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Abstract: Digestive system cancers are common cancers with high cancer deaths world-
wide. They have become a major threat to public health and economic burden. As one of the 
most universal RNA modifications in eukaryotes, the N6-methyladenosine (m6A) modifica-
tion is involved in the occurrence, development, prognosis, and treatment response of various 
cancers, including digestive system cancers. M6A demethylases shape the m6A landscape 
dynamically, playing important roles in cancers. In addition, accumulating evidence reveal 
that many environmental toxicants are the established risk factors for digestive system 
cancers and associated with m6A modification. In this review, we summarize the multiple 
functions of M6A demethylases (fat mass and obesity-associated protein (FTO), AlkB 
homolog 5 (ALKBH5) and AlkB homolog 3 (ALKBH3)) in digestive system cancers, 
which are aberrantly expressed and affect cancer progression. We also discuss the potential 
roles of m6A demethylases in the assessment of environmental exposure, the signature for 
prevention and diagnosis of digestive system cancers. 
Keywords: m6A modification, FTO, ALKBH5, environment toxicants, digestive system 
cancers

Introduction
With the rapid growth and aging of the population, cancer has occupied the primary 
reasons for death that placed a huge personal and societal healthcare burden.1,2 

Global Cancer Statistics showed 19.3 million new cancer cases and 10.0 million 
cancer deaths in 2020, and the number of global new cancer cases is expected to 
grow to 28.4 million by 2040.3 At present, it has been generally agreed that the 
interaction of genetic and environmental factors promote the occurrence and devel-
opment of cancers, but the accurate mechanism is still unclear. The digestive 
system cancers are common malignant cancers with a poor prognosis and high 
mortality, because most digestive system cancers are usually discovered and diag-
nosed at their advanced stage which leads to the treatment effect not being 
obvious,4 and patients with higher risk to go suicidal when suffering from cancer 
in psychological aspects.5 The five most common digestive system cancers, includ-
ing stomach cancer, liver cancer, esophagus cancer, pancreatic cancer and colorectal 
cancer, account for 30.7% and 35.4% of all cancer incidence and mortality,3 

respectively. Therefore, digestive system cancers have become one of the most 
concerned public health problems.
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Massive progress has been made on the research of the 
cancer molecular mechanism which gained much attention 
in the last decade. RNA modifications are one of the hea-
viest mechanisms of cancers, and more than 170 RNA 
modifications have been identified.6 M6A is the methyla-
tion modification of the sixth nitrogen (N) atom of adenine 
(A) occupied for more than 60% of RNA modifications, 
which is the most abundant modification of RNA in 
eukaryotes.7 It was first identified in the 1970s, but m6A 
did not get any further over the following years.8 Until the 
recent decade, with the high-throughput detecting techni-
ques developing and the oxidative demethylases of m6A 
uncovering, m6A was made clear as a dynamic and rever-
sible process and became a cancer research hotspot. 
Increasing studies show that m6A modifications prefer to 
occur in the consensus motif of RRACH (R = G or A; H = 
A, C, or U), which mainly enrich in stop codons, 3ʹ untrans-
lated region (3ʹ UTR) and the exon in RNA.9 With the 
advance of m6A, the studies demonstrate that m6A and 
m6A associated proteins are involved in various biological 
and pathological processes, such as splicing, transport, 
translation and degradation.10,11 In addition, the abnormal 
expression of m6A associated proteins are involved in 
regulating genes that impact cell processes and physiologi-
cal function in various cancers. As Figure 1 shows, m6A 
modification is regulated by three types of proteins, includ-
ing the m6A methyltransferase (“writer”), demethylase 
(“eraser”) and reading proteins (“reader”). The m6A 

methyltransferase (“writer”), METTL3, METTL14, 
WTAP and other proteins formed a multicomponent 
methyltransferase complex (MTC), that catalyzes the for-
mation of methylation on RNA. And the RNA binding 
protein (“reader”) YTH domain family (YTHDF1–3, 
YTHDC1 and YTHDC2), Insulin-like growth factor 2 
mRNA-binding proteins 1–3 (IGF2BP1-3), Heterogeneous 
nuclear ribonucleoprotein (HNRNPC, HNRNPA2B1) and 
other proteins can recognize methylation on RNA.12 The 
m6A demethylases (“eraser”), such as FTO, ALKBH5 and 
ALKBH3, share a common mechanism to remove the m6A 
modification.13 The expression of m6A demethylases in 
mRNA and protein levels are often significantly different 
between tumor tissues and the adjacent normal tissues,14 

and influence greatly on cell function15,16 by regulating 
downstream target genes,17 which also plays important 
roles in progression and treatment of various cancers, such 
as respiratory system cancers,18 reproductive system 
cancers,19 urinary system cancers20 and digestive system 
cancers.21 It is known that N-nitroso compounds, 
Helicobacter pylori (HP) infection, tobacco smoking, 
excess alcohol, aflatoxin and aristolochic acid are estab-
lished risk factors for digestive system cancers.22,23 When 
exposed to the environmental toxicant, m6A methylation 
levels and m6A demethylase expression can alter with 
a time- and dose-dependent manner,24 playing critical 
roles in cancers induced by various environmental toxi-
cants. Given the evidence that has accumulated, it is 

Figure 1 The dynamics and reversible process of m6A modification. M6A is reversed by m6A demethylases (FTO, ALKBH5 and ALKBH3) and plays important roles in 
digestive system cancers.

https://doi.org/10.2147/CMAR.S328188                                                                                                                                                                                                                               

DovePress                                                                                                                                              

Cancer Management and Research 2021:13 7102

Liu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


categorically stated that the m6A demethylases can regulate 
RNA m6A methylation levels, thereby affecting the occur-
rence and development of cancers by complex signal path-
ways, indicating that m6A demethylases can serve as 
potential biomarkers for diagnosis, therapy and prognosis 
of digestive system cancers.

In this review, we first provided comprehensive 
insights into the roles and molecular mechanism of m6A 
demethylases in digestive system cancers. More impor-
tantly, we also understood the association between m6A 
methylation levels and environmental toxicants in diges-
tive system cancers and highlighted their potential clinical 
applications in future cancer diagnosis and treatment.

Role of the FTO Gene in Digestive 
System Cancers
The Discovery of FTO
Fat mass and obesity-associated protein (FTO) also known 
as alkB homolog 9 (ALKBH9), is lied at the 16 chromo-
somes and belongs to the a-ketoglutaric acid (α-KG) 
dependent ALKB family of dioxygenases. FTO is highly 
expressed in the brain, adrenal and thyroid tissues. It was 
initially discovered in mice and contributed to human 
obesity and energy by Genome-Wide Association Studies 
(GWAS) analysis.25 FTO is strongly associated with obe-
sity that can result in multiple diseases, including heart 
disease,26 type 2 diabetes and cancers.27 Some studies 
found that FTO-related single nucleotide polymorphism 
(SNP) was involved in breast cancer,28 endometrial cancer 
and pancreatic cancer.29,30 In 2011, FTO was demonstrated 
to be as a demethylase of m6A modification and the 
dynamic reversible process was proved.31 Wei et al32 jus-
tified that FTO was not only restricted in the nucleus but 
also in the cytoplasm, and the location of FTO was closely 
correlated to its function. In 2017, the evidence suggested 
that FTO played an oncogenic role in Acute Myeloid 
Leukemia (AML) as an m6A RNA demethylase.33 Since 
then, it has opened the research of FTO as an m6A 
demethylase in cancers, which provided new clues for 
the research of cancers molecular mechanism.

FTO Dysregulation in Digestive System 
Cancers
Gastric Cancer (GC)
GC is one of the most common malignant cancers with 
high incidence, high mortality and poor prognosis, whose 
incidence and mortality rate ranked third and second of all 

cancers in China in 2018, respectively.4 Several studies 
proved that the expression of FTO was up-regulated and 
correlated with the m6A level of mRNA in GC by the The 
Cancer Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO) database analysis.34,35 In addition, FTO 
was also over-expressed in GC samples from Chinese 
cohort by performing RT-qPCR, Western blot and immu-
nohistochemistry (IHC), showing good agreement with the 
results of databases.36,37 And the epidemiological and 
clinical characteristics investigations revealed that the 
FTO expression was associated with age, differentiation, 
lymph node metastasis, TNM stage, and prognosis in GC 
patients.14,38,39 Beyond that, increased expression of FTO 
can reduce m6A methylation and regulate MYC to pro-
mote the cell proliferation, migration and invasion ability 
in GC by FTO/m6A/MYC molecular network.40,41

However, several results of studies were inconsistent 
with the above results. They affirmed that FTO was lower 
expressed in GC and served as an anti-oncogene to involve 
in cell proliferation, invasion and migration.42,43 

Moreover, it is reported that the level of m6A in peripheral 
blood of patients with GC was increased, accompanied by 
the downregulation of FTO, which could provide promis-
ing noninvasive biomarkers for GC diagnosis.44 It was 
worth noting that one study revealed that the expression 
of FTO was different between mRNA and protein levels. 
FTO was over-expressed at mRNA level but it was mark-
edly downregulated at the protein level in GC tissue.42 

Above all, the FTO expression is different in various 
cohorts because of the different source of samples and 
the various post-transcriptional regulation mechanisms, 
which should be further elucidated in large cohorts.

Liver Cancer
Hepatocellular carcinoma (HCC) and intrahepatic cholan-
giocarcinoma (ICC) are primary liver cancers with high 
mortality. As an anti-oncogene gene, FTO played 
a protective function in liver cancers.45,46 Rong et al45 

found that the expression of FTO was downregulated in 
ICC samples and cell lines to influence tumor growth by 
impairing oncogene TEAD2 mRNA stability. Moreover, 
low level of FTO expression could predict poor prognosis 
in ICC.45 Liu et al46 also demonstrated that FTO was 
decreased in HCC samples and interacted with SIRT1 to 
influence HCC progression. Several studies hold conflict-
ing opinions against above results, suggesting that FTO 
was overexpressed in HCC and could promote prolifera-
tion and invasion.47,48 According to a long-term mice 
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experiment, FTO is essential for the control of energy 
balance and glucose metabolism. Importantly, during the 
initiation phase of tumor development, FTO is upregulated 
on acute liver damage but plays protective roles in HCC 
development.49 Therefore, FTO can be dynamically regu-
lated in different periods of the liver cancer development, 
which can serve as a diagnostic marker and therapeutic 
target in liver cancer.

Colorectal Cancer (CRC)
The global cancer statistic of 2020 showed that the incidence 
and mortality rate of colorectal cancer (including colon 
cancer and rectal cancer) ranked third and second,3 respec-
tively. FTO is upregulated in CRC and reduces the m6A 
modification, which can active MYC to induce carcinogen-
esis and regulate PD-L1 to affect immune escape.50,51 

Besides, low expression of FTO was related to polyubiquitin 
binding, mRNA 3ʹ end processing, transcription elongation 
from RNA polymerase II and poor overall survival.52,53 In 
addition, diminished FTO expression is the key factor for 
promoting the cancer stem-like traits in CRC, including 
sphere forming, in vivo tumorigenicity, and chemoresis-
tance. Compared to primary and metastatic tumor cells, 
FTO expression is also lower in circulating tumor cells, 
which can serve as diagnostic biomarkers for CRC.54 

Therefore, FTO is important for improving diagnosis, 

maintaining cancer stem cell phenotype, assessing treatment 
effect and predicting prognosis in CRC.

Other Digestive System Cancers
In addition to the above common digestive system cancers, 
FTO is also involved in the development of pancreatic cancer 
(PC) and esophageal cancer (EC). A high level of FTO expres-
sion was confirmed in PC, which is necessary for tumor 
growth by regulating the downstream target c-MYC.55 FTO 
is also highly expressed in EC, which can promote cell pro-
liferation and migration by up-regulating MMP13.56,57

The expression of FTO is complex in digestive system 
cancers, playing an essential role in tumor occurrence and 
development. In addition, MYC may be an important 
downstream target of FTO, whose expression and stability 
are regulated by FTO-mediated m6A modification. 
Generally, FTO and its target genes provide new insight 
into diagnosis and treatment for digestive system cancers 
(as can be seen in Table 1).

Role of the ALKBH5 Gene in 
Digestive System Cancers
The Discovery of ALKBH5
ALKBH5 is also known as ABH5 or OFOXD. It is 
located on the 17 Chromosome. ALKBH5 is a member 

Table 1 The Role of FTO in Human Digestive System Cancers

Cancer Types Roles Expression Target Molecular Mechanism References

Gastric cancer Oncogene Up MYC HDAC3 mediated FTO/m6A/myc axis to regulate FOXA2 in GC 
initiating activities.

[40]

Intrahepatic 
cholangiocarcinoma

Suppressor Down GNAO1 Depleted FTO by SIRT1 promoted m6A+ levels of HCC tumor 
suppressor GNAO1 and decreased its mRNA expression.

[46]

Hepatocellular 
carcinoma

Oncogene Up PKM2 FTO triggered the demethylation of PKM2 mRNA and accelerated 
the translated production.

[47]

Hepatocellular 
carcinoma

Suppressor – Cul4a FTO-dependent m6A regulated of Cul4a mRNA to play protective 
function in the initiation of HCC development.

[49]

Colorectal cancer Oncogene Up PD-L1 FTO mediated m6A regulated PD-L1 expression that might affect 
a therapeutic response to immunotherapy.

[50]

Colorectal cancer Oncogene Up MYC MiR-96 could potentially stimulate malignancy and aggressiveness 
of CRC by activating AMPKα2-mediated FTO/MYC.

[51]

Pancreatic cancer Oncogene Up c-MYC FTO enhanced stability of MYC and bHLH via decreasing m6A 
level.

[55]

Esophageal 
squamous cell 

carcinoma

Oncogene Up MMP13 FTO facilitated cell proliferation and migration by up-regulating 
MMP13.

[57]
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of the α - KG dependent ALKB family of dioxygenases, 
it was identified as the second demethylases in 2013.58 

FTO is not only located in the nucleus, but also in the 
cytoplasm in some cases, but most of ALKBH5 is 
located in the nuclear speckles with different roles 
according to the site of action.32 Both FTO and 
ALKBH5 rely on Fe (II) and α ketoglutaric acid in 
different ways during the demethylation of m6A. The 
demethylation of m6A catalyzed by FTO can be divided 
into two steps. First, the demethylation of m6A to N6- 
hydroxymethyladenosine (hm6A) is catalyzed by FTO, 
and then hm6A is converted to N6-formyladenosine 
(f6A) and further oxidized to product A.12 But 
ALKBH5 can directly catalyze m6A to A with no inter-
mediate products.

The Role of ALKBH5 Dysregulation in 
Digestive System Cancers
Gastric Cancer
To evaluate the function of AlkB homolog 5 (ALKBH5), 
the researchers have drawn conclusions based on the 
TCGA database that ALKBH5 was an independent indi-
cator to predict prognosis of GC patients.34,38,39,59 In addi-
tion, ALKBH5 is overexpressed in GC and demethylates 
NEAT1 to promote invasion and migration by regulating 
EZH2.60 However, the level of m6A in peripheral blood of 
GC patients is increased with down-regulated ALKBH5, 
which also is associated with progression and metastasis.44

Colorectal Cancer
Currently, several studies have reported the relationship 
between ALKBH5 and colorectal cancer. According to 
the different CRC cohorts, ALKBH5 is low expression 
in CRC patients at mRNA and protein levels, playing 
a suppressor gene role in CRC.61–64 Besides, the expres-
sion of ALKBH5 is significantly associated with age, 
stage, invasion and metastasis, overall survival and dis-
ease-free survival, which is also verified by experiments 
in vitro and in vivo.64 However, some scholars argue that 
ALKBH5 is upregulated in CRC tissues and cells.53,65 

Guo et al emphasized that ALKBH5 expression was 
increased in CRC cells, and the cell proliferation, migra-
tion were impeded and apoptosis was improved by 
ALKBH5-NEAT1 axis, which might be a potential ther-
apeutic target for colon cancer treatment.65 At the 
moment, there are still some controversy about the role 
of ALKBH5, requiring further discussion.

Pancreatic Cancer
As the results of increasing morbidity and mortality of PC 
with 7% five-year survival rate,66 there is an urgent need to 
find the biomarker for diagnosis, intervention and treatment. 
According to the multi-cohort analysis, we can conclude that 
the ALKBH5 is downregulated in PC and has better discri-
minatory power than other clinical variables, which can also 
predict overall survival.67,68 Increasing evidence substan-
tiated that down-regulated ALKBH5 can promote cell pro-
liferation, migration, invasion and tumor growth ability, and 
vice versa.69–71 Several mechanisms were investigated to 
explain it. Tang et al confirmed that ALKBH5 could inhibit 
the activation of Wnt signaling pathway by reducing the level 
of m6A of downstream target WIF-1, and ultimately 
repressed tumor development in vivo and in vitro.69 Similar 
to regulating WIF-1, ALKBH5 can activate ATM-CHK2- 
P53/CDC25C signal pathway by regulating PER1 and form 
ALKBH5-PER1-P53-ALKBH5 feedback loop to influence 
m6A methylation.70 In addition, ALKBH5 also can interact 
with non-coding RNA dependent on demethylating to 
involve in the occurrence and progress of pancreatic 
cancer.71 Many studies reported that ALKBH5 was related 
to the infiltration of immune cells, which was helpful to 
determine the targets of immunotherapy aimed at inhibiting 
tumorigenesis.72,73 In summary, ALKBH5 may be 
a potential target for diagnosis and therapy of PC in the 
future.

Other Digestive System Cancers
As for liver cancer, the mutation and copy number varia-
tion of ALKBH5 have clear relation with clinicopatholo-
gical features and prognosis of patients.74 Chen et al found 
that ALKBH5 was down-regulation and attenuated the 
expression of LYPD1 via an m6A-dependent manner to 
promote the cell biological effects in HCC.75 To better 
explain this mechanism, the author knocked-down the 
FTO expression and found it had almost no influence on 
LYPD1, suggesting that ALKBH5 and FTO as powerful 
m6A demethylases both could effectively demethylate 
m6A, but the ALKBH5 demethylation capacity was dif-
ferent from FTO.75 On the one hand, ALKBH5 is as 
a suppression gene and decreases in the EC.76,77 

ALKBH5 can form a positive feedback loop with miR- 
193a-3p to prevent pri-miR-193a-3p maturation and reg-
ulate tumor growth in vivo and in vitro.77 But on the other 
hand, ALKBH5 plays an oncogene role and mediated 
m6A modification to increase CDKN1A mRNA stability 
in EC.78
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The aforementioned studies indicate that the function 
and regulatory mechanisms of ALKBH5 are diverged in 
most digestive system cancers. Similar to FTO, ALKBH5 
serves as the demethylase of m6A demethylase and plays 
different functions and regulatory mechanisms in various 
digestive system cancers (as shown in Table 2), which is 
still unclear and needs further study.

The Role of ALKBH3 Dysregulation 
in Digestive System Cancers
AlkB homolog 3 (ALKBH3) is also known as ABH3, 
PCA1and DEPC-1. It is located on the human 11 chromo-
somes, existing in both cell cytoplasm and nucleus. 
ALKBH3 was first identified as 1-methyladenosine 
(m1A) and 3-methylcytidine (m3C) demethylase of RNA 
in human ALKB homolog.79 And several studies con-
firmed that ALKBH3 as m1A and m3C demethylase of 
tRNA which promoted the cancer cell proliferation, migra-
tion and invasion and affected tumor growth.6,80 Ueda et al 
recently verified that ALKBH3 was m6A demethylase of 

tRNA that improved the efficiency of protein translation 
and related to tumor growth and proliferation.81 ALKBH3, 
as one of the m6A demethylases, has come to light only 
recently, and less study is focused on it. ALKBH3 may be 
direction and priorities of research in the future.

M6A is reversed by m6A demethylases (FTO, 
ALKBH5 and ALKBH3) and plays important roles in 
digestive system cancers. The expression levels of m6A 
demethylases vary in different normal tissues or turn 
malignant tissues. And m6A demethylases perform their 
biological function to involve in tumor occurrence and 
development through m6A dependent mechanisms in 
digestive system cancers, as can be seen in Figure 2.

The Role of Demethylase in 
Digestive System Cancers Induced 
by the Environmental Toxicants
Environmental toxicants are widespread in natural envir-
onment and living conditions. Substantial epidemiological 
investigations and studies confirmed that the 

Table 2 The Role of ALKBH5 in Human Digestive System Cancers

Cancer Types Roles Expression Target Molecular Mechanism References

Gastric cancer Oncogene Up NEAT1 ALKBH5 promoted GC invasion and metastasis by demethylating 

the lncRNA NEAT1.

[60]

Colon cancer Suppression Down – Overexpression of ALKBH5 inhibited colon cancer cells invasion 

in vitro and metastasis in vivo.

[64]

Colon cancer Oncogene Up NEAT1 ALKBH5-NEAT1 axis might regulate malignant behavior. [65]

Pancreatic 
cancer

Suppression Down WIF-1 ALKBH5 repressed PDAC tumorigenesis by reducing m6A levels of 
WIF-1 and hindering activation of Wnt signaling.

[69]

Pancreatic 
cancer

Suppression Down PER1 ALKBH5 activated PER1 by m6A demethylation in an m6A- 
YTHDF2-dependent manner and P53-induced activation of 

ALKBH5 transcription acted as a feedback loop regulating the m6A 

modifications in PC.

[70]

Pancreatic 

cancer

Suppression Down KCNK15- 

AS1

ALKBH5 mediated m6A to regulate KCNK15-AS1 and affect its 

stability.

[71]

Hepatocellular 

carcinoma

Suppressor Down LYPD1 Down-regulation of ALKBH5 activated the m6A machinery 

contributing to the epigenetic activation of LYPD1 which is 
recognized and stabilized by IGF2BP1.

[75]

Esophageal 
squamous cell 

carcinoma

Suppressor Down Pri-miR 
-193a-3p

ALKBH5 mediated m6A modification to regulate the pri-miR-193- 
3p processing which suggested a positive feedback loop between 

miR-193-3p and ALKBH5.

[77]

Esophageal 

squamous cell 

carcinoma

Oncogene Up CDKN1A Depletion of ALKBH5 increased m6A methylation and stability of 

CDKN1A mRNA, leading to up-regulation of p21 (CDKN1A) 

protein expression.

[78]
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environmental factors induce multiple genetic and epige-
netic changes that promote tumorigenesis. For example, 
N-nitroso compounds, HP and others are risk factors for 
GC.22 Several risk factors have been identified for liver 
cancer, such as aflatoxin and aristolochic acid.23 HP, hot 
food or drinks are risk factors for esophageal cancer.82 In 
addition, tobacco smoking and excess alcohol are common 
environmental risk factors for digestive system 
cancers.23,83 Identifying signature of the cancer induced 
by environmental risk factors and recognizing the high- 
risk population exposure to environmental toxicants can 
make it recognizable and preventable and reduce the risk 
of digestive system cancers. Currently, because of the lack 
of studies about environmental exposures and m6A 
mechanisms, only a minority of researches reveal the 
level of m6A methylation are in response to environmental 
toxicants exposure, as shown in Figure 3. Han et al 
affirmed that the levels of m6A and m6A related proteins 
were significantly decreased and activated the PI3K/Akt/ 
mTOR pathway to promote the cell proliferation and 

aggravate pulmonary fibrosis in carbon black (CB)- 
treated rats.84 The level of m6A is down-expressed and 
significantly affects the role and expression of non-coding 
RNAs in the ovarian injury induced by Cadmium (Cd).85 

In addition, the study found that the levels of global m6A 
in peripheral blood was downregulated in smokers com-
pared with non-smokers, but they were up-regulated after 
acute CB exposure.86 On the contrary, the level of m6A 
was upregulated in arsenite-transformed lung cells by its 
methyltransferases and demethylase to affect miRNAs to 
involve in the arsenite-induced proliferation and 
apoptosis.87 Interestingly, Chen et al confirmed that the 
reversible m6A and m6A associated protein showed horm-
esis effect in the NaAsO2-induced keratinocyte cells.88 

The m6A methylation alter various due to the diversity 
and complexity of environmental exposures.

The above studies confirmed the association between 
m6A methylation and environmental toxicant exposure, 
next we focus attention on m6A demethylases. The m6A 
levels are decreased with increased FTO and ALKBH5 in 

Figure 2 The mechanism and functions of m6A demethylases FTO and ALKBH5 involved in human digestive system cancers.
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lung adenocarcinoma cell after exposed to high-dose 
Particulate matter (PM2.5).89 CoCl2 exposure raises the 
expression of m6A demethylase and decreasing the activ-
ity of FTO and ALKBH5 in neurodegenerative diseases.90 

After rats treated with Di-(2-Ethylhexyl) phthalate 
(DEHP), Nrf2-mediated antioxidant signaling pathway 
was inhibited in prepubertal testes, which increased m6A 
levels with FTO decreased.91 Cui et al92 found FTO and 
autophagy dysfunction form a positive feedback loop in 
chronic low-level arsenic exposure which impaired the 
expression of FTO and m6A. Moreover, m6A demethy-
lases are also demonstrated to play important roles in 
digestive system diseases and cancers induced by environ-
mental factors. Cigarette smoke condensate (CSC) expo-
sure can induce miR-25-3p excessive maturation via m6A 
modification to promote the development and progression 
of PC.93 Aflatoxin B1 (AFB1) exposure can induce reac-
tive oxygen species (ROS) accumulation to increase m6A 
expression, but which can be reversed by resveratrol treat-
ment, paving an avenue for liver diseases prevention and 
treatment.94 It is known that some liver-associated meta-
bolic diseases are caused by triclosan (TCS) and bisphenol 
A exposure (BPA), where the expression of FTO was 
ascended to increase lipogenesis and lipid transport and 
inhibit lipid oxidation with different regulation modes.95 

Besides, FTO inactivation can increase diethylnitrosamine 
(DEN)-induced HCC burden,49 indicating protective 

function of FTO in liver carcinogenesis. Cigarette smoke 
exposure can increase ALKBH5 expression and mediate 
m6A to reduce the translation of LINC00278-sORF1 in 
EC progression.96

Given the potential significance alters of m6A and m6A 
associated protein in environmental factors-driven carcino-
genesis, it provides new insights into the assessment of 
environmental exposure, the signature for early damage of 
digestive systems, and the prevention and diagnosis of diges-
tive system cancers (as shown in the Table 3).

Conclusion and Outlook
Until now, a great number of studies have investigated the 
relationship between m6A demethylases and various can-
cers. It is confirmed that dysregulated m6A demethylases 
in the transcripts of some oncogenes or suppressors are 
involved in tumor progression and metastasis. 
Alternatively, because of the chemo-radiotherapy drug 
resistance characteristic, the researchers hoped to find 
inhibitor or preventive biomarkers to block tumor devel-
opment of tumor based on m6A demethylase. Fortunately, 
some remarkable advances have been made on FTO and 
ALKBH5 inhibitors,97,98 which can become a key techni-
que in the domain of cancer therapy. Therefore, it is 
important to develop highly specific and effective inhibi-
tors of m6A demethylation for cancer therapeutic applica-
tions in the future.

Figure 3 Effect of m6A modification on human diseases by environmental toxicants exposures.
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Herein, we summarized the demethylase roles and 
mechanism of FTO, ALKBH5 and ALKBH3 in digestive 
system cancers. We highlighted the m6A demethylase func-
tion in cancers, including the value of diagnosis, prognosis 
and treatment, regulating target genes to involve in tumor 
occurrence and development, and the association with envir-
onmental toxicants. The results of m6A demethylases are 
inconsistent across different studies, because the sample 
sources, points and approaches of studies are different. 
FTO and ALKBH5 are m6A demethylases, but in most 
studies, they represent different expression and have carci-
nogenic or anticarcinogenic effects on cancers, which 
remains to be further investigated. Though the study on the 
association between m6A demethylase and environmental 
toxicants is on the primary stage, it provides new insight 
into the assessment of environmental exposure, the signature 
of early damage, and tumor development induced by envir-
onmental toxicants, especially for prevention and diagnosis 
of digestive system cancers. Besides, m6A demethylases can 
be helpful to promote effective therapeutic strategies and 
develop new anticarcinogenic medicines for cancer treat-
ment. Despite the multiple effects and potential mechanisms 
of m6A studies have made great progress and gained 
momentum in recent years. However, there are still some 
problems to be considered for further research. First, the 
different roles and mechanisms of m6A and m6A regulators 
in some cancers will be necessary to be proved by more 
center and larger samples of research. Second, the specificity 
and sensitivity of m6A level and its regulators as potential 
biomarkers for diagnosis, prognosis and environmental tox-
icants exposure for some cancers need to be revealed. Third, 
are there any other m6A related proteins that regulate the 
level of m6A? Fourth, studies need to offer simple handling, 
low cost, quick and noninvasive detection techniques of m6A 
for clinical application in the future.

In conclusion, m6A demethylases, FTO, ALKBH5 and 
ALKBH3 perform their biological function to involve in 
tumor occurrence and development in different ways. 
M6A demethylases may be potential biomarkers for diag-
nosis, prognosis, cancer treatment and environmental tox-
icant prevention in the future clinical application.

Abbreviations
M6A, N6-methyladenosine; FTO, Fat mass and obesity- 
associated protein; ALKBH5, AlkB homolog 5; ALKBH3, 
AlkB homolog 3; N, Nitrogen; A, Adenine; 3ʹ UTR, 3ʹ 
Untranslated region; MTC, Multicomponent methyltransfer-
ase complex; METTL3, Methyltransferase-like 3; METTL14, Ta
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Methyltransferase-like 14; WTAP, Wilms tumor suppressor- 
1-associated protein; RBM15, RNA Binding Motif Protein 15; 
ZC3H13, Zinc finger CCCH domain-containing protein 13; 
METTL16, Methyltransferase-like 16; METTL5, 
Methyltransferase-like 5; YTHDFs, YTH N6- 
Methyladenosine RNA Binding Proteins; IGF2BPs, Insulin- 
like growth factor 2 mRNA-binding proteins; HNRNPs, 
Heterogeneous nuclear ribonucleoprotein; HP, Helicobacter 
pylori; ALKBH9, alkB homolog 9; GWAS, Genome-Wide 
Association Studies; SNP, Single nucleotide polymorphism; 
AML, Acute Myeloid Leukemia; GC, Gastric cancer; TCGA, 
The Cancer Genome Atlas; GEO, Gene Expression Omnibus; 
IHC, Immunohistochemistry; HCC, Hepatocellular carci-
noma; ICC, Intrahepatic cholangiocarcinoma; CRC, 
Colorectal cancer; PC, Pancreatic cancer; EC, Esophageal 
cancer; hm6A, N6-hydroxymethyladenosine; f6A, N6- 
formyladenosine; CB, Carbon black; Cd, Cadmium; PM, 
Particulate matter; DEHP, Di-(2-Ethylhexyl) phthalate; CSC, 
Cigarette smoke condensate; AFB1, Aflatoxin B1; ROS, 
Reactive oxygen species; TCS, Triclosan; BPA, Bisphenol 
A exposure; DEN, Diethylnitrosam.
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