
RNA polymerase, reverse transcriptase and nucleoside 
reverse transcriptase) of virus synthesis and consequently 
block viral synthesis.

Notably, some AvDs (such as ribavirin, remdesivir, 
favipiravir, chloroquine, lopinavir and ritonavir) exhibit 
potential as treatments for COVID-19. Several new anti-
viral drugs have been approved for marketing, such as 
bictegravir sodium, emtricitabine and tenofovir alafena-
mide fumarate tablets (Biktarvy®, a nucleotide reverse 
transcriptase inhibitor); baloxavir marboxil tablets 
(Xofluza®, a polymerase acidic endonuclease inhibitor) 
and letermovir injections (Prevymis®, viral terminase inhi-
bitor) have been developed rapidly, and several antiviral 
drugs that are undergoing clinical trials may also contri-
bute to the global management of antiviral infections (such 
as albuvirtide and elsulfavirine). In addition, Regeneron’s 
REGN-COV2 antibody cocktail and Eli Lilly’s LY- 
CoV555 are being used in the treatment of the president 
of the US, and their clinical trials have proven that the 
drugs have anti-COVID-19 efficacy. In the future, new 
antiviral drugs in suitable delivery systems are expected 
to perform better than old ones.Ta
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