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Background: Improved prognostic prediction is needed to stratify patients with early 
hepatocellular carcinoma (EHCC) to refine selection of adjuvant therapy. We aimed to 
develop a machine learning (ML)-based model to predict survival after liver resection for 
EHCC based on readily available clinical data.
Methods: We analyzed data of surgically resected EHCC (tumor≤5 cm without evidence 
of extrahepatic disease or major vascular invasion) patients from the Surveillance, 
Epidemiology, and End Results (SEER) Program to train and internally validate 
a gradient-boosting ML model to predict disease-specific survival (DSS). We externally 
tested the ML model using data from 2 Chinese institutions. Patients treated with 
resection were matched by propensity score to those treated with transplantation in the 
SEER-Medicare database.
Results: A total of 2778 EHCC patients treated with resection were enrolled, divided 
into 1899 for training/validation (SEER) and 879 for test (Chinese). The ML model 
consisted of 8 covariates (age, race, alpha-fetoprotein, tumor size, multifocality, vas-
cular invasion, histological grade and fibrosis score) and predicted DSS with 
C-Statistics >0.72, better than proposed staging systems across study cohorts. The 
ML model could stratify 10-year DSS ranging from 70% in low-risk subset to 5% in 
high-risk subset. Compared with low-risk subset, no remarkable survival benefits were 
observed in EHCC patients receiving transplantation before and after propensity score 
matching.
Conclusion: An ML model trained on a large-scale dataset has good predictive performance 
at individual scale. Such a model is readily integrated into clinical practice and will be 
valuable in discussing treatment strategies.
Keywords: liver cancer, artificial intelligence, prognosis, modelling, surgery

Introduction
Hepatocellular carcinoma (HCC), the fourth leading cause of cancer-related death 
worldwide, typically occurs in patients with chronic liver disease and is an aggres-
sive disease with dismal prognosis.1 Over the past decades, improved surveillance 
programs and imaging techniques have led to early HCC (EHCC) diagnosis in 40– 
50% of patients, at a stage amenable to potentially curative therapies—resection, 
transplantation or ablation.2,3 Generally, EHCC is expected to have an excellent 
outcome after radical therapies. Since total hepatectomy eliminates both the dis-
eased liver and the tumor, liver transplantation (LT) offers the highest chance of 
cure, with a survival up to 70% at 10 years in selected cases, and remains the best 
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treatment for EHCC.4 Unfortunately, the critical shortage 
of donor organs represents the main limitation of LT and 
results in long waiting times.

According to clinical practice guidelines, liver resection 
(LR) is the recommended first-line option for patients with 
EHCC and preserved liver function, although ablation is an 
alternative treatment modality.3,5,6 The prognosis following 
LR may vary even among patients with EHCC and two 
competing causes of death (tumor recurrence and liver dys-
function) both influence survival.7 Several HCC staging sys-
tems have been proposed to pair prognostic prediction with 
treatment allocation; however, these proposals—such as 
Barcelona Clinic Liver Cancer (BCLC) staging, China 
Liver Cancer (CNLC) staging, Hong Kong Liver Cancer 
(HKLC) staging and Cancer of the Liver Italian Program 
(CLIP) score—are not derived from surgically managed 
patients, except for the American Joint Committee on 
Cancer (AJCC) system and Japan Integrated Staging (JIS) 
score, and therefore exhibit modest prognostic accuracy for 
resected cases.6–9 A few prognostic models have been devel-
oped based on readily available patient and tumor character-
istics; however, they are by nature outmoded and rigid tools 
because all determinants were examined by conventional 
statistical methods (ie, Cox proportional hazard regression) 
and assigned fixed weights.8,10 Hence, new strategies to 
improve outcome prediction and treatment selection are 
warranted for EHCC patients.

Machine learning (ML), a subfield of artificial intelli-
gence, leverages algorithmic methods that enable computers 

to learn from on large-scale, heterogeneous datasets and exe-
cute a specific task without predefined rules.11 ML solutions 
such as gradient boosting machine (GBM) have outperformed 
regression modelling in a variety of clinical situations (eg, 
diagnosis and prognosis).11–13 Nevertheless, the benefit of 
ML in predicting prognosis of patients with resected EHCC 
has yet to be fully explored. Accordingly, we assembled 
a large, international cohort of EHCC patients to design and 
evaluate a ML-based model for survival prediction, and com-
pare its performance with existing prognostic systems.

Materials and Methods
Study Population
Patients with EHCC, defined as tumor ≤5 cm and without 
evidence of extrahepatic disease or major vascular 
invasion,14 were retrospectively screened from two sources: 
(1) Medicare patients treated with surgical therapy (LR+LT) 
in the Surveillance, Epidemiology, and End Results (SEER) 
Program, a population-based database in the United States, 
between 2004 and 2015; (2) consecutive patients treated 
with LR at two high-volume hepatobiliary centers in China 
(First Affiliated Hospital of Nanjing Medical University and 
Wuxi People’s Hospital) between 2006 and 2016. The inclu-
sion criteria were (1) adult patients aged ≥20 years; (2) 
histology-confirmed HCC (International Classification of 
Diseases for Oncology, Third Edition, histology codes 
8170 to 8175 for HCC and site code C22.0 for liver);15 (3) 
complete survival data and a survival of ≥1 month. The 
exclusion criteria were (a) missing information on the type 
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of surgical procedure; (b) another malignant primary tumor 
prior to HCC diagnosis; (c) unknown cause of death. Patient 
selection process is summarized in the flow chart of Figure 1. 
This study protocol was approved by the Institution Review 
Board of First Affiliated Hospital of Nanjing Medical 
University and Wuxi People’s Hospital. Written informed 
consent was waived because retrospective anonymous data 
were analyzed. Non-identified information was used in order 
to protect patient data confidentiality. This study was con-
ducted in accordance with the Declaration of Helsinki.

Outcome and Data Collection
The endpoint selected to develop ML-based model was dis-
ease-specific survival (DSS), defined as the time from the 
date of surgery to the date of death from disease (tumor 
relapse or liver dysfunction). All deaths from any other 
cause were counted as non-disease-specific and censored at 
the date of the last follow-up. Follow-up protocol for Chinese 
cohort included physical examination, laboratory evaluation 

and dynamic CT or MRI of the chest and abdomen every 3 
months during the first 2 years and every 6 months thereafter. 
The follow-up was terminated on August 15, 2020.

Electronic and paper medical records were reviewed in 
detail; all pertinent demographic and clinicopathologic 
data were abstracted on a standardized template. The fol-
lowing characteristics of interest were ascertained at the 
time of enrollment: age, gender, race, year of diagnosis, 
alpha-fetoprotein level, use of neoadjuvant therapy, tumor 
size, tumor number, vascular invasion, histological grade, 
liver fibrosis score, and type of surgery.

Machine Learning and Model 
Performance
We deployed GBM, a decision tree-based ML algorithm 
that has gained popularity because of its performance and 
interpretability, to aggregate baseline risk factors and pre-
dict the likelihood of survival using the R package “gbm”. 
GBM algorithm16 assembles multiple base learners, in 

Figure 1 Analytical framework for survival prediction. (A) Flow diagram of the study cohort details. (B) A machine learning pipeline to train, validate and test the model.

Journal of Hepatocellular Carcinoma 2021:8                                                                                      https://doi.org/10.2147/JHC.S320172                                                                                                                                                                                                                       

DovePress                                                                                                                         
915

Dovepress                                                                                                                                                                 Ji et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


a step-wise fashion, with each successive learner fitting the 
residuals left over from previous learners to improve 

model performance: (1) F xð Þ ¼ ∑
M

m¼0
βmh x; amð Þ, where 

h x; amð Þ is a base learner, typically a decision tree; (2) 
Fm xð Þ ¼ Fm� 1 xð Þ þ βmh x; amð Þ, where am is optimized 
parameters in each base learner and βm is the weight of 
each base learner in the model. Each base learner may 
have different variables; variables with higher relative 
importance are utilized in more decision trees and earlier 
in the boosting algorithm. The model was trained using 
stratified 3×3-fold nested cross-validation (3 outer itera-
tions and 3 inner iterations) on the training/validation 
cohort; a grid search of optimal hyper-parameter settings 
was run using the R package “mlr”. Figure 1 shows the 
ML workflow schematically.

Model discrimination was quantified using Harrell’s 
C-statistic and 95% confidence intervals [CIs] were assessed 
by bootstrapping. Calibration plots were used to assess the 
model fit. Decision curve analysis was used to determine the 
clinical net benefit associated with the adoption of the model.17

Statistical Analysis
Differences between groups were tested using χ2 test for 
categorical variables and Mann–Whitney U-test for contin-
uous variables. Survival probabilities were assessed using the 
Kaplan–Meier method and compared by the Log rank test. 
The optimal cutoffs of GBM predictions were determined to 
stratify patients at low, intermediate, or high risk for disease- 
specific death by using X-tile software version 3.6.1 (Yale 
University School of Medicine, New Haven, CT).18 

Propensity score matching (PSM) was used to balance the 
LR versus LT for EHCC in SEER cohort using 1:1 nearest 
neighbor matching with a fixed caliper width of 0.02. Cases 
(LR) and controls (LT) were matched on all baseline char-
acteristics other than type of surgery using the R package 
“MatchIt”. All analyses were conducted using R software 
version 3.4.4 (www.r-project.org). Statistical significance 
was set at P<0.05; all tests were two-sided.

Results
Patient Data for Machine Learning
A total of 2778 EHCC patients (2082 males and 696 females; 
median age, 60 years; interquartile range [IQR], 54–67 years) 
treated with LR were identified and divided into 1899 for the 
training/validation (SEER) cohort and 879 for the test 
(Chinese) cohort. Patient characteristics of the training/ 

validation and test cohorts are summarized in Table 1. 
There were 625 disease-related deaths recorded (censored, 
67.1%) during a median (IQR) follow-up time of 44.0 (26.0– 
74.0) months in the SEER cohort, and 258 deaths were 
recorded (censored, 70.6%) during a median (IQR) follow- 
up of 52.5 (35.8–76.0) months in the Chinese cohort. 
Baseline characteristics and post-resection survival differed 
between the cohorts.

Machine Learning Model and Prognostic 
Performance
We investigated 12 potential model covariates using GBM 
algorithm. According to the results of nested cross-validation, 
we utilized 2000 decision trees sequentially, with at least 5 
observations in the terminal nodes of the trees; the decision tree 
depth was optimized at 3, corresponding to 3-way interactions, 
and the learning rate was optimized at 0.01. Covariates with 
a relative influence greater than 5 (age, race, alpha-fetoprotein 
level, tumor size, multifocality, vascular invasion, histological 
grade and fibrosis score) were integrated into the final model 
developed to predict DSS (Figure 2A and B).

The final GBM model demonstrated good discrimina-
tory ability in predicting post-resection survival specific 
for EHCC, with a C-statistic of 0.738 (95% CI 0.717– 
0.758), and outperformed the 7th and 8th edition of AJCC 
staging systems (P<0.001) in the training/validation cohort 
(Table 2). The internal validation group was the 3×3-fold 
nested cross-validation of the final model of the training 
cohort with 211 patients in each fold. For the composite 
outcome, the GBM model yielded a median C-statistic of 
0.727 (95% CI 0.706–0.761) and performed better than 
AJCC staging systems (P<0.05) in the internal validation 
group (Figure 2C). In the test cohort, the GBM model 
provided a C-statistic of 0.721 (95% CI, 0.689–0.752) in 
predicting DSS after resection of EHCC and was clearly 
superior to AJCC, BCLC, CNLC, HKLC, CLIP and JIS 
systems (P<0.05). Note that prediction scores differed 
between training/validation and test sets (P<0.001) 
(Figure S1). The discriminatory performance of ML- 
based model exceeded those of AJCC staging systems 
even in sub-cohorts stratified by covariate integrity (com-
plete/missing) (Table S1). Furthermore, the GBM model 
exhibited greater ability to discriminate survival probabil-
ities than simple prognostic strategies, such as multifocal 
EHCC with vascular invasion indicating a dismal prog-
nosis following LR, in sub-cohorts with complete strategy- 
related information (P<0.001) (Table S2).
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Table 1 Baseline Characteristics in the Training/Validation and Test Cohorts

Variables Training/Validation (SEER) (n = 1899) Test (China) (n = 879) P-value

Age, years 62.0 (56.0–69.0) 56.0 (47.0–63.0) <0.001

Gender <0.001

Male 1380 (72.7) 702 (79.9)
Female 519 (27.3) 177 (20.1)

Race <0.001

White 1020 (53.7) 0 (0.0)

Asian/Pacifific Islander 598 (31.5) 879 (100.0)
Black/American Indian/Alaskan 275 (14.5) 0 (0.0)

Unknown 6 (0.3) 0 (0.0)

Year of diagnosis <0.001

Year 2010 and before 881 (46.4) 171 (19.5)

Year 2011 and after 1018 (53.6) 708 (80.5)

Neoadjuvant therapy <0.001

No 1802 (94.9) 834 (94.9)
Yes 70 (3.7) 45 (5.1)

Unknown 27 (1.4) 0 (0.0)

Multifocality 0.048

No 1562 (82.3) 737 (83.8)

Yes 325 (17.1) 142 (16.2)
Unknown 12 (0.6) 0 (0.0)

Vascular invasion <0.001
No 1516 (79.8) 765 (87.0)

Yes 290 (15.3) 114 (13.0)

Unknown 93 (4.9) 0 (0.0)

Histological grade <0.001

Well-differentiated 407 (21.4) 156 (17.7)
Moderately differentiated 920 (48.4) 384 (43.7)

Poorly differentiated or undifferentiated 360 (19.0) 296 (33.7)

Unknown 212 (11.2) 43 (4.9)

Tumor size, cm 3.0 (2.3–4.0) 3.0 (2.2–4.0) 0.784

Alpha-fetoprotein level 0.063

Normal 566 (29.8) 283 (32.2)

Elevated 920 (48.4) 384 (43.7)
Unknown or undetermined 413 (21.8) 212 (24.1)

Fibrosis score <0.001
None to moderate fibrosis 337 (17.7) 506 (57.6)

Severe fibrosis or cirrhosis 441 (23.3) 371 (42.2)

Unknown 1121 (59.0) 2 (0.2)

Type of surgery <0.001
Wedge or segmental resection 1265 (66.6) 745 (84.8)

Lobectomy 440 (23.2) 94 (10.7)

Extended lobectomy or other hepatectomy 194 (10.2) 40 (4.5)

Median DSS time, months* 138.0 (114.0-undefined) Undefined 0.003

Notes: Continuous variables reported as median (interquartile range) and categorical variables reported as number (percentage). *Numbers in parentheses are 95% 
confidence interval. 
Abbreviations: SEER, Surveillance, Epidemiology, and End Results; DSS, disease-specific survival.
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Calibration plots presented excellent agreement between 
model predicted and actual observed survival in both the 
training/validation and test cohorts (Figure S2A and B). 
Decision curve analysis demonstrated that the GBM model 
provided better clinical utility for EHCC in designing clinical 
trials than the “treat all” or “treat none” strategy across the 
majority of the range of reasonable threshold probabilities 
(Figure S2C and D). The model is publicly accessible for use 
on Github (https://github.com/radgrady/EHCC_GBM), with 
an app (https://mlehcc.shinyapps.io/EHCC_App/) that 
allows survival estimates at individual scale (Figure 2D).

Risk Stratification
We utilized X-tile analysis to generate two optimal cut-off 
values (−6.35 and −5.32 in GBM predictions, Figure S3) that 
separated EHCC patients into 3 strata with a highly different 
probability of post-resection survival in the training/validation 
cohort: low risk (760 [40.0%]; 10-year DSS, 75.6%), 

intermediate risk (948 [49.9%]; 10-year DSS, 41.8%), and 
high risk (191 [10.1%]; 10-year DSS, 5.7%) (P<0.001). In 
the test cohort, the aforementioned 3 prognostic strata by 
using the GBM model were confirmed: low risk (634 
[72.1%]; 10-year DSS, 69.0%), intermediate risk (194 
[22.1%]; 10-year DSS, 37.9%), and high risk (51 [5.8%]; 10- 
year DSS, 4.7%) (P<0.001) (Table 3). Visual inspection of the 
survival curves again revealed that, compared with the 8th 
edition AJCC criteria, the GBM model provided better prog-
nostic stratification in both the training/validation and test 
cohorts (Figure 3). Differences in the baseline patient charac-
teristics according to risk groups defined by the GBM model 
are summarized in Table S3.

Resection versus Transplantation in the 
SEER Cohort
We also gathered data of 2124 EHCC patients (1671 males 
and 453 females; median age, 58 years; IQR, 53–62 years) 

Figure 2 Overview of the machine-learning-based model. (A) Relative importance of the variables included in the model. (B) Illustrative example of the gradient boosting 
machine (GBM). GBM builds the model by combining predictions from stumps of massive decision-tree-base-learners in a step-wise fashion. GBM output is calculated by 
adding up the predictions attached to the terminal nodes of all 2000 decision trees where the patient traverses. (C) Performance of GBM model as compared with that of 
American Joint Committee on Cancer (AJCC) staging in the internal validation group. (D) Online model deployment based on GBM output.
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treated with LT from the SEER-Medicare database. SEER 
data demonstrated that considerable differences existed 
between LR (n=1899) and LT (n=2124) cohorts in terms 
of all listed clinical variables except for alpha-fetoprotein 
level (Table S4). Upon initial analysis, we found 
a remarkable survival benefit of LT over LR for patients 
with EHCC (hazard ratio [HR] 0.342, 95% CI 0.300–0.389, 
P<0.001), which was further confirmed in a well-matched 
cohort of 1892 patients produced by PSM (HR 0.342, 95% 
CI 0.285–0.410, P<0.001). Although a trend for higher 
survival probability was observed after 5 years in the LT 
cohort, no statistically significant difference in DSS was 

observed when compared with low-risk LR cohort (HR 
0.850, 95% CI 0.679–1.064, P=0.138). After PSM, 420 
patients in the LT cohort were matched to 420 patients in 
the low-risk LR cohort; the trend for improved survival 
remained after 5 years in the matched LT cohort while the 
matched comparison also yielded no significant survival 
difference (HR 0.802, 95% CI 0.561–1.145, P=0.226) 
(Figure 4). By contrast, when compared with intermediate- 
and high-risk patients treated with LR, remarkable survival 
benefits were observed in patients treated with LT both 
before and after PSM (P<0.001) (Table S5).

Discussion
In this study involving over 2700 EHCC patients treated with 
resection, a gradient-boosting ML model was trained, vali-
dated and tested to predict post-resection survival. Our results 
demonstrated that this ML model utilized readily available 
clinical information, such as age, race, alpha-fetoprotein 
level, tumor size and number, vascular invasion, histological 
grade and fibrosis score, and provided real-time, accurate 
prognosis prediction (C-statistic >0.72) that outperform tradi-
tional staging systems. Among the model covariates, tumor- 
related characteristics, such as size, multifocality and vascular 
invasion, as well as liver cirrhosis are known risk factors for 
poor survival following resection of HCC.7–10 Besides, multi-
ple population-based studies have shown the racial and age 
differences in survival of HCC.19,20 Therefore, our ML model 
is a valid and reliable tool to estimate prognosis of EHCC 
patients. This study represents, to our knowledge, the first 
application of a state-of-the-art ML survival prediction algo-
rithm in EHCC based on large-scale, heterogeneous datasets.

In SEER cohort, the 10-year survival rate of EHCC 
after LR was around 50%, which seemed acceptable but 

Table 2 Performance of GBM Model and Staging Systems

Prognostic Marker C-Statistic (95% CI) P-value

Training/validation cohort 
(n=1899)

GBM model 0.738 (0.717–0.758) Ref

AJCC 8th edition 0.588 (0.566–0.611) <0.001
AJCC 7th edition 0.585 (0.564–0.605) <0.001

Test cohort (n=879)
GBM model 0.721 (0.689–0.752) Ref

AJCC 8th edition 0.667 (0.634–0.700) <0.001
AJCC 7th edition 0.675 (0.645–0.704) <0.001

BCLC stage 0.603 (0.574–0.633) <0.001

CNLC stage 0.596 (0.567–0.624) <0.001
HKLC stage 0.637 (0.607–0.667) <0.001

CLIP classification a 0.588 (0.547–0.629) <0.001

JIS score 0.677 (0.645–0.708) 0.002

Note: aAvailable at baseline (667/879) and compared with GBM model in test 
cohort. 
Abbreviations: GBM, gradient boosting machine; AJCC, American Joint 
Committee on Cancer; BCLC, Barcelona Clinic Liver Cancer; CNLC, China Liver 
Cancer; HKLC, Hong Kong Liver Cancer; CLIP, Cancer of the Liver Italian Program; 
JIS, Japan Integrated Staging.

Table 3 Disease-Specific Survival According to Risk Stratification

Risk Group Median Time, 
Months (95% CI)

2-Year Rate, 
% (95% CI)

5-Year Rate, 
% (95% CI)

10-Year Rate, 
% (95% CI)

Hazard Ratio 
(95% CI)

P-value

Training/validation 
cohort (n=1899)

Low-risk (n=760) Undefined 95.2 (93.7–96.8) 85.5 (82.7–88.5) 75.6 (71.1–80.3) 1

Intermediate-risk (n=948) 93.0 (83.0–114.0) 84.6 (82.3–87.0) 63.0 (59.6–66.7) 41.8 (36.7–47.6) 3.039 (2.536–3.641) <0.001*
High-risk (n=191) 23.0 (20.0–28.0) 48.2 (41.5–55.9) 10.9 (6.6–18.2) 5.7 (2.4–13.6) 3.876 (2.907–5.169) <0.001†

Test cohort (n=879)
Low-risk (n=634) Undefined 95.5 (93.9–97.2) 81.2 (77.9–84.7) 69.0 (63.8–74.6) 1

Intermediate-risk (n=194) 68.0 (51.8–80.6) 78.6 (73.0–84.7) 52.6 (45.2–61.3) 37.9 (29.3–49.2) 3.237 (2.289–4.578) <0.001*

High-risk (n=51) 26.0 (22.0–39.0) 56.3 (44.1–71.8) 18.9 (9.4–38.2) 4.7 (0.8–29.7) 2.607 (1.601–4.243) <0.001†

Note: *P value versus low-risk; †P value versus intermediate-risk. 
Abbreviation: CI, confidence interval.
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was remarkably lower than that after LT (around 80%). No 
adjuvant therapies are able to prevent tumor relapse and 
cirrhosis progression; however, patients with dismal 

prognosis should be considered candidates for clinical 
trials of adjuvant therapy.7 Salvage LT has also been 
a highly applicable strategy to alleviate both graft shortage 

Figure 3 Kaplan-Meier survival plots demonstrating disparities between groups. Disease-specific survival stratified by the 8th edition of the American Joint Committee on 
Cancer T stage and the machine-learning model in the training/validation (A and C) and the test (B and D) cohort.

Figure 4 Comparison of survival after resection versus transplantation before and after propensity score matching in SEER-Medicare database. (A) Kaplan–Meier curves for 
different risk groups stratified by the model in the SEER resection cohort (n=1899) and patients in the SEER transplantation cohort (n=2124). (B) Kaplan–Meier curves for 
low-risk patients treated with resection and patients treated with transplantation in propensity score-matched cohort (n=840).
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and waitlist dropout with excellent outcomes that are 
comparable to upfront LT.1,5 Priority policy, defined as 
enlistment of patients at high mortality risk before disease 
progression, was then implemented to improve the trans-
plantability rate.21 Promisingly, our ML tool may help 
clinicians better identify EHCC patients who are at high 
risk of disease-related death, engage in clinical trials, and 
meet priority enlistment policy. Specifically, the GBM 
model identified 10% of EHCC patients who suffered 
from extremely dismal prognosis following LR in this 
study. Given its small proportion and survival benefit, we 
advocate the pre-emptive enlistment of high-risk subset for 
salvage LT after LR to avoid the later emergence of 
advanced disease (ie, tumor recurrence and liver decom-
pensation) ultimately leading to death. Moreover, 40% of 
EHCC patients were at intermediate risk of disease-related 
death; adjuvant treatments that target HCC and cirrhosis 
are desirable. In turn, nearly half of EHCC patients were 
categorized as low risk by using the GBM model. The 
low-risk subset permits satisfactory long-term survival 
after LR and may receive no adjuvant therapy. We note 
that DSS curves are separated after 5 years for low-risk 
patients treated with LR as compared with patients treated 
with upfront LT, and thus long-lasting surveillance should 
be maintained.

Prior efforts to improve prognostic prediction of EHCC 
have mostly been reliant on tissue-based or imaging- 
assisted quantification of research biomarkers.9,22 

However, a more accurate, yet more complex, prognosis 
estimate does not necessarily present a better clinical tool. 
Parametric regression models are ubiquitous in clinical 
research because of their simplicity and interpretability; 
however, regression analysis should be performed in com-
plete cases only.23 Moreover, regression modeling strate-
gies assume that relationships among input variables are 
linear and homogeneous but complicated interactions exist 
between predictors.24,25 Decision tree-based methods 
represent a large family of ML algorithms and can reveal 
complex non-linear relationships between covariates. 
GBM algorithm has been widely applied in big data ana-
lysis and consistently utilized by the top performers of ML 
predictive modelling competitions.14,26 GBM algorithm 
utilizes the boosting procedure to combine stumps of mas-
sive decision-tree-base-learners, which is similar to the 
clinical decision-making process for a patient by aggregat-
ing consultations from multiple specialists, each which 
would that look at the case in a slightly different way. 
Thus, our GBM model directly integrates interpretability 

in order to mitigate this issue. Compared with other tree- 
based ensemble methods such as random forest, GBM 
algorithm also has a built-in functionality to handle miss-
ing values that permits utilizing data from, and assigning 
classification to, all observations in the cohort without the 
need to impute data. We applied nested cross-validation 
scheme for hyperparameter tuning in GBM as it prevents 
information leaking between observations used for training 
and validating the model, and estimates the external test 
error of the given algorithm on unseen datasets more 
accurately by averaging its performance metrics across 
folds.27 Comparable discriminatory ability in the training/ 
validation cohort, the test cohort as well as sub-cohorts 
from different clinical scenarios suggested good reprodu-
cibility and reliability of the proposed GBM model.

Our study has several limitations that warrant attention. 
First, all the presented analyses are retrospective; prospec-
tive validations of the ML model in different populations 
are warranted prior to routine use in clinical practice. 
Second, the study cohort included population-based cancer 
registries with limited information regarding patient and 
tumor characteristics; unavailable confounders, such as 
biochemical parameters, surgical margin status and recur-
rence treatment modality could not be adjusted for model-
ing. Third, SEER-Medicare database contains 
a considerable amount of missing data in several important 
clinical variables, such as fibrosis score. Indeed, missing 
data represent an unavoidable feature of all clinical and 
population-based databases; however, improper manage-
ment of data resource, such as simply excluding cases with 
missing data, can introduce considerable bias, as pre-
viously noted across numerous cancer types.28 We there-
fore contend that integrating missingness into our GBM 
model indicates good transferability in future clinical 
practice.

Conclusions
In conclusion, ML approach is both feasible and accurate, 
and a novel way to consider analysis of survival outcomes 
in clinical scenarios. Our results suggest that a GBM 
model trained on readily-available clinical data provides 
good performance that is better than staging systems in 
predicting prognosis. Although several issues must be 
addressed, such as prospective validations and ethical 
challenges, prior to its widespread use, such an automated 
tool may complement existing prognostic sources and lead 
to better personalized treatments for patients with resected 
EHCC.
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EHCC, early hepatocellular carcinoma; LT, liver transplan-
tation; LR, liver resection; BCLC, Barcelona Clinic Liver 
Cancer; China Liver Cancer, CNLC; HKLC, Hong Kong 
Liver Cancer; CLIP, Cancer of the Liver Italian Program; 
AJCC, American Joint Committee on Cancer; ML, 
machine learning; GBM, gradient boosting machine; 
SEER, Surveillance, Epidemiology, and End Results; 
DSS, disease-specific survival; PSM, propensity score 
matching; IQR, interquartile range.
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