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Background: Mirror-image pain (MIP), which develops from the healthy body region 
contralateral to the actual injured site, is a mysterious pain phenomenon accompanying 
many chronic pain conditions, such as complex regional pain syndrome (CRPS). However, 
the pathogenesis of MIP still remains largely unknown. The purpose of this study is to 
perform an expression profiling to identify genes related to MIP in an animal model of 
CRPS-I.
Methods: We established a rat chronic post-ischemic pain (CPIP) model to mimic human 
CRPS-I. RNA-sequencing (RNA-Seq), bioinformatics, qPCR, immunostaining, and animal 
behavioral assays were used to screen potential genes in the contralateral dorsal root ganglia 
(DRG) that may be involved in MIP.
Results: The CPIP model rats developed robust and persistent MIP in contralateral hind 
paws. Bilateral DRG neurons did not exhibit obvious neuronal damage. RNA-Seq of con-
tralateral DRG from CPIP model rats identified a total 527 differentially expressed genes 
(DEGs) vs sham rats. The expression changes of several representative DEGs were further 
verified by qPCR. Bioinformatics analysis indicated that the immune system process, innate 
immune response, and cell adhesion were among the mostly enriched biological processes, 
which are important processes involved in pain sensitization, neuroinflammation, and chronic 
pain. We further identified DEGs potentially involved in pain mechanisms or enriched in 
small- to medium-sized sensory neurons or TRPV1-lineage nociceptors. By comparing with 
published datasets summarizing genes enriched in pain mechanisms, we sorted out a core set 
of genes which might contribute to nociception and the pain mechanism in MIP.
Conclusion: We provided by far the first study to profile gene expression changes and 
pathway analysis of contralateral DRG for the studying of MIP mechanisms. This work may 
provide novel insights into understanding the mysterious mechanisms underlying MIP.
Keywords: RNA-Seq, pain, CRPS-I, dorsal root ganglia, inflammation, cytokine

Introduction
Mirror-image pain (MIP) is a mysterious pain phenomenon which is accompanied 
with many clinical pain conditions.1 MIP develops from the healthy body region 
which is contralateral to the actual injured site.1–3 MIP is typically characterized by 
increased mechanical hypersensitivity on the uninjured mirror-image body side.4 It 
can be triggered in response to light touch/pressure stimuli, which are normally 
perceived as innocuous.5 Patients with chronic pain, such as complex regional pain 
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syndrome (CRPS) and atypical facial pain, etc., can 
develop MIP to the unaffected body side.6,7

Complex regional pain syndrome type-I (CRPS-I) is 
a chronic pain condition that usually impacts the extremi-
ties of the patients.8 It is usually triggered by an initial 
injury, including tissue ischemia, fractures, or surgery in 
the extremity and develops into a chronic pain condition 
that impacts the life quality of the patients.9–11 One of the 
clinical features of CRPS-I is the MIP developed in the 
unaffected extremities.7,12,13 CRPS-I patients developed 
hypersensitivity to capsaicin, thermal, and mechanical sti-
muli in the unaffected extremities.12 Furthermore, we and 
others also observed thermal and mechanical hypersensi-
tivity in the unaffected hind limb of a rat model of CRPS- 
I, suggesting the occurrence of MIP in animal models.14–18

At present, the pathogenesis of MIP still remained 
largely unknown. However, certain possible mechanisms 
have been proposed to contribute to MIP.19 Spinal glial 
activation has been observed in the contralateral spinal 
cord dorsal horn of MIP model animals.15,17,20 

Pharmacological blocking spinal glia metabolism and 
proinflammatory cytokines (including TNF-α, IL-1β, and 
IL-6) significantly alleviates MIP, suggesting spinal glial 
and proinflammatory cytokines are involved in MIP.2 In 
addition to the central mechanism, peripheral mechanisms 
have also been proposed for MIP.4,21 It is reported that 
TNF-α produced from ipsilateral injured DRG can diffuse 
to the contralateral side via cerebrospinal fluid and acti-
vates satellite cells to produce NGF, which promotes noci-
ceptor excitability on the contralateral side and 
induces MIP.4 Although these studies provide evidence 
suggesting central or peripheral glia and proinflammatory 
cytokines are important for MIP pathogenesis, it still 
remains unclear how contralateral DRG is affected in 
chronic pain conditions and exerts pain signals that may 
contribute to MIP.

In order to study the molecular mechanisms underlying 
MIP, we performed a genome-wide expression profiling of 
DRG innervating contralateral hind limbs of a rat model of 
CRPS-I by means of RNA-Seq. We obtained gene expres-
sion profiles and identified differentially expressed genes 
(DEGs) in CPIP model rats vs sham rats. We studied the 
major functions or signaling pathways that these DEGs 
may be involved in. We further screened the genes which 
might contribute to nociception and pain processing during 
MIP. Thus, this study provides novel insights into under-
standing the peripheral mechanisms contributing to MIP.

Materials and Methods
Animals
Male adult Sprague-Dawley rats weighing 300–320 g were 
purchased from Shanghai Laboratory Animal Center, 
Chinese Academy of Sciences. Rats were randomly 
assigned to each group and housed in the Laboratory 
Animal Center of Zhejiang Chinese Medical University 
accredited by the Association for Assessment and 
Accreditation of Laboratory Animal Care (AAALAC) 
under standard environmental conditions (12 hour light– 
dark cycles and 24±2°C). Rats had free access to food and 
water. The animals were given 1 week to adapt to the new 
environment before formal experiment. All experimental 
procedures were carried out in accordance with the 
National Institutes of Health guide for the care and use 
of Laboratory animals (NIH Publications No. 8023, 
revised 1978) and approved by the Animal Ethics 
Committee of Zhejiang Chinese Medical University 
(Permission Number: ZSLL-2017-183).

CPIP Rat Model Establishment
The CPIP model was established by prolonged hind paw 
ischemia and reperfusion as reported before.16,22 

Anesthesia was induced by intraperitoneal injection of 
50 mg/kg of sodium pentobarbital and was maintained at 
a dose of 20 mg/kg/h. Glycerin was applied to the ankle 
joints of rats. Afterwards, a Nitrile 70 Durometer O-ring 
(Gaohui Rubber & Plastic Co., Ltd., Shanghai, China) 
with an inner diameter of 7/32 inch (5.5 mm) was tightly 
passed around the right hind limb just proximal to the 
ankle joint. The O-ring was cut off 3 hours later for 
reperfusion. Sham rats received the same anesthesia pro-
cedure but a cut O-ring, which could not block blood flow, 
was applied to the same part as the CPIP model rats.

Determination of Mechanical Allodynia
Before baseline test, rats were habituated to the testing 
environment every day for 3 consecutive days. Rats were 
individually placed on an elevated mesh floor, covered 
with transparent Plexiglas chambers. Rats were habitu-
ated for 30 minutes before the test. The mechanical allo-
dynia was measured using a series of von Frey filaments 
(ranging from 0.6–26 g, UGO Basile, Italy) applied per-
pendicularly to the mid-plantar surface of the hind paws, 
with sufficient force to bend the filament slightly for 5 
seconds according to methods we previously used.23 

Nocifensive responses were identified as an abrupt 
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withdrawal of the paw and licking and vigorously shaking 
in response to the stimulation. The threshold was deter-
mined by the “Up–Down” testing paradigm, and the 50% 
paw withdrawal threshold (PWT) was calculated by the 
nonparametric Dixon test.24,25 Behavior tests were all 
conducted by an experimenter blinded to experimental 
conditions.

Measurement of Hind Paw Edema
Edema was observed as an increase in hind paw diameter 
and measured by a digital caliper, and was calculated as 
the difference between the basal value and the test value as 
described in our previous study.15 Each rat was measured 
three times and the mean value was calculated.

Tissue Collection and RNA Extraction
At day 7, rats were deeply anesthetized with sodium pento-
barbital at a dose of 50 mg/kg and were perfused transcar-
dially with 200 mL 0.9% saline (4°C). After the perfusion, 
the left (contralateral) side L4-6 DRG segments were col-
lected and were immediately preserved in the RNA later 
solution (Thermo Fisher, USA). Total RNA was extracted 
using the Trizol reagent (Thermo Fisher, USA) following the 
manufacturer’s instructions. DNase I (Thermo Fisher, USA) 
was used to degrade contaminating DNA. The purity and 
concentration of the samples was assessed by a Nanodrop 
Spectrophotometer (NanoDrop Products, USA) and the 
RNA integrity was assessed by an Agilent 2100 
Bioanalyzer (Agilent Technologies, USA).

Immunofluorescence Staining
At day 7, rats were deeply anesthetized with sodium 
pentobarbital at a dose of 50 mg/kg and were perfused 
transcardially with 200 mL 4% formaldehyde after 
200 mL 0.9% saline (4°C). The bilateral L4-6 DRGs 
was harvested and post-fixed in the same fixative for 4 
hours (4°C) before transferring to 15% and 30% sucrose 
for 48 hours for dehydration. A few days later, the DRG 
were serially cut into 8-μm thick transverse sections on 
a frozen microtome (Cryostar NX50, Thermo Scientific, 
USA) and mounted on adhesive slides as eight sets of 
every 10th serial section. All the slides were blocked 
with 5% normal donkey serum in PBS for 1 hour at 
37°C and then incubated overnight at 4°C with corre-
sponding primary antibodies. The primary antibodies 
used were rabbit anti-ATF3 (#HPA001562, Sigma, 
USA) and mouse anti-NeuN (#ab104224, Abcam, UK). 
On the 2nd day, the sections were rinsed with PBS and 

incubated for 1 hour with a mixture of corresponding 
secondary antibodies. A Nikon A1R laser scanning con-
focal microscope (Nikon, Japan) was used to capture 
fluorescence images. Uniform microscope settings were 
maintained throughout all image capture sessions in 
order for quantitative fluorescence intensity analysis. 
All stained sections were examined and analyzed in 
a blinded manner. Five images were randomly selected 
per rat tissue and averaged and then compared according 
to methods described in our previous studies.26

RNA-Seq Library Establishment and 
RNA-Seq
We isolated the total mRNAs of four rats of each group 
and used them to construct sequencing libraries. mRNAs 
were purified from total RNA using oligo (dT)-attached 
magnetic beads using two rounds of purification. 
Following purification, mRNA was fragmented into small 
pieces using fragmentation reagent under elevated tem-
perature. Subsequently, first-strand cDNA was generated 
by random hexamer-primed reverse transcription, followed 
by a second-strand cDNA synthesis. The synthesized 
cDNA was subjected to end-repair and then was 3ʹ adeny-
lated. Adaptors were ligated to the ends of these 3ʹ adeny-
lated cDNA fragments. This process is to amplify the 
cDNA fragments with adaptors from previous step. PCR 
products are purified with the SPRI beads and dissolved in 
EB solution. The double stranded PCR products were heat 
denatured and circularized by the splint oligonucleotide 
sequence. The single-strand circle DNA (ssCir DNA) 
was formatted as the final library. The library was vali-
dated by the Agilent 2100 Bioanalyzer System (Agilent 
Technologies, USA). The DNA nanoballs were loaded into 
the patterned nanoarray and single-end 50 base reads were 
generated in the way of being sequenced by synthesis. 
Finally, the fragments were enriched by PCR amplification 
to construct a library ready for sequencing using the BGI 
SEQ-500 platform (BGI Group, Shenzhen, China). The 
RNA-Seq dataset has been deposited into the National 
Center for Biotechnology Information’s Gene Expression 
Omnibus repository with accession number GSE174299.

Bioinformatics Analysis
Primary sequencing data produced by RNA-Seq (raw 
reads) were subjected to quality control (QC). The infor-
mation of total reads and mapping ratio reads is shown in 
Table 1. Raw reads were filtered into clean reads using 
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internal software SOAP nuke (version 1.5.2), as follows: 
Remove reads in which unknown bases (N) are more than 
10%; Remove reads with adaptors; Remove low quality 
reads (we define the low quality read as the percentage of 

base which quality is < 15 and > 50% in a read). QC of 
alignment was performed to determine if re-sequencing 
was needed. If the alignment result passed QC, down-
stream analysis including gene expression, differentially 

Table 1 Sequences of the Primers Used for qPCR Validation of RNA-Seq Dataset

Gene Name Gene ID Primer Sequence (5′ −3′) Amplicon Size (bp)

Gpr183 679975 F: 5ʹ-GCAGAACCCACTGACCGAGAAATC-3’ 83
R: 5ʹ-ACAAGACGAACACGCCGATGATG-3’

Tlr8 684440 F: 5ʹ-CGCCTTGACCGTCTGTGGAATG-3’ 142
R: 5ʹ-GGCTCTGAGGCAAGTTGAGGAATG-3’

Tbx18 315870 F: 5ʹ-GCAAGGCAACACAAGTTCTTCAGC-3’ 98

R: 5ʹ-GAGAGGAACAGGAGGAGCCAGAC-3’

Egfr 24329 F: 5ʹ-CACTACGCCGCCTGCTTCAAG-3’ 145

R: 5ʹ-ACTGTGCCAAATGCTCCTGAACC-3’

Cxcl13 498335 F: 5ʹ-CGACTTTGAAAGGTTGCTTGTA-3’ 219

R: 5ʹ-ACACTGGATGAATAGGAAACGT-3’

Slfn1 688900 F: 5ʹ-GCTGAGAGTGACCACAGGCATTG-3’ 113

R: 5ʹ-AGCCCAAGACAGACTCCCACAG-3’

Gli2 304729 F: 5ʹ-ACCTCCATCACCGTGCCTACC-3’ 144

R: 5ʹ-AGTCTTGACCTTGCTCCGCTTATG-3’

Stk32b 305431 F: 5ʹ-AGAAGTGCGTGGAGAGGGATGAG-3’ 96

R: 5ʹ-AGTACCACAGGTTCACCAGGAAGG-3’

Asgr2 29403 F: 5ʹ-CACGGAGGTAGCAGGAATGACAAC-3’ 136

R: 5ʹ-AGGTCAGGGTTCGCAGATCCAG-3’

Smoc2 292401 F: 5ʹ-AGGAAGCCAAGCAACCCAAGAATG-3’ 117

R: 5ʹ-CTACCAGCACACACCAGCAGTATC-3’

Fcgr1a 295279 F: 5ʹ-CCTGGCTTACGGCTTTACTTCTCC-3’ 140

R: 5ʹ-CCGTCCTCCGTGGCTACCTC-3’

Osr2 315039 F: 5ʹ-CGGCAAAGTGTTCAGGCGAAAC-3’ 139

R: 5ʹ-TGGAAGGCGTGGAGAGGTGTC-3’

Sned1 316638 F: 5ʹ-CTGCGTCCGTGCCTCAATGG-3’ 89

R: 5ʹ-GTGAAGCCAGCGAGACAGGAAC-3’

Siglec1 311426 F: 5ʹ-ACTCCAGACCTGACCACCTTCTTG-3’ 119

R: 5ʹ-GCCAATGTGAGACCTCCGTGTG-3’

Myl1 56781 F: 5ʹ-AGCAGACTGAGAGGAGCAGGAAG-3 103

R: 5ʹTTGGTGTTGATGAGGCTGGTGTTC-3

Myom2 306616 F: 5ʹ-AAGACAACCACCAACGCTCACTG-3’ 107

R: 5ʹ-GCCACGATTCTTCTCAGCAAATGC-3’

Capg 297339 F: 5ʹ-GGAGAGGAGCCAGCCGAGATG-3’ 97

R: 5ʹ-CGTTGGTCTGGTCCGCTGTAATG-3’

Retsat 246298 F: 5ʹ-GAGCGTGCGGTGTCAGTGTG-3’ 128

R: 5ʹ-TGGCAGGTAGCGGACAGACTC-3’
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expressed genes, cluster analysis, Gene Ontology (GO) 
enrichment analysis, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis, and 
Gene Set Enrichment Analysis (GSEA) analysis were 
then performed.

Cluster Analysis and Screening of 
Differentially Expressed Genes
Methods were adopted as before.27 Briefly, distances of 
expressed genes were calculated using the Euclidean 
method.28 The sum of the squared deviations algorithm 
was used to calculate distance. The cluster analysis and 
heat map visualization of gene expression patterns was 
performed using the “pheatmap” package in the 
R software of Bioconductor. Differentially expressed 
mRNAs with statistical significance were identified 
through Volcano Plot filtering. The threshold required for 
the results to be considered significant was as follows: 
q-value≤0.001 and fold change≥1.5 or ≤0.667.

Functional Enrichment Analysis of DEGs
Functional enrichment analysis was performed through the 
functional annotation package “cluster Profiler” in 
R studio software (RStudio, Boston, MA, USA). GO and 
KEGG enrichment analysis were also conducted. For each 
enriched function term, the Q-value of enriched functions 
and the Q-value by multiple testing corrections were cal-
culated by “cluster Profiler” package in R studio software. 
The GO functional and KEGG pathway enrichment ana-
lysis were performed for DEGs using the Database for 
Annotation, Visualization, and Integrated Discovery 
(DAVID) online tools (http://www.geneontology.org and 
http://www.genome.jp/kegg).

GSEA Analysis
Gene set enrichment analysis (GSEA) was performed 
according to methods previously described.29 We chose the 
top 10 most significantly upregulated pathways from GSEA 
analysis. The gene sets were downloaded from the Molecular 
Signatures Database v7.1 (https://www.gsea-msigdb.org/ 
gsea/msigdb/index.jsp). A FDR≤0.25 and NES>1.0 were 
adopted as the criterion for judging significance.29

Real-Time Quantitative PCR (qPCR) 
Analysis
According to the manufacturer’s instruction, the extracted 
total RNA from the DRGs was reverse transcribed into 

cDNA using random hexamers primers (TaKaRa Bio Inc., 
China). The sequences of all primers used are shown in 
Table 1. qPCR was performed using SYBR Green I Master 
(Roche, Switzerland) in 20 µL reaction system according 
to the manufacturer’s protocol. qPCR was performed with 
the LightCycler 480 real-time PCR system (Roche, 
Switzerland). Each reaction was performed in triplicate 
and normalized to β-actin gene expression. The CT value 
of each well was determined using the LightCycler480 
System software and the average of the triplicates was 
calculated. The relative quantification was determined by 
the ΔΔCT method.30,31

Source of Microarray Data
Pain genes (PG): The pain gene list was retrieved from 
a previous study using the same list to predict potential 
genes related to mediating masseter inflammation-induced 
pain.32 This pain gene list contains 685 genes, which 
mainly includes central and peripheral inflammatory 
responses and pain mood and affect, human genes related 
to transmission of pain signals (see Suppl Table 1 for the 
full list of genes).

Sensory neuronal genes (SN): The sensory neuronal 
gene list was retrieved from a previous study by mag-
netic cell sorting (MACS) to separate neuronal cells 
from non-neuronal cells from mouse DRG.33 

According to this study, MACS successfully segregated 
neuronal cells from non-neuronal cells from mouse 
DRGs. This procedure can enrich the neuronal popula-
tion up to 95% compared with 10% before sorting. 
Transcriptome analysis further confirmed that a lot of 
genes were enriched in the neuronal population col-
lected through MACS. We selected genes that showed 
an increase in expression by >40% according to the 
criterion described by Chung et al32 (see Suppl 
Table 2 for the full list of genes).

TRPV1-lineage neuronal genes (VL): The TRPV1- 
lineage neuronal genes list was retrieved from a study 
which identified a group of genes enriched in TRPV1 
expressing nociceptive sensory neurons.34 By using 
mouse lines selectively labeling or ablating TRPV1 line-
age neurons, Goswami et al34 identified a group of genes 
enriched in VL sensory neurons. We screened genes that 
are enriched >3-fold in VL neurons compared to non-VL 
neurons according to a study by Chung et al32 (see Suppl 
Table 3 for the full list of genes).
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Protein–Protein Interaction (PPI) 
Network Analysis
The Search Tool for the Retrieval of Interacting Genes 
(STRING) is used to provide information regarding pre-
dicted and experimental interactions of proteins and the 
prediction method of this database is from neighborhood, 
gene fusion, co-occurrence, co-expression experiments, 
databases, and text mining. By setting the Combination 
score >0.7 as the reliability threshold value, the web based 
STRING database (http://string-db.org/) was used to pro-
duce PPI predictions after uploading the union gene list to 
the search bar.35 Based on the interplayed relationships, 
a PPI network was established and then visualized using 
the Cytoscape software.36 The connectivity degree of each 
protein, namely the number of proteins it connected, was 
calculated to evaluate its importance in this network.

Statistical Analysis
Data in graphs are expressed as means±SEM. One- or two- 
way ANOVA followed by Tukey’s post-hoc test was used 
for comparisons among groups ≥3. Student’s t-test was 
used for comparisons between two groups. The data from 
different groups were verified for normality using 
Kolmogorov–Smirnov test. If not normally distributed, 
a non-parametric test (Mann Whitney U-test) was used. 
The comparison is considered significantly different if the 
p-value is less than 0.05.

Results
The Establishment of a Rat Model of 
CRPS-I and the Evaluation of the Animals’ 
Nocifensive Behavior
We first established the rat CPIP model to mimic human 
CRPS-I following methods described before.16,22 An O-ring 
with 7/32 inch internal diameter was tightly passed around 
the right hind limb just proximal to the ankle joint and applied 
for 3 hours. During the ligation, the right hind limb displayed 
obvious cyanosis (an indication of tissue hypoxia) and edema 
(Figure 1A). The edema persisted for 3 days and gradually 
returned back to normal (Figure 1B and C). The PWT (paw 
withdrawal threshold) of ipsilateral hind paws of CPIP model 
group rats was significantly reduced on Day 1 compared with 
the sham group and lasted over 7 days (Figure 1D and F). 
Moreover, the contralateral hind paw also showed 
a significant reduction in PWT on Day 1 compared with 
sham rats and persisted over 7 days (Figure 1E and G), 

which is a clear sign of MIP. The contralateral mechanical 
allodynia developed in all CPIP model rats we had observed. 
These results were consistent with previous studies,15–17 

demonstrating the successful establishment of the CPIP 
model and the presence of MIP in model rats.

Pathological Evaluation of Ipsilateral and 
Contralateral DRG Neurons Innervating 
the Hind Paws
We sacrificed the rats on Day 7 and harvested bilateral 
L4–6 DRG. We first performed immunostainings to 
examine whether any neuronal damage occurred in the 
DRG. We used ATF3, a widely used marker for neuro-
nal damage, for the examination. As shown in 
Figure 2A–C, we did not identify any ATF3 positively 
stained neurons in ipsilateral or contralateral L4–6 DRG 
of CPIP model rats compared with sham rats. For posi-
tive control, in one of our recent studies, we stained the 
DRG with ATF3 from paclitaxel-treated rats, a rat 
model for chemotherapy-induced peripheral neuropathy 
and well known for its peripheral neuropathy. We found 
the number of ATF3 positively expressed neurons was 
significantly increased in DRG of paclitaxel-treated rats 
vs control rats.27 Therefore, these results indicated no 
neuronal damage occurred in bilateral DRG neurons of 
the CPIP model rats.

Examination of Gene Expression Profile 
Changes in Contralateral DRG from CPIP 
Model Rats via RNA-Seq
To gain further insights into the mechanisms underlying 
MIP of CPIP model rats, we harvested contralateral L4- 
6 DRG at Day 7 from CPIP model and sham rats and 
analyzed the gene expression profiles via RNA-Seq. We 
managed to obtain high quality RNA for RNA-Seq 
analysis (Suppl Figure 1). RNA-Seq generated approxi-
mately 23.9 million raw reads from each sample. The 
ratio of clean reads reached above 98.0% (Table 2). 
Over 90% of bases had a quality score ≥Q30 and over 
94% of the clean reads were mapped to the rat genome. 
In all, a total of 23, 267 genes were successfully 
mapped and identified from RNA-Seq (Suppl Table 4). 
We then filtered out the differentially expressed genes 
(DEGs) with the criteria of fold change ≥1.5 or ≤0.667 
and q-value≤0.001 (Suppl Table 5). We displayed the 
DEGs of the CPIP group vs sham group in the volcano 
plot as shown in Figure 3A. In all, 527 DEGs (including 
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245 up- and 282 down-regulated) were identified from 
the CPIP group vs sham group (Figure 3A). We further 
summarized and plotted the identified DEGs in a heat 
map as shown in Figure 3B. Cluster analysis indicated 
a high level of consistency within CPIP or sham group 
samples, but a clear separation between these two 
groups (Figure 3B). These results indicated that we 
have obtained a high quality RNA-Seq dataset that can 
be further used for bioinformatics analysis.

Analysis of DEGs from Contralateral 
DRG of CPIP Model Rats
Among the DEGs we identified, a certain number of genes 
were reported to participate in pain mechanisms, which 
include: Cxcl14 (C-X-C motif chemokine 14 precursor, 
fold change=3.2), Cxcl13 (C-X-C motif chemokine 13 
precursor, fold change=2.6), Tlr5 (Toll-like receptor 5, 
fold change=2.6), Ngf (Nerve growth factor, fold 
change=2.3), and Tlr8 (Toll-like receptor 8, fold 
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Figure 1 The CPIP model rats displayed remarkable and prolonged mechanical allodynia in both ipsilateral and contralateral hind paws. (A) Representative pictures of the 
rat hind paw taken before/during CPIP model establishment and 20 minutes, 1 day, and 7 days after model establishment. The arrow indicates the position of the O-ring. 
(B and C) Edema evaluation of the ipsilateral (B) and contralateral (C) hind paw. (D and E) 50% paw withdraw threshold (PWT) of ipsilateral (D) and contralateral (E) hind 
paw. (F and G) Summary of the normalized area under the curve (AUC) as in panels (D and E), respectively. n=10 rats/group. **p<0.01 vs sham group. Student’s t-test or 
two-way ANOVA followed by Tukey post-hoc test was used for statistical analysis. 
Abbreviation: CPIP, chronic post-ischemic pain.
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change=1.8). We further analyzed the RNA-Seq dataset 
and identified 167 genes (63 up-regulated and 104 down- 
regulated gene) showing expression changes >10-fold, 
including Tsr2 (TSR2 Ribosome Maturation Factor, fold 
change=109,177.8), Aph1b (Gamma-Secretase Subunit 
APH-1B, fold change=436.9), etc. In total, 124 genes 
had expression changes between 5- and 10-fold, including 
40 up-regulated and 84 down-regulated genes. The top 20 
up- or 20 down-regulated DEGs are summarized in 
Tables 3 and 4. These data suggest that the DEGs are 
probably correlated with MIP pathogenesis.

RNA-Seq Data Validation by Means of 
qPCR
We then set to validate the RNA-Seq dataset by means 
of qPCR. We randomly selected eight up-regulated 
genes (Tbx18, Slfn1, Gli2, Stk32b, Asgr2, Smoc2, 
Osr2, and Sned1) and four down-regulated genes 

(Myl1, Myom2, Capg, and Retsat) from the DEGs list 
and verified their expression by qPCR. The results of 
qPCR showed that the expression of Tbx18, Slfn1, 
Gli2, Stk32b, Asgr2, Smoc2, Osr2, and Sned1 were all 
significantly up-regulated, whereas Myl1, Myom2, 
Capg, and Retsat were all significantly down- 
regulated in contralateral DRG of CPIP model rats vs 
sham rats (Figure 4A and B), which is consistent with 
the RNA-Seq dataset. We then proceeded to evaluate 
some representative genes which were known to con-
tribute to pain or neuroinflammation. These genes 
include Gpr183, Tlr8, Egfr, Cxcl13, Fcgr1a, and 
Siglec1. qPCR testing showed that the expression of 
these genes were all significantly increased in CPIP 
model rats vs sham rats, which is consistent with the 
RNA-Seq result (Figure 4C). Therefore, these results 
indicated that the RNA-Seq dataset we obtained was 
reliable.
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Figure 2 The CPIP model rats did not show any neuronal damage in bilateral DRG neurons innervating the hind limbs. (A) Representative immunostaining pictures showing 
ATF3 antibody (green) staining of ipsilateral and contralateral DRG from the sham group and CPIP model group. NeuN was used to label neurons (red). (B) Summary of the 
number of ATF3 positive neurons per observation field in ipsilateral DRG. (C) Summary of the number of ATF3 positive neurons per observation field in contralateral DRG. 
Scale bar indicates 100 μm. n=6 rats/group. 
Abbreviations: CPIP, chronic post-ischemic pain; DRG, dorsal root ganglia.
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Function and Pathway Analysis of DEGs 
from Contralateral DRGs of CPIP Model 
Rats
In order to gain more insights into the molecular mechan-
isms underlying MIP of CRPS-I, gene ontology (GO) 
enrichment analysis was performed to analyze the DEGs 
from contralateral DRGs of CPIP model rats vs sham rats. 
GO enrichment analysis indicated that the mostly enriched 
biological process among up-regulated DEGs included 
immune system process, innate immune response, and 
cell adhesion, etc. (Figure 5A). The mostly enriched mole-
cular function among up-regulated DEGs included low- 
density lipoprotein particle binding, carbohydrate binding, 
and heparin binding, etc. (Figure 5B). The mostly enriched 
cellular function among up-regulated DEGs included the 
extracellular region and extracellular matrix, etc. 

(Figure 5C). On the other hand, the mostly enriched bio-
logical process among down-regulated DEGs included 
muscle contraction, sarcomere organization, and ossifica-
tion, etc. (Figure 5D). The mostly enriched molecular 
function of down-regulated DEGs included actin binding, 
a structural constituent of muscle and actin filament bind-
ing, etc. (Figure 5E). The mostly enriched cellular function 
of down-regulated DEGs included Z disc, myofibril, and 
M band, etc. (Figure 5F). The DEGs allocated to each 
category of GO analysis are summarized in Suppl 
Table 6. These results indicated that immune response 
occurred in contralateral DRG and may possibly be related 
with MIP pathogenesis.

We then performed KEGG analysis to analyze the 
DEGs from contralateral DRG of the CPIP model rats. 
KEGG analysis indicated that the up-regulated DEGs were 
involved in complement and coagulation cascades, phago-
some and osteoclast differentiation, etc. (Figure 6A). In 
contrast, the down-regulated DEGs were involved in car-
diac muscle contraction, apelin signaling pathway and 
glucagon signaling pathway, etc. (Figure 6B, Suppl 
Table 7). We further performed gene set enrichment ana-
lysis (GSEA) of the up-regulated DEGs. Suppl Figure 2 
lists the most significantly enriched pathways of these 
DEGs (NES>1.0, FDR≤0.25), including complement and 
coagulation cascades and Toll-like receptor signaling path-
way, etc.

Next, we aim to focus our analysis more on the genes 
related with pain processing. We were able to retrieve three 
datasets that summarized genes enriched in small-diameter 
primary sensory DRG neurons (SN), TRPV1-lineage 

Table 2 The Information of Total Reads and Mapping Ratio for 
Sham and CPIP Groups in RNA-Seq

Sample Total 
Raw 
Reads 
(M)

Total 
Clean 
Reads 
(M)

Clean 
Reads 
Q30 
(%)

Clean 
Reads 
Ratio 
(%)

Total 
Mapping 
(%)

CPIP1 23.92 23.74 93.65 99.22 94.65

CPIP2 23.92 23.74 93.86 99.21 94.83

CPIP3 23.92 23.73 93.96 99.2 94.81
CPIP4 23.92 23.74 93.15 99.24 94.47

Sham1 23.92 23.66 93.21 98.88 94.08

Sham2 23.92 23.73 94.01 99.19 94.75
Sham3 23.92 23.73 93.59 99.2 94.66

Sham4 23.92 23.75 93.58 99.27 94.71
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Figure 3 Gene expression profiling by RNA-Seq in contralateral DRG of CPIP model rats. (A) Volcano plot illustrating gene expression profiles in contralateral DRG of 
CPIP model group vs sham group. Red and blue dots show up- and down-regulated DEGs, respectively. Gray dots indicate non-DEGs. (B) Heat map showing the hierarchical 
clustering of DEGs from CPIP and sham groups and within groups. 
Abbreviations: RNA-Seq, RNA-sequencing; DRG, dorsal root ganglia; CPIP, chronic post-ischemic pain; DEGs, differentially expressed genes.
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nociceptors (VL), and pain-related genes (PG), 
respectively.32 We then compared the DEGs we identified 
from RNA-Seq with these three datasets. We identify that 19 
DEGs were related with PG and Stoml3, Fosb, and Gdnf are 
among the genes most up-regulated (Figure 7A, Suppl 
Table 8). We identified four DEGs were related with SN 
and Eno3 showed the most down-regulation (Figure 7A, 
Suppl Table 8). We identified seven genes were related 
with VL and Fosb showed the most up-regulation 
(Figure 7A, Suppl Table 8). PPI analysis was conducted on 
these 26 genes and the major hub genes identified from the 
network included Mmp9, Egr1, Ngf, etc. (Figure 7B). These 
data suggest that these specific DEGs related with pain, 
small-diameter primary sensory DRG neurons, and TRPV1- 
lineage nociceptors may probably contribute to MIP 
mechanisms.

Discussion
In this study, we established the rat CPIP model to repli-
cate CRPS-I. We found the model rats developed obvious 
MIP in contralateral hind paws. We then performed 

expression profiling of the DRG innervating the contral-
ateral hind limb of the model rats by RNA-Seq. We iden-
tified the DEGs and validated the expression by means of 
qPCR. We then studied the major functions or signaling 
pathways that these DEGs were involved in. Lastly, by 
comparing with published datasets that summarized genes 
enriched in pain mechanisms, we further sorted out the 
genes which might contribute to nociception and pain 
processing. Thus, we provided by far the first study to 
profile gene expression changes and performed pathway 
analysis of contralateral DRG for investigating MIP 
mechanisms.

CRPS-I is a chronic and devastating pain condition that 
usually affects the extremities of the patients. One feature 
of CRPS-I patients is the symptom of MIP.7,12 CRPS-I 
patients may develop increased sensitivity to chemical, 
thermal, and mechanical stimuli in bilateral extremities.12 

In order to facilitate mechanistic studies of CRPS-I, a rat 
chronic post-ischemic pain (CPIP) model was developed 
by applying prolonged hind paw ischemia and reperfusion 
to mimic CRPS-I.16 The rat CPIP models exhibit several 
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Figure 4 Validating the RNA-Seq results by means of qPCR. (A and B) qPCR validation of the expression of some randomly selected up-regulated (A) and down-regulated 
(B) DEGs from contralateral DRG. (C) qPCR validation of the expression of some representative genes involved in pain and neuroinflammation. n=7 rats/group. *p<0.05, 
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key features that resemble CRPS-I, including early hind 
paw edema, vascular disturbance and blood flow dysfunc-
tion in the hind paw, persistent bilateral mechanical allo-
dynia and heat hyperalgesia, increased sensitivity to 
capsaicin treatment, etc.15,16,22,37 At present, the CPIP 
model has become a commonly used animal model for 
mechanistic studies of CRPS-I. We and others found that 
the CPIP model rats develop robust MIP symptoms in the 
unaffected hind paw, including mechanical and thermal 
hypersensitivities.15–17 Therefore, in the present study, 

we established the rat CPIP model and made good use of 
it for a mechanistic study of MIP.

We first performed a pathological analysis to examine 
whether there was any neuronal damage which occurred in 
DRG innervating bilateral hind paws of CPIP model rats. 
Immunostaining showed that the expression of ATF3, 
a well-established neuronal damage marker, is not altered 
in ipsilateral or contralateral DRG of CPIP model rats, 
suggesting bilateral DRG neurons remain intact in CPIP 
model rats. In an earlier study, Coderre et al found no 

A

B

C

D

E

F

Figure 5 GO enrichment analysis of identified DEGs from contralateral DRG. (A–C) Bubble plots showing the top 10 mostly enriched biological processes, molecular 
functions and cellular components of up-regulated DEGs. (D–F) Bubble plots showing the top 10 mostly enriched biological processes, molecular functions, and cellular 
components of down-regulated DEGs. Larger bubbles indicate higher number of genes and vice versa. The color of each bubble reflects the significance as indicated 
(q-value). 
Abbreviations: GO, gene ontology; DEGs, differentially expressed genes; DRG, dorsal root ganglia.
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evidence of degeneration in bilateral tibial nerves of CPIP 
model rats.16 These findings are consistent with the clin-
ical definition that CRPS-I patients have no known or 
identifiable peripheral nerve injury. Thus, this result 
excludes the possibility that neuronal damage may contri-
bute to MIP in CPIP model rats.

Peripheral mechanisms have been proposed to contribute 
to MIP. For example, in a spinal nerve ligation (SNL) animal 
model for neuropathic pain, TNF-α can be produced from 
ipsilateral injured DRG and diffuses to the contralateral side 
via cerebrospinal fluid. TNF-α then activates satellite cells to 
produce NGF, which in turn promotes nociceptor excitability 
on the contralateral side and induces MIP.4 Although these 
findings suggest that peripheral satellite glial cells and pro- 
inflammatory cytokines are important for MIP, it still 
remains unclear how contralateral DRG is affected during 
MIP. Therefore, we performed a genome-wide expression 

profiling of the DRG that innervate the contralateral hind 
limbs of the rat CPIP model by means of RNA-Seq.

According to GO enrichment analyses of DEGs in 
contralateral DRG, we found that the mostly enriched 
biological processes of up-regulated genes were mainly 
involved in the immune system process, innate immune 
response, cell adhesion, response to lipopolysaccharide, 
inflammatory response, etc. This information indicates 
that immune and inflammatory responses, which can 
cause neuroinflammation and pain, take place in contral-
ateral DRG. This finding is similar with our recent study 
which identified lipopolysaccharide and inflammatory 
response as the predominant biological processes in ipsi-
lateral DRG of CPIP model rats.14 It is known that that 
neuroinflammation, including inflammatory cytokine/che-
mokine release, glial cell activation, and inflammatory cell 
infiltration in the sensory nerve system, make important 
contributions to the initiation and maintaining phase of 
chronic pain.38–41 Therefore, this result suggests that neu-
roinflammation in contralateral DRG may constitute an 
important mechanism for MIP of CPIP model rats.

In addition, KEGG pathway analysis indicated that one 
of the mostly enriched pathways that these DEGs partici-
pate in is “phagosome”. This finding is similar with our 
recent studies showing that phagosome is a major signal-
ing pathway which occurred in ipsilateral DRG and spinal 
cord dorsal horn (SCDH) of CPIP model rats.14,17 Similar 
findings were also reported in SCDH of an animal model 
of neuropathic pain.42 Itgam is a well-established marker 
gene for monocytes and macrophages and is involved in 
the phagosome process. In this study, we found that Itgam 
gene expression is significantly up-regulated in contralat-
eral DRG of CPIP model rats by RNA-Seq. This implies 
that macrophage or monocyte infiltration may likely take 
place in contralateral DRG of CPIP model rats. 
Macrophages or monocytes can infiltrate into peripheral 
tissues and sensory ganglia, where they release an array of 
inflammatory cytokines and reactive oxygen species 
(ROS) products.43–46 These products activate or sensitize 
peripheral sensory neurons to produce or enhance pain 
through neuro-immune crosstalk.39 Therefore, we specu-
late that macrophage or monocyte infiltration may occur in 
contralateral DRG, which could contribute to MIP in CPIP 
model rats. Further studies using specific markers for 
macrophages or monocytes will be needed to confirm 
their infiltrations into contralateral DRG.

In our study, the RNA-Seq identified that Ngf gene is 
significantly up-regulated in contralateral DRG of CPIP 

A

B

Figure 6 KEGG pathway analysis of identified DEGs from contralateral DRG. (A) 
Bubble plots showing the top 10 pathways of up-regulated DEGs identified by 
KEGG. (B) Bubble plots showing the top 10 pathways of down-regulated DEGs 
identified by KEGG. Larger bubbles indicate higher number of genes and vice versa. 
The color of each bubble reflects significance as indicated (q-value). 
Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differ-
entially expressed genes; DRG, dorsal root ganglia.
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model rats. NGF is a neurotrophic factor and neuropeptide 
implicated in a wide range of development and mainte-
nance functions. NGF can be released upon tissue inflam-
mation and is implicated in chronic pain.47 NGF sensitizes 
nociceptors and promotes their excitability by up- 
regulating TRPV1 and Nav1.8 channel expression and 
activity via acting on the TrkA receptor.48,49 In 
a previous study, Cheng et al4 found that TNF-α produced 
from ipsilateral injured DRG of a rat spinal nerve ligation 
model can diffuse to the contralateral side via cerebrosp-
inal fluid and activates satellite cells to produce NGF, 
which promotes nociceptor excitability on the contralateral 
side and induces MIP. Their study suggested that NGF 

expression is up-regulated in contralateral DRG and con-
tributes to the MIP mechanism. In the present study, we 
found that the Ngf gene was significantly up-regulated in 
the contralateral DRG of CPIP model rats, a result con-
sistent with Cheng et al’s findings. Thus, our result sug-
gests that NGF may be potentially involved in mediating 
MIP of CPIP model rats.

We continued to explore other potential genes involved 
in MIP. By means of RNA-Seq and qPCR validation, we 
found that chemokine Cxcl13 gene expression showed 
significant up-regulation in contralateral DRG. CXCL13 
is known as a B-cell-attracting chemokine that acts upon 
its receptor CXCR5 to exert biological functions. Recent 
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studies identified that the CXCL13/CXCR5 axis is present 
in peripheral sensory ganglia and spinal cord and contri-
butes to chronic pain.50–52 Genetic knockout or knock-
down of CXCL13/CXCR5 significantly reduced chronic 
pain as well as glial cell over-activation in SCDH in 
animal models of neuropathic pain.52 Intrathecal 
CXCL13 injection can provoke thermal and mechanical 
hypersensitivities in naïve animals.52 Moreover, it is found 
that CXCl13 is increased in DRG neurons of CFA-induced 
inflammatory model mice and acts upon CXCR5 in DRG 
neurons to activate the p38-MAP kinase, which enhances 
Nav1.8 channel expression and contributes to chronic 
pain.51 Therefore, our findings suggest CXCL13 released 
from contralateral DRG may be another possible contri-
butor to MIP of CPIP model rats.

Single-cell RNA-sequencing is a powerful technique 
that has greatly facilitated the identification of molecular 
profiles of heterogeneous cells, especially on the transcrip-
tion level of single cells. Recently, two groups published 
single-cell RNA-sequencing results of DRG neurons.53,54 

These studies provide novel insights into understanding 
the biological function of somatosensory neurons, particu-
larly for the nociceptors, and suggest that neuron types are 
defined by their transcriptomic, morphological, and func-
tional characteristics. We hope that single-cell RNA- 
sequencing may be applied in the MIP study in the future, 
which could provide detailed transcriptome profiles of 
single nociceptors in conditions of MIP.

In conclusion, to our knowledge, this is the first study 
that performs expression profiling of gene expression 
changes in contralateral DRG of an animal model of 
CRPS-I by RNA-Seq to explore MIP mechanisms. This 
study identifies a number of genes and signaling pathways 
in contralateral DRG that may possibly contribute to MIP. 
Thus, this study may provide novel insights into under-
standing the mysterious mechanisms underlying MIP.

Abbreviations
CRPS-I, Complex regional pain syndrome type-I; MIP, 
Mirror-image pain; CPIP, Chronic post-ischemic pain; 
RNA-Seq, RNA-sequencing; qPCR, Real-time quantita-
tive PCR; DRG, Dorsal root ganglia; DEGs, 
Differentially expressed genes; PWT, Paw withdrawal 
threshold; QC, Quality control; GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; 
GSEA, Gene set enrichment analysis; PG, Pain genes; 
SN, Sensory neuronal genes; VL, TRPV1-lineage neuronal 
genes; PPI, Protein–protein interaction; STRING, Search 

Tool for the Retrieval of Interacting Genes; BP, Biological 
processes; MF, Molecular function; CC, Cellular compo-
nent; ROS, reactive oxygen species.
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