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Abstract: Despite several recent advances, current therapy and prevention strategies for 
myocardial infarction are far from satisfactory, owing to limitations in their applicability and 
treatment effects. Nanoparticles (NPs) enable the targeted and stable delivery of therapeutic 
compounds, enhance tissue engineering processes, and regulate the behaviour of transplants 
such as stem cells. Thus, NPs may be more effective than other mechanisms, and may 
minimize potential adverse effects. This review provides evidence for the view that function- 
oriented systems are more practical than traditional material-based systems; it also sum-
marizes the latest advances in NP-based strategies for the treatment and prevention of 
myocardial infarction. 
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Introduction
The growing burden of ischemic heart disease (IHD) is a major public health issue. The 
most harmful type of IHD is acute myocardial infarction (MI), which leads to loss of 
tissue and impaired cardiac performance, accounting for two in five deaths in China.1 

Timely revascularization after MI, including percutaneous coronary intervention, 
thrombolytic treatment and bypass surgery, is key to improving cardiac function and 
preventing post-infarction pathophysiological remodeling.2 However, these effective 
but invasive approaches cannot be used in all patients owing to their applicability, 
which is limited based on specific clinical characteristics, and the possibility of severe 
complications such as bleeding and reperfusion injury.2,3 Attempts to limit infarct size 
and improve prognosis using pharmacotherapy (including antiplatelet and antiarrhyth-
mic drugs and angiotensin-converting enzyme inhibitors) without reperfusion has been 
proven generally inefficient, due to non-targeted drug distribution and side effects, and 
short half-life of some drugs.1,3,4 Consequently, many patients in which this approach is 
used still progress to cardiac hypertrophy and heart failure.1 Growth and rupture of 
atherosclerotic plaques and the ensuing thrombosis are the major causes of acute MI.4 

Currently available interventions for atherosclerosis (AS) including statins can reduce 
acute MI, but the effects vary between individuals, and leave significant residual 
risks.5–8 Some chemotherapies, such as docetaxel9 and methotrexate,10,11 also seem 
to have beneficial effects in AS; however, systemic administration of these drugs is 
limited because of their adverse effects.12 The demand for safer and more efficient 
therapies and prevention strategies for MI is therefore increasing.

Several optimized strategies have so far been explored, one of which is the 
application of nanoparticles (NPs). These nanoscale particles have been widely 
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used in the treatment of tumors and neural diseases.13,14 

NPs enable delivery of therapeutic compounds to target 
sites with high spatial and temporal resolution, enhance-
ment of tissue engineering processes and regulation of the 
behaviour of transplants such as stem cells. The applica-
tion of NPs improves the therapeutic effects and mini-
mizes the adverse effects of traditional or novel 
therapies, increasing the likelihood that they can be suc-
cessfully translated to clinical settings.15–18 However, 
research on NPs in this field is still in its infancy.5,19–21 

This review summarizes the latest NP-based strategies for 
managing acute MI, mostly published within the past 7 
years, with a particular focus on effects and mechanisms 

rather than particle types, which have been extensively 
covered in other reviews (Figure 1). In addition, we offer 
an initial viewpoint on the value of function-based systems 
over those based on materials, and discuss future prospects 
in this field.

The Types and Properties of 
Nanoparticles
The Types of Nanoparticles
A multitude of NP types are currently under investigation, 
including lipid-based NPs, polymeric NPs, micelles, inor-
ganic NPs, and exosomes. Virus can also be considered as 
NPs; however they will not be discussed in this review.22 

Figure 1 Overview of nanoparticle-based strategies for the treatment and prevention of myocardial infarction. Nanoparticles are capable of delivering therapeutic agents 
and nucleic acids in a stable and targeted manner, improving the properties of tissue engineering scaffolds, labeling transplanted cells and regulating cell behaviors, thus 
promoting the cardioprotective effects of traditional or novel therapies.
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NPs made from different materials show similar in vivo 
metabolic kinetic characteristics and protective effects on 
infarcted heart.19,20 Function-based NP types, oriented 
towards a specific purpose, may be preferable compared 
with traditional types, on account of their practicality in 
basic research and clinical translation. In this review, we 
discuss NPs used in the treatment and prevention of MI 
that fall into the following four categories: 1) circulation- 
stable nanocarriers (polymeric, lipid or inorganic parti-
cles); 2) targeted delivery vectors (magnetic or particles 
modified to improve target specificity); 3) enhancers of 
tissue engineering; and 4) regulators of cell behavior 
(Figure 1). We propose that the choice of each NP for 
any given application should be primarily based on the 
roles or mechanisms they perform.

Many NPs, whether composed of either naturally 
occurring or synthetic materials, act as nanocarriers to 
improve the circulating stability of therapeutic 
agents.15,16 Polymeric NPs comprise one of the most 
widely employed types, with excellent biocompatibility, 
tunable mechanical properties, and the ability be easily 
modified with therapeutic agents using a broad range of 
chemical techniques.23,24 The most commonly used poly-
mer for these NPs is polylactide-co-glycolide (PLGA), 
which has Food and Drug Administration approval.25,26 

Recently, there has been a therapeutic emphasis on poly-
dopamine (PDA), from which several related nanomater-
ials have been created, including PDA NPs and PDA NP- 
knotted hydrogels.27,28 NPs made from polylactic acid 
(PLA),29,30 poly-ε-caprolactone (PCL),31 polyoxalates,32 

polyacrylonitrile,33 chitosan29,34 and hollow mesoporous 
organosilica35 have also been constructed and adminis-
tered in vitro in cells and in vivo in animal models.

Lipid NPs or liposomes are also considered promising 
candidates for the delivery of therapeutic agents, due to 
their morphology, which is similar to that of cellular 
membranes and ability to carry both lipophilic and hydro-
philic drugs. These non-toxic, non-immunogenic and bio-
degradable amphipathic nanocarriers can be designed to 
reduce capture by reticuloendothelial cells, increase circu-
lation time, and achieve satisfactory targeting.36,37 Solid 
lipid NPs (SLNs) combine the advantages of polymeric 
NPs, fat emulsions, and liposomes, remaining in a solid 
state at room temperature. Active key components of 
SLNs are mainly physiological lipids, dispersed in aqu-
eous solution containing a stabilizer (surfactant).38 

Micelles are made by colloidal aggregation in a solution 
through self-assembly of amphiphilic polymers, or 

a simple lipidic layer of transfer vehicles;39 these have 
been used in cellular and molecular imaging40 and 
treatment41 for a long time.

Inorganic NPs used in basic IHD research are classified as 
metal, metal compounds, carbon,42 or silicon NPs;43 these 
are relatively inert, stable, and biocompatible. Gold (Au),44 

silver (Ag)45 and copper (Cu)46 are commonly used materials 
in their production. These NPs can be delivered orally,47 or 
injected intravenously48 or intraperitoneally.56 However, 
they are more widely used to construct electrically conduc-
tive myocardial scaffolds in tissue engineering.49,50 

Myocardial patches and scaffolds are promising therapeutic 
approaches to repairing heart tissue after IHD; incorporating 
conductive NPs can further improve functionality, introdu-
cing beneficial physical properties and electroconductivity. 
Some organic particles, such as liposomes anchored with 
poly(N-isopropylacrylamide)-based copolymer groups, are 
also suitable for the production of effective nanogels or 
patches for this purpose.37

Several metal compounds have been used for treatment 
of IHD.51–54 The application of magnetic particles made 
from iron oxide has been of particular interest in recent 
research. These NPs are more prone to manipulation with 
an external magnetic field, and thus serve as powerful tools 
for targeted delivery of therapeutics. In addition, modifica-
tion with targeted peptides or antibodies is another approach 
to the construction of targeted delivery systems.

Another strategy to protect cardiac performance after 
MI is the transplantation of cells; however, the beneficial 
effects of this are currently limited.58 Many NPs can 
improve the behavior of cells; in this context, they may 
stimulate cardioprotective potential. In particular, exo-
somes – a major subgroup of extracellular vesicles (EVs) 
with a diameter of 30–150 nm, which are secreted via 
exocytosis55 – represent novel, heterogeneous, biological 
NPs with an endogenous origin. They are able to carry 
a variety of proteins, lipids, nucleic acids, and other bioac-
tive substances.55–57 Mechanistic studies have confirmed 
that exosomes offer a cell-free strategy to rescue ischemic 
cardiomyocytes (CMs).59,60

The Physical Properties and Modifications 
of Nanoparticles
The physical properties of NPs, including size, shape, and 
surface charge, impact on how biological processes behave, 
and consequently, responses in the body.61 The recom-
mended definition of NPs in pharmaceutical technology 
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and biomedicine includes a limitation that more than 50% 
of particles should be in a size distribution range of 10–100 
nm.39 However, this is not strictly distinguished in studies, 
so for the purposes of this review, we have relaxed this 
definition. Small NPs have a faster uptake and processing 
speed and longer blood circulation half-lives than larger 
ones; a decreased surface area results in increased reactivity 
to the microenvironment and greater speed of release of the 
compounds they carry.61–63 However, an exception to this 
principle is that, among particles of less than 50 nm dia-
meter, larger NPs have longer circulatory half-lives.64,65 

NPs can be spherical, discoidal, tubular or dendritic.61,63 

The impact of NP shape on uptake and clearance has also 
been revealed;66,67 for instance, spheres endocytose more 
easily,20 while micelles and filomicelles target aortic macro-
phages, B cells, and natural killer (NK) cells in the immune 
system more effectively than polymersomes.68 In terms of 
charge, cationic NPs are more likely to interact with cells 
than negatively charged or neutral particles because the 
mammalian cell membrane is negatively charged.62 As 
a result, positively charged particles are reported to be 
more likely to destabilize blood cell membranes and cause 
cell lysis.61 Additionally, the rate of drug release is largely 
determined by the diameter of the pore. Motivated by the 
idea, Palma-Chavez et al developed a multistage delivery 
system by encapsulating PLGA NPs in micron-sized PLGA 
outer shells.69

Some types of NPs, such as micelles, possess core– 
shell morphological structures: a core composed of hydro-
phobic block segments is surrounded by hydrophilic poly-
mer blocks in a shell that stabilizes the entire micelle. The 
core provides enough space to accommodate compounds, 
while the shell protects drug molecules from hydrolysis 
and enzymatic degradation.36 Surface chemical composi-
tion largely governs the chemical interactions between 
NPs and molecules in the body. Appropriate surface coat-
ings can create a defensive layer, protect encapsulated 
cargo, and affect biological behaviors. Coating with inert 
polymers like polyethylene glycol (PEG) is the most com-
monly used method, which hinders interactions with pro-
teins, alters the composition of the protein corona, 
attenuate NP recognition by opsonins which tag particles 
for phagocytosis, and extend the half-life of particles.36,70 

Additionally, PEG coating helps the therapeutic agents 
reach ischemic sites, because PEGylated macromolecules 
tend to diffuse in the interstitial space of the heart.71 

Functionalization of gangliosides can further attenuate 
the immunogenicity of PEGylated liposomes without 

damaging therapeutic efficacy.72 Removal of detachable 
PEG conjugates in the microenvironment of the target 
sites improves capture by cells. Wang and colleagues 
synthesized PDA-coated tanshinone IIA NPs by sponta-
neous hydrophobic self-assembly.73 Polyethyleneimine 
(PEI) is capable of condensing nucleic acid and overcom-
ing hamper of cell membrane. Therefore, modification 
with PEI is mainly used for the transport of DNA and 
RNA.74 Of note, despite their inertness, novel NPs com-
posed of metals can also be modified with compounds 
such as PEG, thiols, and disulfides.48,75 Hydrogels mixed 
with peptide-coated Au NPs attain greater viscosity than 
hydrogels mixed with Au NPs.24

Targeted delivery is a primary goal in the development 
of nanocarriers. Passive targeting is based on enhanced 
permeability in ischemic heart tissue, which does not 
meet the needs of clinical application.76 This fact has 
prompted work on targeting agent modification and mag-
netic guidance. Conjugation with specific monoclonal anti-
bodies is a feasible method for delivering drug payloads 
targeted to ischemic lesions. Copper sulfide (CuS) NPs 
coupled to antibodies targeting transient receptor potential 
vanilloid subfamily 1 (TRPV1), permit specific binding to 
vascular smooth muscle cells (SMCs), and can also act as 
a switch for photothermal activation of TRPV1 
signaling.52 In another study conducted by Liu and collea-
gues, two types of antibodies, binding CD63 (expressed on 
the surface of exosomes) or myosin light chain (MLC, 
expressed on injured CMs) are utilized to allow NPs to 
capture exosomes and accumulate in ischemic heart tissue. 
These NPs have a unique structure comprising an ferro-
ferric oxide core and PEG-decorated silica shell, which 
simultaneously enables magnetic manipulation and mole-
cule conjugation via hydrazone bonds.21 Targeted peptides 
such as atrial natriuretic peptide (ANP),43 S2P peptide 
(plague-targeting peptide),77 and stearyl mannose (type 2 
macrophage-targeting ligand)16 allow NPs to precisely 
target atherosclerotic tissue and ischemic heart lesions. 
Modification with EMMPRIN-binding peptide (AP9) has 
been shown to enable more rapid uptake of micelles by 
H9C2 myoblasts and primary CMs and to deliver drug 
payloads targeted to lesions in vivo.78,79 Another strategy 
for targeted nanocarriers is to produce cell mimetic car-
riers. Using the inflammatory response as a marker after 
MI,76 Boada and colleagues synthesized biomimetic NPs 
(leukosomes) by integrating membrane proteins purified 
from activated J774 macrophages into the phospholipid 
bilayer of NPs. Local chronic inflammatory lesions 
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demonstrated overexpression of adhesion molecules, 
which bound leukosomes efficiently.80

The Biocompatibility of Nanoparticles
The biocompatibility of NPs is difficult to predict because 
any interaction with molecules or cells can cause toxic 
effects. Generally, NPs remain in blood, but can also 
extravasate from vasculature with enhanced permeability, 
or accumulate in the mononuclear phagocyte system.81 

Important causes of NP-associated toxicity include: oxida-
tive stress injury and cell apoptosis secondary to the pro-
duction of free radicals, lack of anti-oxidants, phagocytic 
cell responses, and the composition of some types of 
particles.61 Hepatotoxicity, nephrotoxicity and any other 
potential off-target organ damage caused by accumulation 
of particles, especially those with poor degradability and 
slow clearance, are also essential to explore in toxicity 
tests.82 Additionally, the evaluation of evoked immune 
responses according to the expression of inflammatory 
factors and stimulation of leukocytes in cell lines and 
animal models is also important.83

A few studies have reported NP-associated acute and 
chronic hazards in pharmacological applications, although 
some of these observations may be contentious. 
Specifically, aggregation of non-functionalized carbon nano-
tubes (CNTs) has been observed owing to inherent hydro-
phobicity of these particles.61 Aside from inflammation and 
T lymphocyte apoptosis, multi-walled CNTs can rupture cell 
membranes, resulting in macrophage cytotoxic effects.84,85 

Silica NPs induce vascular endothelial dysfunction and pro-
moted the release of proinflammatory and procoagulant fac-
tors, mediated by miR-451a negative regulation of the 
interleukin 6 receptor/signal transducer and activator of tran-
scription/transcription factor (IL6R/STAT/TF) signaling 
pathway.86–88 Metal NPs, such as Au and Ag, can also 
penetrate the cell membrane, increase oxidative stress and 
decrease cell viability.89,90 Consequently, exposure to Au 
may cause nephrotoxicity91 and reversible cardiac 
hypertrophy.92 El-Hussainy and colleagues observed myo-
cardial dysfunction in rats given alumina NPs.93,94 Nemmar 
and colleagues investigated the toxicity of ultrasmall super-
paramagnetic iron oxide nanoparticles (SPIONs) adminis-
tered intravenously, which resulted in cardiac oxidative 
stress and DNA damage as well as thrombosis.95 Cell- 
derived exosomes and a majority of natural polymers are 
considered relatively safe;83 however, Babiker and collea-
gues demonstrated that dendritic polyamidoamine NPs com-
promise recovery from ischemia/reperfusion (I/R) injury in 

isolated rat hearts.96 The effects of degradation byproducts 
are also of concern.83 An advantage of the nanoscale size of 
NPs is that their injection is unlikely to block the microvas-
cular system; however, it remains controversial whether NPs 
give rise to arrhythmias.97 These factors highlight that exam-
ining the biocompatibility of NPs both in vitro and in vivo is 
a vital component of preclinical or clinical research.

NP toxicity depends on many parameters, including 
material composition, coating, size, shape, surface charges 
and concentration.39 For instance, larger particles seem to 
be more favorable from a toxicology standpoint.83 

However, single-walled CNTs are considered more harm-
ful than multi-walled CNTs, due to their smaller size 
resulting in less aggregation and increased uptake by 
macrophages.61 Cationic AuNPs are more toxic compared 
with anionic AuNPs, which appear to be nontoxic.98 

Generally speaking, NP-associated toxicity can be lowered 
by functionalization with nontoxic surface molecules, sta-
bilization and localization in the region of interest by using 
scaffolds.24,99 The toxicity of CNTs mediated by oxidative 
stress and inflammation was reduced using these strategies 
in several studies.24,100 Local application and targeted 
delivery also enabled dose reduction and concurrently 
decreased the incidence of adverse effects. 
Administration of therapeutic agents directly into the 
infarcted or peri-infarcted myocardium is a conventional 
approach with a low risk of inducing embolization.

The Advanced Nanotherapeutic 
Strategies for Myocardial Infarction
The Advanced Drug Delivery 
Nanocarriers
NP is a suitable method for the administration of thera-
peutic agents in terms of the minimization of side effects, 
enhanced stability of cargo, and possibility of controlled 
delivery and release.76 Detailed information on the experi-
mental design and results of the latest studies on the use of 
NPs as therapeutic vectors are provided in Table 1. 
Recently, several drugs approved for clinical use as immu-
nosuppressants have been suggested as potentially effec-
tive cardioprotective agents. For example, NPs containing 
cyclosporine A inhibited apoptosis and inflammation in 
ischemic myocardium by improving mitochondrial 
function.25,101 Commercial methotrexate also showed 
minor cardioprotective effects; additionally, when loaded 
into lipid core NPs, adenosine bioavailability and echocar-
diographic and morphometric results were all improved 
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a rats model of MI.102 Margulis and colleagues developed 
a method to fabricate NPs via a supercritical fluids setup, 
which loaded and transferred celecoxib, a lipophilic non-
steroidal anti-inflammatory drug, into the NPs. These cel-
ecoxib-containing NPs alleviated ejection function damage 
and ventricular dilation by inducing significant levels of 
neovascularization.103 Furthermore, a series of investiga-
tions indicated that drugs used for hypoglycemia (eg pio-
glitazone, exenatide and liraglutide)104–106 and lipid 
lowering (statins)107 attenuate the progression of post-MI 
heart failure, and are therefore also potential therapeutic 
cargoes for NPs in the treatment of MI.

NP systems also offer an alternative method for deli-
vering plant-derived therapeutic agents, most of which 
belong to traditional Chinese medicine. It’s of vital impor-
tance because of the criticization on adverse reactions 
caused by direct injection of such complexes. Cheng and 
colleagues designed a dual-shell polymeric NP as 
a multistage, continuous, targeted vehicle of resveratrol, 
a reactive oxygen species (ROS) scavenger. Due to the 
severe oxide stress in areas of infarction, the proposed 
antioxidant-delivery NPs represent a new method to effec-
tively treat MI. These NPs are modified with two peptides, 
targeting ischemic myocardium and mitochondria, respec-
tively; cardioprotective effects have been confirmed in 
both hypoxia/reoxygenated (H/R) H9C2 cells and I/R 
rats.108 In addition, Dong and colleagues also demon-
strated that puerarin-SLNs produced smaller areas of 
infarction in a MI rat model, evaluated by 2,3,5-triphenyl-
tetrazolium chloride (TTC) staining. These particles were 
modified with cyclic arginyl-glycyl-aspartic acid peptide, 
a specific targeting moiety to αvβ3 integrin receptors, 
which are highly expressed on endothelial cells (ECs) 
during angiogenesis.109 In a recent study, quercetin was 
loaded into mesoporous silica NPs, which enhanced the 
inhibition of cell apoptosis and oxidative stress, improving 
ventricular remodeling and promoting the recovery of 
cardiac function by activating the janus kinase 2 (JAK2)/ 
STAT3 pathway.110 Similarly, curcumin–polymer NPs, 
administered by gavage, improved serum inflammatory 
cytokine levels compared with direct administration of 
curcumin.111

Translation of novel bioactive agents into clinical prac-
tice has been limited, owing to lack of sufficient bioavail-
ability and systemic toxicity.76 Encapsulating small 
molecules such as 3i-1000 (an inhibitor of the GATA4– 
NKX2-5 interaction),43 TAK-242 (inhibitor of toll-like 
receptor 4, TLR4)112 and C143 (inhibitor of ERK1/2)113 PE
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in NPs promotes myocardial repair after MI without the 
risk of uncontrolled and off-target adverse effects. 
Administration of vascular endothelial growth factor 
(VEGF) causes elevated vascular permeability and tissue 
edema. The cardioprotective effects of VEGF-loaded poly-
meric NPs injected either intravenously114 or 
intramyocardially115 eliminated vascular leakage due to 
promotion of lymphangiogenesis. Further studies have 
confirmed these results and add to the evidence that com-
bined delivery of VEGF with other growth factors is 
recommended, since VEGF primarily drives the formation 
of new capillaries.116 Furthermore, in line with previous 
research, similar therapeutic effects have been demon-
strated in studies using polymeric NPs loaded with stromal 
cell derived factor 1 (SDF-1) and insulin-like growth fac-
tor 1 (IGF-1).117,118

We also notice that some novel payloads in NPs-based 
therapy for MI have been studied. For example, deoxyr-
ibozyme-AuNP can silence tumor necrosis factor-α (TNF- 
α).119 A target that is implicated in irreversible heart 
damage after MI; its effects are mediated by free radical 
production, downregulation of contractile proteins, and 
initiation of pro-inflammatory cytokine cascades. 
Mesoporous iron oxide NPs containing the hydrogen sul-
fide donor compound diallyl trisulfide act as a platform for 
the controlled and sustained release of this therapeutic gas 
molecule. The application of these NPs at appropriate 
concentrations, resulted in the preservation of cardiac sys-
tolic performance without any observable detrimental 
effects on homeostasis in vivo.15

With increasing insight into the molecular mechanisms 
of MI, a particular emphasis on gene therapy has emerged. 
Gene expression can be modulated by DNA fragments, 
messenger RNA (mRNA), microRNA (miRNA) and small 
interfering RNA (siRNA), which thus represent new 
approaches for treating ischemia. Currently available 
nucleic acid delivery systems are mainly divided into 
viral and non-viral systems. However, virus-based 
approaches are limited by their potential for uncontrollable 
mutagenesis.36 From a clinical point of view, NP repre-
sents a suitable choice as novel non-viral nucleic acid 
vector, which could feasibly transfect in a stable, targeted, 
and sustained manner (as shown in Table 2).

As a common gene vehicle, plasmids face the risk of 
being destroyed by DNase and immunoreactivity in the 
serum, and transduction in non-target organs.120 A recent 
study by Kim and colleagues aligns with current research 
trends focused on virus-free therapies, in which 

carboxymethylcellulose NPs were designed to transfer 
5-azacytidine to halt proliferation, and deliver plasmid 
DNA containing GATA4, myocyte enhancer factor 2C 
(MEF2C), and TBX5 to induce reprogramming and cardi-
ogenesis of mature normal human dermal fibroblasts.121 In 
a methodological study, lipidoid NPs were used to suc-
cessfully deliver pseudouridine-modified mRNA, encod-
ing enhanced green fluorescent protein.122

MiRNAs act as essential regulators of cellular pro-
cesses through post-transcriptional suppression; increasing 
evidence reveals miRNAs play critical roles in cardiovas-
cular diseases. An miRNA-transferring platform with self- 
accelerating nucleic acid release, containing a heparin core 
and an ethanolamine-modified poly(glycidyl methacrylate) 
shell, has been constructed and used as an efficient vector 
of miR-499, which inhibits cardiomyocyte apoptosis.123 

Intravenous administration of anionic hyaluronan-sulfate 
NPs (mean diameter 130 nm) enable the stable delivery of 
miR-21 mimics, thus modulating the expression of TNFα, 
transforming growth factor (TGF)β, and suppressor of 
cytokine signaling 1 (SOCS1). Consequently, these NPs 
switch the phenotype of macrophages from pro- 
inflammatory to reparative, promote neovascularization 
and reduced collagen deposition.124 Interestingly, silencing 
miR-21 using antagomiR-21a-5p in a nanoparticle formu-
lation has also been shown to reduce expression of pro- 
inflammatory cytokines in vitro, and attenuate inflamma-
tion and fibrosis in mice with autoimmune myocarditis.125 

A number of other potentially therapeutic miRNAs have 
also been successfully transferred to CMs in recent works, 
including miR-146a, miR-146b-5p, miR-181b, miR-199- 
3p, miR-214-3p, miR-194-5p and miR-122-5p.126–128 

Evaluation of angiogenesis, cardiac function, and scar 
size in these studies indicated that injectable miRNA– 
NPs can deliver miRNA to restore injured myocardium 
efficiently and safely. Yang and colleagues developed an 
in vivo miRNA delivery system incorporating a shear- 
thinning hydrogel and NPs characterized by surface pre-
sence of miRNA and cell-penetrating peptide (CPP).126 

Additionally, angiotensin II type 1 receptor-targeting pep-
tide-modified NPs serve as targeted carriers for anti-miR-1 
antisense oligonucleotide, significantly reducing apoptosis 
and infarct size.129

SiRNAs inhibit gene expression by mediating mRNA 
cleavage in a sequence-specific manner, highlighting NP- 
based RNA interference as another viable approach to mod-
ulate cellular phenotype and attenuate cardiac failure. Dosta 
and colleagues demonstrated that poly(β-amino ester) 
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Table 2 NPs-Based Nucleic Acid Delivery Systems for Treatment for MI Reported in the Last 7 Years

Material and 
Modification 
Method

Particle 
Size

Payload Species 
and 
Model

Delivery 
Method

Therapeutic Effects Safety 
in vivo

Ref.

DNA/modRNA delivery system

Epoxide-derived 

lipidoid complex 

(C14-1138)

~155 nm 

diameter

eGFP 

modRNA

Rats, LAD; 

Pigs, 

embolic 
coil after 

balloon 

occlusion

Intramyocardial 

injection; 

ascending aorta 
(pig only)

eGFP expression↑ No obvious 

cytotoxicity

[122]

Bioreducible 
dendrimer 

polymer

HR1 (a 
plasmid)

Rats; I/R 
(LAD for 

30min)

Infarct and peri- 
infarct area 

injection

LVEF, coronary artery stroke 
volume, CO, hemodynamic 

function↑(E); Fibrosis↓

[201]

miRNA delivery system

Heparin@PGEA ~180nm miR-499 (alone 
or with 

pVEGF)

Mice; LAD i.v. LVEF/LVFS/LVIDD/LVIDS 
improvement; Infarct size, fibrosis 

and hypertrophy↓; Angiogenesis↑; 

Apoptosis↓

No 
evidence of 

toxicity

[123]

Hyaluronan-sulfate ~130 nm miR-21 mimic Mice; LCA i.v. LV posterior wall and LV mass; 

Collagen deposition ↓; 
Angiogenesis↑; TNFα↓, TGF-β and 

Socs1↑

[124]

PFBT core with 

a DSPE-PEG shell, 

conjugated with 
CPP

~110nm miR-199a-3p Rats; I/R 

(ligation for 

1h)

Peri-infarct area 

injection; in 

shear-thinning 
hydrogel

EF↑; preserved LVESV; Scar size↓; 

Angiogenesis↑; Proliferation of 

CMs↑; Expression of HIF1α↑

[125]

Poly(amidoamine)- 
histidine

60nm miR-214-3p, 
miR-194-5p, 

antagomiR- 

122-5p

H9c2 and 
primary 

cultured 

CMs

Expression levels of Bax, Bad, 
Caspase 3 and Caspase 9↓; 

Apoptosis↓; Cell viability↑

[127]

siRNA/ antisense oligonucleotide delivery system

Dendrigraft poly- 

L-lysine, decored 

with AT1R- 
targeting peptide, 

and PEGylated

~200nm Anti-miR-1 

antisense 

oligonucleotide

Mice; LAD i.v. Infarct size↓(Masson-Trichrome) [130]

PMSNs, combined 

with PEI

100– 

200nm

CCR2 siRNA Mice; LAD Combined 

therapy: 

intramyocardial 
injection (MSCs) 

and i.v. (NPs)

Infarct size↓; Angiogenesis↑; Ly6C 

high monocytes/CD11b-positive 

monocytes↓

No obvious 

toxicity

[131]

A polymer–lipid 

hybrid material, 

combined with 
PEG–lipid 

conjugates

60–80nm siSdf1, siMcp1 Mice; LCA 

after 10- 

week high- 
fat diet

i.v. Preserved LV anatomy and 

function; Infarct size and fibrosis↓; 

Bone MSCs and leukocytes 
release↑(siSdf1)/↓(siMcp1); 

Inflammation of infarction area↓

[202]

(Continued)
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particles modified by adding lysine-/histidine-oligopeptides 
could represent a system for the transfer of siRNA.130 

Studies have now revealed that chemokine C–C motif 
ligand 2 (CCL2) and its cognate receptor C–C chemokine 
receptor 2 (CCR2) promoted excessive Ly6Chigh inflamma-
tory monocyte infiltration in infarcted area and aggravate 
myocardial injury.131 Photoluminescent mesoporous silicon 
nanoparticles (MSNPs) carrying siCCR2 have been 
reported to improve the effectiveness of transplanted 
mesenchymal stem cells (MSCs) in reducing myocardial 
remodeling after acute MI.131 Targeted transportation and 
enhanced uptake with minimum leakage improved the effi-
ciency of delivery via NPs, significantly outperforming the 
control group. Taken together, these studies demonstrate 
that NPs act as promising drug delivery systems in the 
treatment of MI.

Enhancement of Cardiac Engineering 
Biomaterials by Nanoparticles
Myocardial patches and scaffolds, consisting of either 
bioactive hydrogels or nanofibers, are minimally invasive, 
relatively localized, and targeted approaches to repair the 
heart after IHD. Those biomaterials must have an anisotro-
pic structure, mechanical elasticity, electrical conductivity, 
and the ability to promote ischemic heart repair.132 

A variety of NPs have been applied in this field, among 
which inorganic NPs have been the focus of most research 

efforts.42 These investigations of inorganic NPs can be 
divided into four categories based on their effects and the 
mechanisms involved, which are described in this section.

NPs enhance physical properties and electroconductiv-
ity, which is essential for the biomaterials to properly 
accommodate cardiac cells and subsequently resulted in 
cell retention, cell-cell coupling and robust synchronized 
beating behavior. CNTs are able to increase the required 
physical properties of scaffolds, such as maximum load, 
elastic modulus, and toughness.133,134 Gelatin methacry-
late (GelMA) also has decreased impedance, hydrogel 
swelling ratio, and pore diameter, as well as increased 
Young’s modulus when combined with gold nanorods 
(AuNRs).135 Given this insight, highly electroconductive 
NPs have been increasingly investigated.34,99 Specifically, 
Ahadian and colleagues revealed that a higher integrated 
CNT concentration in gels resulted in greater 
conductivity.136 Zhou and colleagues verified the therapeu-
tic effects of patches incorporating single-walled CNT for 
myocardial ischemia, which halted progressive cardiac 
dysfunction and regenerated the infarcted 
myocardium.137 Spherical AuNPs have also been shown 
to increase the conductivity of chitosan hydrogels in 
a concentration-dependent manner.138 Interestingly, silicon 
NPs mimic the effects of AuNRs without affecting con-
ductivity or stiffness, as reported by Navaei and 
colleagues.139

Table 2 (Continued). 

Material and 
Modification 
Method

Particle 
Size

Payload Species 
and 
Model

Delivery 
Method

Therapeutic Effects Safety 
in vivo

Ref.

Lipidoid NPs 50nm CRMP2 siRNA ApoE-/- 
mice; LCA

i.v. M2 polarization↑; Inflammation, 
infarct size and fibrosis↓;(Masson’s 

trichrome) 

Post-MI heart failure and 
mortality↓

[203]

Lipidoid NPs IFR5 siRNA ApoE-/- 
mice; LCA

i.v. MMP9/TIMP1↓; healing ↑; HF↓ [204]

Arginine- 
terminated 

generation 4 

poly(amidoamine) 
(Arg-G4)

152.2 
±18.5 nm

PHD2 siRNA Mice; LCA Intramyocardial 
injection of Arg- 

G4-siRNA 

transfected 
MSCs

LVEF and LVFS; Infarct area↓; 
Survival↑

[205]

Abbreviations: eGFP, enhanced green fluorescent protein; PGEA, ethanolamine-modified poly(glycidyl methacrylate); PFBT, poly(9,9-dioctylfluorene-alt-benzothia-diazole); 
DSPE, 1.2-distearoyl-sn-glycero-3-phosphoethanolamine; CPP, cell-penetrating peptide; PMSNs, photoluminescent mesoporous silicon nanoparticles; PEI, polyethylenimine; 
MSC, mesenchymal stem cell; AT1R, angiotensin II type 1 receptors; Sdf1, stromal-derived factor 1; CRMP, collapsin response mediator protein; HR1, human Relaxin- 
expressing plasmid DNA with hypoxia response element 12 copies; IRF5, interferon regulatory factor 5; CO, cardiac output.
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Several studies demonstrate the effects of CNT on CM 
functions. When CMs are cultured on multi-walled CNT 
substrates or treated with CNT-integrated patches, these 
cells show spontaneous electrical activity.34,99,140 Brisa 
and colleagues functionalized reverse thermal gels with 
AuNPs, investigating the phenotype of CMs in vitro; the 
growth of cells with a CM phenotype was observed, along 
with gap junction formation.141 CMs exposed to AuNR- 
containing GelMa show higher affinity, leading to packed 
and uniform tissue structure.135 These conductive scaf-
folds also facilitate the robustness and synchrony of spon-
taneous beating in CMs without damaging their viability 
and metabolic activity.

Combined incorporation of inorganic NPs and cells 
represents a feasible strategy to promote therapeutic 
effects. Despite some reports on the cytotoxicity of 
Au,89,90 no significant loss of viability, metabolism, migra-
tion, or proliferation of MSCs in scaffolds containing 
AuNP is reported. A CNT-embedded, electrospun chito-
san/polyvinyl alcohol mesh is reported to promote the 
differentiation of MSCs to CMs.142 In another approach, 
Baei and colleagues added AuNPs to chitosan thermosen-
sitive hydrogels seeded with MSCs.138 There was 
a significant increase in expression of early and mature 
cardiac markers, indicating enhanced cardiomyogenic dif-
ferentiation of MSCs compared to the matrix alone, while 
no difference in growth was observed. Gao et al created 
a fibrin scaffold, in which cells and AuNPs were sus-
pended simultaneously; these bioactive patches were 
shown to promote left ventricular function and decrease 
infarct size and apoptosis in the periscar boarder zone 
myocardium in swine models of acute MI.97 These studies 
of AuNP-containing scaffolds demonstrated reduced 
infarct and fibrotic size, as well as facilitated angiogenesis 
and cardiac function, which can be attributed at least in 
part to the enhanced expression of connexin 43 and atrial 
natriuretic peptide, and activation of the integrin-linked 
kinase(ILK)/serine-threonine kinase (p-AKT)/GATA4 
pathway.49,143,144 Scaffolds containing Ag NPs evoke M2 
polarization of macrophages in vitro;145 which may also 
play a role in cardioprotective action because M2 macro-
phages are capable of promoting cardiac recovery via the 
secretion of anti-inflammatory cytokines, collagen deposi-
tion, and neovascularization.146

Similarly, CNT also act synergically with poly 
(N-isopropylacrylamide) scaffolds containing adipose- 
derived stem cells;147 significant improvement of cardiac 
function and increased implantation and proliferation of 

stem cells has been observed with these scaffolds, com-
pared with scaffolds without CNT.147 Selenium NPs148 

and titania NPs53 have been shown to improve the 
mechanical and conductive properties of chitosan patches, 
promoting their ability to support proliferation and the 
synchronous activity of cells growing on these patches.

Mounting evidence demonstrates the unique benefits of 
using cardiac scaffolds with magnetic NPs such as 
SPIONs; these benefits include, but are not limited to, 
significant improvements in cell proliferation149 and 
assembly of electrochemical junctions.150 Given that mag-
netic manipulation enhances the therapeutic efficacy of 
iron oxide NPs in cardiac scaffolds, Chouhan and collea-
gues designed a magnetic actuator device by incorporating 
magnetic iron oxide NPs (MIONs) in silk nanofibers; this 
resulted in more controlled drug release properties, as well 
as the promotion of proliferation and maturation in 
CMs.151 Magnetic NPs can be used to label induced plur-
ipotent stem cell (iPSC)-derived CMs via conjugation with 
antibodies against signal-regulatory protein α. Zwi-Dantsis 
and colleagues reported the construction of tailored car-
diac tissue microstructures, achieved by orienting MION- 
labelled cells along the applied field to impart different 
shapes without any mechanical support.152 However, the 
interactions between and effects of NPs and cells in scaf-
folds, and the cardioprotective efficacy of patches in which 
NP-labelled cells are suspended, require further 
elucidation.

Polymeric nanomaterials have also been investigated in 
the context of cardiac bioengineering materials; for 
instance, water-swollen polymer NPs have been used to 
prepare nanogels. With a 3D structure containing cross- 
linked biopolymer networks, nanogels can encapsulate, 
protect, and deliver various agents.83,153 PDA-coated tan-
shinone IIA NPs suspended in a ROS-sensitive, injectable 
hydrogel via PDA-thiol bonds significantly improved car-
diac performance, accompanied by inhibition of the 
expression of inflammation factors in rat model.73 After 
implanting cryogel patches consisting of GelMa and 
linked conductive polypyrrole NPs154 or scaffolds of elec-
trospun GelMA/polycaprolactone with GelMA- 
polypyrrole NPs,155 left ventricular (LV) ejection fraction 
(EF) has been shown to increase, with a concurrent 
decrease in infarct size, in MI animal models.

Combined Nanoparticle–Cell Strategies
Progenitor or stem cell-based therapy in the form of injec-
tions and engineered cardiac patches, discussed in the 
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previous section, has been recognized as a promising strat-
egy to improve the cardiac niche and ameliorate adverse 
remodeling processes and fibrosis after acute MI.56,156,157 

However, poor survival and low engraftment rates for 
transplanted cells are still major challenges in this 
field.157 Among possible optimization strategies, combin-
ing NPs with stem cell therapy is of great interest 
(Table 3).

Accumulating evidence has shown two main mechan-
isms for NP-loaded cell therapy in the context of MI treat-
ment. Firstly, various NP types could efficiently improve 
survival and cell proliferation, modulating differentiation of 
implanted cells in the ischemic microenvironment.62,158 

Specifically, electrically driven nanomanipulators could 
guide cardiomyogenic differentiation of MSCs: in 
a previous study, electroactuated gold NPs were admini-
strated with pulsed electric field stimulation, and tube-like 
morphological alterations were observed, along with upre-
gulation of cardiac specific markers.143 Adipose-derived 
stem cells that load PLGA-simvastatin NPs promoted dif-
ferentiation of these cells into SMCs and ECs, and had 
cardioprotective effects in a mouse model of MI induced 
by left anterior descending ligation.17 Secondly, engraft-
ment rate is another important factor affecting treatment 
efficacy in this context.159 Zhang and colleagues designed 
silica-coated, MION-labelled endothelial progenitor cells; 
intravenous administration of these cells in a rat model of 
MI significantly improved cardiac performance, as indicated 
by echocardiogram, morphological, and histological evi-
dence, and neovascularization. This indicates magnetic gui-
dance may potentially address the problem of low levels of 
stem cell retention, which has typically been observed.51 In 
particular, NPs can link the therapeutic cells to injured 
CMs, thereby promoting cell anchorage and engraftment. 
To this end, Cheng and colleagues established a magnetic, 
bifunctional cell connector by conjugating NPs with two 
antibodies: one against cell determinant (CD)45, which is 
expressed on bone marrow-derived stem cells, and one 
against MLC. The magnetic core of this NP also enabled 
physical enrichment in ischemic heart tissue using external 
magnets.160 More than one mechanism may be involved in 
a study. Chen and colleagues fabricated a sustained release 
carrier of insulin-like growth factor (IGF), a pro-survival 
agent, via in situ growth of Fe3O4 NPs on MSNPs. In this 
study, the NPs promoted both the survival and retention of 
MSCs, and intramyocardial injection of the NP-labeled 
MSCs was able to ameliorate functional and histological 
damage without any obvious toxicity in vivo.161 However, 

SPION labeling does not seem to improve therapeutic effi-
ciency, as demonstrated by Wang and colleagues in a study 
using hypoxia-preconditioned SPION-labeled adipose- 
derived stem cells (ASCs).162

Application of Exosomes in MI Treatment
Primary criticisms of cell-based therapies include their 
potential immunogenicity, arrhythmogenicity and tumori-
genicity. It is widely accepted that the beneficial effects of 
cell-based therapy are mainly attributable to paracrine effects 
rather than directly replenishing lost CMs;56 researchers are 
therefore investigating of cell-free approaches. Exosomes 
have attractive properties including stable transport, homing 
to target tissues or cells, and penetration of biological bar-
riers, as well as being more biocompatible with lower immu-
nogenicity than cell-based approaches. Interestingly, post-MI 
circulating exosomes serve as important cardioprotective 
messengers.163,164 Manipulating their biodistribution has 
proven to be a viable strategy to reduce infarct size, promot-
ing angiogenesis and ejection functions.21 However, from 
a therapeutic standpoint, the lack of control over endogenous 
exosome production and cargo encapsulation limits the use 
of this naturally-present mechanism for therapeutic enhance-
ment. The low purity and weak targeting of natural exosomes 
are two further obstacles to overcome before clinical applica-
tion. Strategies to address these include finding robust 
sources; optimized isolation methods for higher yields, effi-
ciency and purity; and improving therapeutic payloads. 
These have been systematically summarized in other 
reviews.165–167

Nanoparticle-Based Prevention 
Strategies for Myocardial Infarction
AS is considered a low-grade, chronic inflammatory dis-
ease, characterized by accumulation and deposition of 
cholesterol in arteries, as well as remodeling of the extra-
cellular matrix in the intima and inner media.12,168 

Inflammation of ECs, proliferation of SMCs, and recruit-
ment of monocytes and macrophages play a critical role in 
the development of AS. NPs allow for the packaging of 
large amounts of therapeutic compounds in a compact 
nanostructure, specifically targeting pathological mechan-
isms and attenuating atherogenesis. Optimization of the 
loaded drug and NP target together lead to enhanced 
efficacy while minimizing side effects.169 In this section, 
we summarize recent breakthroughs in the order of patho-
logical progression, as shown in Table 4.
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Table 4 NPs-Based Preventive Strategies for MI Reported in the Last 7 Years

Materials and 
Modifications

Particle 
Size

Payload Species and Model Therapeutic and Preventive 
Effects

Safety Ref.

Primary prevention

PLA ~279nm (by 
SEM)

Aliskiren Spontaneously 
hypertensive rats

BP↓; vasoactivity of mesenteric 
artery 

Collagen content in the aorta↓; 

Fibrosis of aortic tunica media↑ 
LV total NOS and neuronal 

NOS↑; endothelial NOS↓

[29]

Biscarbamate- 

crosslinked Gal-PEG 
-PEI NPs

AGT shRNA Spontaneously 

hypertensive rats

BP↓; 

Heart hypertrophy↓; Myocardial 
ultrastructure improvement

[172]

PLGA Propylene 
glycol alginate 

sodium sulfate

Rats; 8-week 
streptozotocin 

induced diabetic 

cardiomyopathy

LVEF, FS↑; LVISD, LVIDD↓ 
Myocardial morphology↑ 
Coronary microcirculation↑ 
Plasminogen activator inhibitor- 
1 expression in CMs↓; TNF-α, 

IL-1β, IL-6↓; NF-κb and AGEs/ 

RAGE pathway↓; serum SOD 
and GSH↑

[210]

Hyaluronic Acid Curcumin Hypertensive, 
heterozygous rats

BP↓ [211]

Lipid NPs 65~75nm ApoB siRNA Lean rhesus macaque LP(a) ↓ [212]

SLNs 180–220 nm Candesartan 

cilexetil

Rats; oral fructose 

solution

BP↓; bioavailability↑ [213]

Avoiding AS development

Lipid mixture 60nm Docetaxel Rabbits; 8-week high- 

cholesterol diet

Atheroma area↓; levels of 

caspase 3, caspase 9, Bax, Bcl-2, 

MMP-2, MMP-9, TGF-β, NF-κB, 
TNF-α, IL-1β, IL-6, PCNA, vWF, 

collagen 1 and 3 in the aortic 

arch↓

No obvious 

toxicity

[9]

Leukosomes 

(liposome); 
Fabricated with 

membrane proteins 

of macrophages

108±2.3 nm Rapamycin Mice; 12-week high-fat 

diet

Plaque burden↓; proliferating 

macrophages in the aorta↓; 
MCP-1, IL-b1, MMP↓

Good 

tolerance

[90]

PEGylated SWNTs 5–6 nm SHP1i ApoE-/- mice; 

subcutaneous 
angiotensin II–infusing 

minipumps or 11- 

week high-fat diet

Plaque burden↓; lesional 

phagocytosis↑; inflammatory 
genes in lesional macrophages↓

Favorable 

safety profile

[177]

rHDL TRAF-STOPs ApoE-/- mice Atherosclerotic plaques↓; 

leukocyte recruitment↓; 
Macrophages activation↓

No 

hepatotoxicity 
or functional 

hyposplenism

[178]

(Continued)
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Table 4 (Continued). 

Materials and 
Modifications

Particle 
Size

Payload Species and Model Therapeutic and Preventive 
Effects

Safety Ref.

PEI ~45nm ICAM1, 

ICAM2, 
VCAM1, Sel- 

E, Sel-P 

siRNAs

ApoE-/- mice; high- 

cholesterol diet and I/ 
R injury (LAD for 

45min)

Neutrophil and monocyte 

recruitment↓, matrix-degrading 
plaque protease activity↓

[187]

PLGA 214.3±0.6nm 

(SRM-NP); 
216.9±0.6nm 

(PTX-NP)

Sirolimus 

(SRM-NP) or 
paclitaxel 

(PTX-NP)

Mini-pigs; temporary 

carotid closure and 
balloon angioplasty

Vascular stenosis and 

expression of PCNA↓, 
glycolysis and expression of 

HIF-1α in hypoxic ECs and 

SMCs↓

[214]

Lipid mixture 53.9–95.9nm Curcumin Rats; temporary 

carotid closure and 
balloon angioplasty

Neointimal formation↓; [215]

PLGA (SPN) or 
liposome (LIP)

208±2nm 
(SPN); 174 

±2nm (LIP)

Methotrexate Mice; 28-day high-fat 
diet

Intracellular lipids and oxidized 
LDL↓; RANTES, IL-1β, TNFα↓; 

IL-1α↑

[216]

PEG and sebacic 

acid

~100nm D-PDMP Mice; 8-week high-fat 

and cholesterol diet

AS plaque buildup, cholesterol 

ester crystal deposits, and 

fibrosis↓; FS↑ and cardiac 
hypertrophy↓ 
Oxidized LDL↓; changes of 

levels of genes associated with 
triglyceride metabolism

[217]

Lipid NPs 45 to 60 nm 
(Ref. 219)

Methotrexate 
or paclitaxel

Rabbits; high- 
cholesterol diet (with 

heterotopic heart 

transplantation and 
CsA administration in 

Ref. 218)

Coronary stenosis, 
macrophages infiltration↓; gene 

expression of TNFα, MCP1, IL- 

18, VCAM1, and MMP12↓; 
expression of IL-10 ↑; 

Macroscopic atheroma plaque 

area↓

[218,219]

Lipid NPs 60 nm Carmustine Rabbits; 8-week 

cholesterol diet

Lesion areas↓ 
Macrophages, FOXP3, IL-1β, 
LDL-R↓

[220]

Avoiding plaque rupture and thrombosis

PEG/PEI (Loaded 

into an E-selectin- 
targeting multistage 

microparticles)

miR-146a, 

miR-181b

ApoE-/- mice; 12- 

week western diet

Plaque size↓; Stabilization↑ [126]

Perfluorocarbon 

and excipient 
combined with 

alpha(nu)beta(3)- 

integrin antagonist

Fumagillin Hyperlipidemic 

rabbits; 100-day 
cholesterol diet

Acute antiangiogenic effects [182]

(Continued)
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Primary prevention refers to control of the risk factors 
of AS, one of which is hypertension.170 PLA NPs have 
been shown to improve the efficacy of aliskiren, the first 
oral direct renin inhibitor and the first in a new class of 
antihypertensive agents.29 Encapsulation in nanocarriers 
also renders the application of anandamide viable, which 
was once limited; recent research revealed that this new 
therapy could lower blood pressure and LV mass index in 
rats.171 Similar results were observed in a study in which 
angiotensinogen was silenced using small hairpin RNA.172 

NPs may also help to make more anti-hypertensive drugs 
available, reduce side effects such as asthma, and lessen 
the effective dosage by providing sustained drug release 
over time. The link between AS and diabetes mellitus, 
which describes a group of metabolic disorders, has also 
been investigated in numerous studies.173 Possible 
mechanisms include oxidative stress, altered protein 
kinase signaling, and epigenetic modifications. Cetin and 
colleagues successfully constructed NP-based drug deliv-
ery systems for the administration of metformin, an oral 
antihyperglycemic agent with low oral bioavailability and 
short biological half-life.174 NPs are also promising tools 
for improving the oral bioavailability of insulin, which is 
of great interest because oral insulin will significantly 
increase patients’ compliance.175,176

The inflammatory hypothesis of AS is now widely 
established, making selective targeting and accumulation 

of NPs in inflammatory lesions attractive therapeutic stra-
tegies. Targeting macrophages in apoE-/- mice has been 
shown to result in decreased phagocytosis and suppression 
of inflammatory genes in lesional macrophages, thus les-
sening burden of atherosclerotic plaques.177 Tom and col-
leagues used NPs consisting of high-density lipoprotein 
(HDL), a known atheroprotective bionanomaterial, as car-
riers for TNF receptor-associated factor in mice, and 
observed reductions in both leukocyte recruitment and 
macrophage activation.178 Both single-walled CNT and 
HDL-NPs have a favorable safety profile. In 
a pathological context, activated endothelial tissue 
expresses more adhesion molecules, such as selectins, 
than usual. These molecules are thus potential targets for 
cardiovascular nanomedicine. Glycoprotein Ib (GPIb)179 

and biotinylated Sialyl Lewis A (sLeA)69 specifically 
bind to selectins, leading to the accumulation of conju-
gated NPs in injured vessels; an in vitro study demon-
strated that GPIb-conjugated NPs could bind to target 
surfaces, where they were taken up by activated ECs 
under shear stress conditions. In another study, Sager and 
colleagues simultaneously inhibited five adhesion mole-
cules associated with leukocyte recruitment in post-MI 
apoE-/- mice. Inflammation in plaque and ischemic heart, 
rendering acute coronary events and post-MI complica-
tions less likely to occur.180 However, targeting inflamma-
tory process may have heterogeneous effects in humans 

Table 4 (Continued). 

Materials and 
Modifications

Particle 
Size

Payload Species and Model Therapeutic and Preventive 
Effects

Safety Ref.

Albumin (linked to 

microbubbles)

~225.6nm t-PA plasmid Dogs; coronary 

bypass using the 
autoallergic saphenous 

vein

Thrombotic rate↓; Intimal 

thickness and proliferation of 
SMCs↓; t-PA and D-dimer 

contents in blood↑

[183]

Amphipathic, 

cationic peptide

~55nm JNK siRNA Mice; 14-week 

western diet

Barrier permeability and 

disruption↓; Foam cell 

formation, plaque necrotic area 
and Macrophages↓; Thrombotic 

risk↓; NF-κB and STAT3 

expression↓

No toxicity 

in vivo

[184]

PEGylated and 

cRGD-coated 
liposomes

164.6±5.3 

nm

t-PA In vitro Affinity↑; Fibrin clot lysis↑ [221]

Abbreviations: SEM, scanning electron microscope; NOS, nitric oxide synthase activity; AGT, angiotensinogen; GSH, glutathione; LP(A), lipoprotein(A); PCNA, 
proliferating cell nuclear antigen; vWF, von Willebrand factor; SWNTs, single-walled carbon nanotubes; SHP1i, SH2 domain-containing phosphatase-1 inhibitor; rHDL, 
recombinant high-density lipoprotein; TRAF-STOPs, tumor necrosis factor receptor associated factor (TRAF) 6; ICAM, intercellular cell adhesion molecule; VCAM, vascular 
cellular adhesion molecule; Sel, selectin; D-PDMP, D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol; LDE, lipid nanoparticle; cRGD, cyclic arginine-glycine- 
aspartic acid.
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because the targeting moieties and target receptors may be 
overexpressed in several different pathologic conditions in 
addition to AS. Oxidation is another factor involved in the 
development of AS. Upregulation of endothelial nitric 
oxide synthase (eNOS) leads to vascular construction and 
other AS-promoting effects. Pechanova and colleagues 
observed that the application of PLA NPs resulted in 
larger decreases in NOS than direct administration.29

Aside from these processes, avoiding plaque rupture and 
thrombosis could be another therapeutic aim. Nakashiro and 
colleagues showed that delivering pioglitazone via NPs 
inhibited plaque rupture in apoE-/- mice.181 The integrin 
ανβ3 is upregulated in angiogenic vasculature, which is 
ubiquitous in plaque ruptures, which may lead to MI.182 

ανβ3 integrin-targeted NPs provide a site-specific drug deliv-
ery platform that has been shown to successfully stabilize 
plaques in rabbits.182 Ji and colleagues used NPs composed 
of albumin with an average diameter of 225.6 nm to deliver 
a plasmid containing the tissue-type plasminogen activator 
gene (t-PA); this system plays a role in preventing thrombosis 
in addition to attenuating intimal thickness and proliferation 
of vascular SMCs.183 NPs consisting of engineered amphi-
pathic cationic peptide and serine/threonine protein kinase 
JNK2 siRNA also reduces thrombotic risk, plaque necrotic 
area, and vascular barrier disorder in mice given the equiva-
lent of a 14-week western diet.184

The Future Prospects
Innovation and development of therapies based on NPs in 
recent years has led to significant advances towards com-
plete repair of the injured myocardium following acute 
MI. Nevertheless, developing clinically relevant solutions 
remains difficult for several reasons. Firstly, as shown in 
tables, there is little consistency among studies regarding 
the characteristics of NPs, their payloads, and their meth-
ods of administration, as well as methods used for evalu-
ating cardiac repair. It can be difficult to control 
characteristics such as the size of the synthesized particles 
in a narrow range, even within single studies. Such sig-
nificant heterogeneity can lead to differences in observed 
results in repeated experiments, or under different condi-
tions. Secondly, although many studies have focused on 
the health effects of unintentional exposure to NPs by 
inhalation or ingestion,185,186 most of the studies on med-
ical applications of NPs have not reported on toxicity of 
NP systems until recently.73 Remarkably, there has not 
been a consensus on NP-associated adverse effects in 

existing reports, making assessments of biocompatibility 
a priority for NP characterization.

NPs have emerged as a powerful tool for controlling cell 
signaling pathways in regenerative strategies using novel 
therapeutics and drugs that are unsuitable for direct adminis-
tration. One advantage of the application of NP systems is the 
ability to release the drug payload or regulate gene expression 
in a stable and controlled manner. Therefore, many otherwise 
serious side effects, such as sudden arrhythmic deaths result-
ing from persistent and uncontrolled expression of miRNA 
by viral vectors, may be completely avoided.187 More 
research is required to develop stable and efficient methods 
of NP production, improve encapsulation efficiency of drugs, 
and achieve satisfactory targeting. In particular, a greater 
focus on investigating NP-based switches, including optical, 
electrical and magnetic methods, has enabled the regulation 
of cell signaling, exemplified by the development of a CuS 
NP-based photothermal switch.52 Optimizing tissue engi-
neering scaffolds containing conductive NPs is a promising 
strategy for the protection of the myocardium after ischemia 
by mimicking the myocardial extracellular matrix. 
Improvements in understanding of cardiac repair mechan-
isms, and how these biomaterials may interfere with them, 
is therefore urgently needed. Furthermore, heart repair is 
complex and involves many processes, including apoptosis, 
angiogenesis, inflammatory infiltration, and fibrosis. 
Therefore, novel treatments should be designed using NP- 
based integrative strategies based on these multiple different 
mechanisms. However, it’s important to highlight that syner-
gistic effects of different drug payloads, NPs, and NP–cell 
combined strategies should be addressed, as not all may be 
compatible with one another. Future research should focus on 
these aspects to translate NP-based therapeutic strategies for 
MI into practical and effective clinical use.
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