
R E V I E W

The Evolving Role of FGFR2 Inhibitors in Intrahepatic 
Cholangiocarcinoma: From Molecular Biology to 
Clinical Targeting

Massimiliano Salati1,2 

Francesco Caputo1 

Cinzia Baldessari1 

Pietro Carotenuto 3 

Marco Messina4 

Stefania Caramaschi5 

Massimo Dominici 1 

Luca Reggiani Bonetti5

1Department of Oncology and 
Hematology, University Hospital of 
Modena, Modena, Italy; 2PhD Program 
Clinical and Experimental Medicine, 
University of Modena and Reggio Emilia, 
Modena, Italy; 3Department of Genomics, 
Telethon Institute of Genetics and Medicine 
(TIGEM), Naples, Italy; 4Department of 
Oncology, Fondazione Istituto G. Giglio, 
Cefalu, Italy; 5Department of Medical and 
Surgical Sciences for Children and Adults, 
University of Modena and Reggio Emilia – 
AOU Policlinico of Modena, Modena, Italy 

Abstract: Intrahepatic cholangiocarcinoma (iCCA) is an anatomically and biologically 
distinct entity with a rising incidence and a poor prognosis on conventional treatments. 
Surgery followed by adjuvant chemotherapy is a potentially curative option in resectable 
cases, while palliative-intent chemotherapy is the standard-of-care in the advanced setting. 
Technological advances through massive parallel sequencing have enabled a deeper under-
standing of disease biology with the identification of several druggable molecular vulner-
abilities in nearly 50% of cases. Among them, gene fusions involving the fibroblast growth 
factor receptor 2 (FGFR2) are the most therapeutically exploited so far with a number of 
Phase II clinical trials investigating FGFR2 inhibitors showing unprecedented efficacy results 
in this molecular subgroup. Over the last year, these efforts have culminated in the US FDA- 
approval of pemigatinib and infigratinib, the first two oral selective FGFR2 targeted agents 
for previously treated, locally advanced or metastatic iCCA driven by FGFR2 fusion or 
rearrangements. While first-line Phase III trials are currently underway to test these targeted 
approach against standard-of-care chemotherapy, translational studies are trying to better 
understand primary and secondary resistance mechanisms in order to optimize FGFR2 
blockade in iCCA. In this article, we extensively reviewed the current evidence on the 
biological rationale, as well as preclinical and clinical development of FGFR inhibitors in 
iCCA. 
Keywords: biliary cancer, cholangiocarcinoma, intrahepatic, FGFR2, targeted therapy, 
precision medicine

Introduction
Cholangiocarcinoma (CCA) is a relatively rare and highly heterogenous hepatobili-
ary malignancy that can be anatomically subdivided into intrahepatic CCA (iCCA), 
perihilar CCA (pCCA), and distal CCA (dCCA).1,2 Among them, iCCA, arising 
from the small bile ducts proximal to the second-order ones, usually presents as an 
intrahepatic tumor mass which is an incidental finding in 20–25% of cases. In the 
last decades, its incidence is increasing globally both in Eastern and Western 
countries. Well-established risk factors for iCCA include inflammatory biliary 
tract diseases, cirrhosis, obesity-associated liver disease, hepatolithiasis and liver 
fluke infestations.3,4 Unfortunately, the diagnosis usually occurs late in the course 
of disease and the prognosis remains poor. The standard of care for the early stage 
disease is represented by curative-intent surgery followed by adjuvant capecitabine. 
Nonetheless, relapse rates are in the ranges of 60–70% and roughly two-thirds of 
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cases display unresectable advanced disease at presenta-
tion. Combination chemotherapy in the form of cisplatin/ 
gemcitabine and mFOLFOX6 (5-fluorouracil, folinic acid, 
oxaliplatin) regimen are evidence-based treatments for the 
first- and second-line setting, respectively,5–7 though the 
overall survival (OS) hardly exceeds 12 months.

Poorly studied and poorly understood for decades, 
CCA is now gaining momentum as a molecularly distinct 
entity with a variety of genetic aberrations implicated in 
cholangiocarcinogenesis and progression with translational 
relevance. The discovery that some of them can be ther-
apeutically targeted with several compounds under clinical 
development has opened new avenues for precision med-
icine in this rare and hard-to-treat cancer. To this end, 
FGFR2 fusions present in 11–45% of patients affected by 
iCCA are being clinically validated in phase II and cur-
rently ongoing phase III trials.8,9 Following positive 
results coming from them, in the last year, the oral 
FGFR inhibitors pemigatinib and infigratinib have been 
granted United States Food and Drug Administration 
approval, for patients with previously treated iCCA har-
bouring FGFR2 gene fusions, making them the first tar-
geted agents ever approved for biliary cancers.

In this article, we discuss the biological rationale for 
FGFR2 targeting, thoroughly review the preclinical and 
clinical development of FGFR2 inhibitors, and provide 
an overview of future perspectives in FGFR2-driven 
iCCA.

The Molecular Landscape of 
Cholangiocarcinoma
In the last few years, massive profiling studies enabled by 
the advent of next-generation sequencing technologies, 
have started disentangling the complex molecular land-
scape of CCA, thus shedding initial light on mechanisms 
underpinning cholangiocarcinogenesis and putative thera-
peutic targets.10–12 To this end, compelling evidence 
showed that the most frequently deregulated oncogenic 
networks in CCA comprise DNA repair (TP53), the WNT- 
CTNNBQ1 pathway, Notch signaling, protein kinase sig-
naling (KRAS, BRAF, SMAD4, and FGFR2), protein 
tyrosine phosphatase (PTPN3), chromatin-remodeling fac-
tors (MLL3, ARID1A, PBRM1 and BAP1) and epigenetic 
modifiers (IDH1 and IDH2).13

In accordance with the clinical behaviour of CCA, 
substantial heterogeneity is also evident at molecular 
level with specific aberrations segregating with the subsite 

of the tumour: KRAS mutations and erbB-2 (ERBB2) 
gene amplification are more common in eCCA, while 
FGFR2 gene fusions and IDH1 mutations occur nearly 
exclusively in iCCA.14

Moreover, CCA displays genomic diversity according to 
the predisposing risk factor as shown by the higher muta-
tional burden and the enrichment for ERBB2 amplification 
and TP53 mutations in liver fluke–associated tumors. 
Contrariwise, non-liver fluke-associated CCA has been asso-
ciated with high copy-number aberrations, PD-1/PD-L1 
expression, epigenetic mutations involving IDH1/2 and 
BAP-1, and FGFR/PRKA-related gene rearrangement.15

Similarly, distinct gene expression signature and epi-
genetic profiles have been identified in patients with an 
underlying history of primary sclerosing cholangitis.16 

A further level of complexity was added by the attempt 
to overcome this considerable molecular heterogeneity 
through integrative multiplatform analysis efforts. As 
such, the International Cancer Genome Consortium was 
able to molecularly subtype 489 cases from 10 different 
countries in four different subsets (clusters 1 to 4), each 
characterized by peculiar genomic, epigenomic, and clin-
ico-pathological features and a different prognosis.17

Despite this molecular complexity, recurring driver 
aberrations amenable to therapeutic targeting have been 
identified that are mutually exclusive from one another. 
Most frequently occurring targetable alterations in CCA 
include IDH1 mutations (20–25%), FGFR2 fusions (10– 
16%), microsatellite instability (1%), and NTRK fusions 
(<1%).14 Among them, the targeting of FGFR2 inhibition, 
which is the focus of the current review, has been the most 
extensively and successfully attempted so far.

The FGFR Signalling Pathway and 
Its Role in Cholangiocarcinoma
The FGFRs are membrane-bound receptor tyrosine kinases 
(RTKs) encompassing FGFR1, FGFR2, FGFR3, FGFR4, 
which are encoded by flg, bek, cek-2, and frek genes, 
respectively.18

The receptors are composed by three domains: an 
extracellular, a transmembrane, and an intracellular one. 
The extracellular ligand-binding domain, consisting of 
three immunoglobulin Ig-like loops/domains (Ig-I, Ig-II 
and Ig-III),19 contains the specific region for binding to 
FGFs, heparin, heparan sulfate proteoglycans, and other 
extracellular matrix molecules; Ig-I has autoinhibitory cap-
abilities, while Ig-II and Ig-III form the active ligand- 
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binding domain. The intracellular domain has a C-terminal 
tail and contains two split tyrosine kinases (tyrosine kinase 
1 and tyrosine kinase 2) which interact with cytoplasmic 
molecules, transferring the intracellular FGFR signaling.20 

Multiple isoforms of FGFR are known, resulting from 
alternative splicing events of the region encoding for the 
extracellular domain21 that show modified affinity and 
sensitivity for the FGF ligands22 and have different abil-
ities to activate intracellular signal transduction.23 The 
binding with the native ligand FGF is mandatory for 
FGFR activation and induces the receptor dimerization 
by autophosphorylation in the C-terminal portion of the 
intracellular domain. In this form, the FGFR becomes 
active and phosphorylates other receptors or effector mole-
cules involved in specific pathways of cell survival and 
proliferation, including RAS-MAPK, PI3K-AKT, PLCγ, 
and STAT (Figure 1).24–26 The regulation of the FGFR 
signaling pathway is ensured by receptor degradation after 
its internalization through different mechanisms like the 
autoinhibition of Ig-I domain.18 All four FGFRs share 
structural homology with vascular endothelial growth 

factor receptors (VEGFR), platelet-derived growth factor 
receptors (PDGFR), and other tyrosine kinase receptors, 
with consequent implications for pharmacologic therapy.20 

The activation of the FGF/FGFR complex occurs in 
embryogenesis, organogenesis, and angiogenesis, taking 
part in the regulation of different biomolecular processes 
such as apoptosis, cell adhesion, cell motility, and cell 
differentiation.27 In addition, FGFR signaling is one of 
the most frequently deregulated pathways in human can-
cers, through various molecular mechanisms such as 
amplification, fusions, missense mutations in FGFR 
genes. The dysregulation of FGFR signaling has been 
implicated in enhanced proliferation, survival and devel-
opment of anticancer drug resistance as well as in promot-
ing neoangiogenesis and immune evasion in the tumor 
microenvironment.28–33

As stated previously, alterations affecting the FGFR have 
been reported to be not only among the most frequently 
occurring but also to be among the most potentially druggable 
aberrations in iCCA.12 Of note, overexpression of FGFRs 1 to 
4 via mutations or amplifications has been reported to be 

Figure 1 Schematic representation of the FGFR signalling and other relevant oncogenic pathways in iCCA.
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a fundamental oncogenic boost in iCCA.34 In particular, 
FGFR4 activation is able to induce proliferation, invasion, 
and epithelial–mesenchymal transition of tumor cells;36,37 

moreover, high expression of FGFR4 is closely associated 
with poor prognosis and CCA progression.35 However, from 
both a diagnostic and therapeutic standpoint, the most relevant 
FGFR aberration in CCA is represented by FGFR2 fusions or 
rearrangements. As reported by several studies, these FGFR2 
molecular aberrations occur in 15% to 20% of cases, are 
enriched almost exclusively in the iCCA subsite and are 
mutually exclusive with other oncogenic mutations such as 
KRAS.13,39 The FGFR2 fusions have been reported to occur in 
early stage iCCA, driving the initiation and the progression of 
the disease, and are associated with female predilection, 
younger age at onset, and a more favourable prognosis com-
pared to wild-type patients. The most common FGFR chro-
mosomal aberration in iCCA is FGFR2–BICC1 fusion arising 
from t(10;10) (q21;q26), which is constitutively active and is 
involved in the activation of MAPK and PIK3CA/mammalian 
target of rapamycin (mTOR) pathways.38,43 Several authors 
reported the most common FGFR2 fusions, including FGFR2- 
PPHLN1 (Periphilin 1), FGFR2-AHCYL1 
(Adenosylhomocysteinase Like 1), FGFR2-BICC1 (Bicaudal 
family RNA binding protein 1), FGFR2-PARK2 (Parkin RBR 
E3 ubiquitin protein ligase), FGFR2-MGEA5 (Meningioma 
Expressed Antigen 5), FGFR2-TACC3 (Transforming Acidic 
Coiled-Coil Containing Protein 3), FGFR2-CCDC186 
(Coiled-Coil Domain Containing 186), FGFR2-NOL4 
(Nucleolar Protein 4) and FGFR2-KIAA1598 (Shootin 
1).42,43 In iCCA, chromosomal translocations of FGFR2 result 
in the formation of oncogenic fusion proteins containing an 
intact tyrosine kinase domain fused to a C-terminal portion of 
a partner protein that exhibits a strong dimerization/oligomer-
ization capability.40,41 These FGFR fusions play a role in the 
regulation of different biomolecular mechanisms, such as the 
migration, the anchorage, and the aggregation of the tumor 
cells forming the tumor mass, given to the activation of 
specific molecular pathways.23 Interestingly, the overexpres-
sion of FGFR2 fusion proteins results in increased sensitivity 
to FGFR inhibitors both in vitro and in vivo.38

Preclinical Development of FGFR2 
Inhibitors in Cholangiocarcinoma
Given the biological relevance of FGFR2 genetic altera-
tions in iCCA, the therapeutic targeting of FGFR signaling 
has rapidly become a promising treatment approach, with 
various molecularly targeted agents undergoing preclinical 

and clinical drug development process in this disease. 
Experimentally determined structures of FGFR in conjunc-
tion with both their ligands, FGF and heparin, provided the 
structural basis to understand ligand-receptor specificity, 
receptor dimerization and signaling cascade activation. 
This in turn constituted the structural information facilitat-
ing the design of FGFR inhibitors to be used to interfere 
with cell signaling derived from tyrosine kinase (TK) 
activation.44 Based on the mechanism of action and their 
target specificities,45,46 the FGFR inhibitors can be classi-
fied into four groups of molecules:28,29 1) Non-selective 
Tyrosine Kinase Inhibitors (TKIs); 2) TKIs selectively 
targeting FGFRs; 3) FGF ligand traps; 4) FGFR-directed 
monoclonal antibodies. Several compounds belonging to 
these groups are currently under investigation in preclini-
cal and clinical trials involving patients with advanced 
malignancies, including biliary cancers.

The most widely used therapeutic approach for FGFR 
blockade in iCCA is represented by TKIs, which are small 
molecules that directly inhibit receptor kinase activity by 
interfering with the binding of ATP or substrates of the 
tyrosine kinase domain. Most TKIs were initially identi-
fied by random screening of compound libraries for spe-
cific protein kinase inhibitory activities. Recently, the 
molecular modelling and structure-based design of ATP- 
site directed protein kinase inhibitors has been reviewed, 
thus leading to the development of more potent com-
pounds, with a selective activity against each tyrosine 
kinase receptor.

Non-selective TKIs (eg, lenvatinib, dovitinib, famiti-
nib, and erdafitinib)47,48 were the first compounds devel-
oped with a prominent activity against various RTKs 
including, FGFRs, VEGFRs, PDGFRs, FLT3, RET, KIT, 
and BCR-ABL. Although the multi-target simultaneous 
inhibition may enhance their efficacy, it results in an 
impaired safety profile. Furthermore, the relative bio- 
activity of multikinase inhibitors against FGFRs is weak. 
Taken together, these drawbacks have limited their further 
development of non-selective TKIs as single-agent in 
tumors driven by aberrant FGFR signaling. However, sev-
eral trials are underway to investigate the clinical efficacy 
of their combination with immunotherapy in biliary cancer 
and other solid tumours.49

Notably, the development of selective FGFR TKIs 
(including pemigatinib, derazantinib, JNJ-42756493, 
AZD4547, BGJ398, and TAS-120)50 has represented 
a turning point in the therapeutic targeting of FGFR2- 
dependent tumours. As such, bearing a different chemical 
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scaffold, pyrido-pyrimidine derivatives represent one of 
the most important classes of compounds characterized 
by high affinity toward FGFR and selectivity with respect 
to some other split TK, such as VEGFR, PDGFR, and 
EGFR. To this end, HMPL-453 is an orally bioavailable 
inhibitor of FGFR1, FGFR2, and FGFR3. In pre-clinical 
studies, HMPL-453 demonstrated superior potency and 
better kinase selectivity as compared to other drugs of 
the same class, as well as a favorable safety profile 
(NCT02966171). Belonging to the third generation of 
irreversible FGFR inhibitors, TAS-120 (later called futiba-
tinib) covalently binds to a highly conserved P-loop in the 
ATP pocket of FGFR tyrosine kinase domain.41–51 

Preclinical data in cell lines with constitutive activation 
of FGFR2 showed that TAS-120 is mainly characterized 
by a high in vitro potency and high specificity against 
wild-type FGFR1–4 as well as against some FGFR2 
kinase domain mutations. Pemigatinib (INCB054828) is 
a pyrido(4,3-d)pyrimidin-2-one derivative, with a selective 
inhibitor activity against FGFR1, FGFR2, and FGFR.52 In 
in vitro studies, pemigatinib demonstrated specific phar-
macologic effects against cancer cells with FGFR genetic 
alterations. Derazantinib (ARQ087) is a recently devel-
oped, orally bioavailable, ATP-competitive multikinase 
inhibitor of FGFR1, FGFR2, and FGFR3. In vitro and 
in vivo, this TKI has potent inhibitory effects on 
a variety of FGFR-dependent human cancer cell lines 
and xenografted tumor models.53–55 Preclinical pharmaco-
logic analysis of a novel selective FGFR inhibitor reported 
also that E7090, a novel available tyrosine kinase inhibitor 
with a higher selectivity against FGFR1, exhibited an 
efficient antitumor activity in both in vitro and in vivo 
models.56 Data retrieved from the analysis of more than 
500 cancer cell lines bearing FGF/FGFR genetic altera-
tions across various cancer types showed that the novel 
anticancer drug BGJ398,57 an orally bioavailable pan- 
FGFR kinase inhibitor (subsequently denominated infigra-
tinib), significantly inhibits cell proliferation. Again, 
INCB062079 is a potent and selective irreversible inhibi-
tor of FGFR4 reported to suppress the tumor growth in 
mouse models and in cell lines with amplification and 
overexpression of the FGFR4 cognate-binding factor 
FGF19.53 Finally, RLY-4008 is showing to be a highly 
selective FGFR2 inhibitor administered orally in patients 
with iCCA and other advanced solid tumors 
(NCT04526106).

Another therapeutic strategy for target FGFR inhibition 
is represented by the anti-FGFs or FGFRs monoclonal 

antibodies that can block FGFR signaling by interfering 
with ligand-binding or receptor dimerization. FPA144 is 
a monoclonal antibody developed against the mutated 
FGFR2b isoform currently under investigation in patients 
with malignant tumors harbouring overexpression or 
amplification of this epithelial isoform. Similarly, the anti- 
FGFR3 monoclonal antibody MFGR1877S showed anti-
tumor activity in preclinical models of bladder cancer with 
FGFR3 overexpression. Furthermore, the FGF ligand trap 
approach represents an interesting strategy to target the 
FGFR signalling. The FGF ligand traps sequester FGF 
ligands, blocking their ability to bind to and activate 
FGFRs. To this end, FP-1039 is a soluble fusion protein 
consisting of the extracellular domain FGFR1 fused with 
the Fc region of human immunoglobulin G1 (IgG1). It can 
selectively block mitogenic FGFs, though it does not 
recognize FGF19, FGF21, and FGF23. Still, Pentraxin-3 
(PTX3) acts as a multi-FGF ligand trap capable of recog-
nize and bind various FGFs, including FGF2, FGF6, 
FGF8, FGF10, and FGF17. The binding with the ligand 
causes the inhibition of cell proliferation and tumor growth 
in cancer cells both in vitro and in vivo.58

Clinical Development of FGFR2 
Inhibitors in Cholangiocarcinoma
Targeting FGFR alterations in iCCA has shown clinically 
meaningful benefits in recent prospective Phase I–II clin-
ical trials evaluating several TKI inhibitors, among which 
are Infigratinib (BGJ398), derazantinib (ARQ087), erdafi-
tinib, pemigatinib (INCB054828) and futibatinib (TAS- 
120). Table 1 reports a summary of FGFR inhibitors 
currently investigated in clinical trials.

A multicenter, open-label, phase II trial evaluated the 
activity of infigratinib (BGJ398) in 61 patients with 
advanced or metastatic chemorefractory iCCA or eCCA 
harbouring FGFR2 alterations.57 FGFR genetic status was 
required for eligibility confirmation to identify FGFR2 
fusion (n = 48), mutation (n = 8) or amplification (n = 3) 
in the participants. The primary end point was the overall 
response rate (ORR). In this study, all responsive tumors 
displayed FGFR2 fusions. The ORR was 14.8% and dis-
ease control rate (DCR) was 75.4% with a median duration 
of disease control (mDOR) of 7.5 months.59 At data cut- 
off, the median progression-free survival (mPFS) was 5.8 
months. Regarding the toxicity profile, most frequent treat-
ment-related adverse events (AEs) were fatigue, stomatitis, 
alopecia and nail disorders. Hyperphosphatemia emerged 
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as class-specific AE (72.1% any grade), reaching grade 3– 
4 in 16.4% and requiring study drug adjustment or tem-
porary interruption in 42.6% of patients. Another phase II 
study evaluating infigratinib in pretreated advanced biliary 
cancers with FGFR2 gene fusions or translocations is 
currently ongoing (NCT02150967).58,60,61

In a phase I/II trial appraising the action of derazanti-
nib, 29 patients with unresectable iCCA with FGFR2 
fusion progressing after at least one prior systemic therapy 
received the targeted treatment in continuous daily 
doses.62 The primary endpoint was ORR according to 
RECIST 1.1 assessed every 8 weeks. The ORR was 
20.7% with 4.6 months mDOR and 82.8% DCR. At 20 
months follow-up mPFS was 5.7 months and mOS not 
reached. Grade 3–4 AEs were observed in 8 patients 
(27.6%) leading to 13.8% treatment discontinuation. An 
ongoing phase II study is further evaluating derazantinib in 
pretreated iCCA patients (NCT03230318).

In a phase I/II trial on futibatinib enrolling 45 pre-
treated iCCA with FGFR alterations (n = 28 FGFR2 
gene fusions; n = 17 other aberrations), the treatment 
was associated with 25% ORR ad 75% DCR.63 Among 
13 patients progressing to previous treatment with another 
FGFR inhibitor, 4 partial responses were detected. Grade 
≥3 AEs were reported in 51% of patients, the most com-
mon was hyperphosphataemia (22%). Preliminary data 
from the FOENIX-CCA2 single-arm phase II trial enrol-
ling 67 advanced/metastatic iCCA patients with FGFR2 
alterations treated with futibatenib, confirmed 34.4% 
ORR, 76.1% DCR and 6.2 months mDOR.64 Treatment- 

related AEs were in line with those previously described 
and no new safety concerns were recorded.

In a Phase I trial, 187 patients with solid tumors pro-
gressing after standard chemotherapy were treated with the 
pan-FGFR inhibitor erdafitinib.65 The molecular screening 
for FGFR alterations was provided. In the cohort of cho-
langiocarcinoma patients with FGFR fusions or mutations 
(n = 11), ORR was 27.3% with 11.4 months mDOR. Other 
trials are currently evaluating safety and efficacy of erda-
fitinib in previously treated solid tumors comprising bili-
ary cancers (NCT02699606, NCT04083976).

Safety and activity of the oral inhibitor pemigatinib 
(INCB054828) were investigated in the multicentre 
FIGHT-202 phase II trial.66 Before assessment for eligibility 
patients were centrally prescreened for FGF/FGFR status 
using massively parallel DNA sequencing. Among 1206 
screened patients with advanced and pretreated iCCA, 146 
were eligible and divided into three cohorts: FGFR2 fusions 
(n = 107), other FGF/FGFR alterations (n = 20) and no FGF/ 
FGFR alterations (n = 18). The primary end point was ORR 
in the FGFR2 fusion group. At a median follow-up of 17.8 
months ORR was 35.5% (2.8% complete response and 
32.7% partial response) in the FGFR2 fusion group while 
none of the patients with other or without any FGF/FGFR 
alteration responded; mDOR was 7.5 months with 68% and 
37% of subjects free of progression respectively at 6 and 12 
months. The median overall survival (OS) was 21.1 months 
in patients with FGFR2 fusions (68% still alive at 12 months) 
compared to 6.7 and 4.0 months respectively in patients with 
other or without any FGF/FGFR mutation. Overall, 

Table 1 Published Clinical Trials of FGFR Inhibitors in Advanced Cholangiocarcinoma

Experimental Agent N Study Phase Setting ORR 
%

mPFS 
Months

mOS 
Months

Infigratinib (BGJ398)51 61 II Previously treaded advanced CCA 14.8 5.8 –

Derazantinib 
(ARQ087)62

29 I/II Previously treaded advanced CCA 20.7 5.7 –

Futibatinib (TAS-120)58 67 II (FOENIX- 
CCA2)

Previously treaded advanced CCA 34.3 – –

Erdafitinib59 17 II Previously treaded advanced solid tumors and 

CCA

27.3 5.6 –

Pemigatinib 

(INCB054828)60

107 II (FIGHT-202) Previously treaded advanced CCA 35.5 6.9 21.1

Debio 134765 9 I (FIH) Previously treaded solid tumors and CCA 22 – –

Abbreviations: ORR, overall response rate; mPFS, median progression free survival; mOS, median overall survival; CCA, cholangiocarcinoma.
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hyperphosphatemia was the most common all-grade adverse 
event (60%). Sixty-four per cent of patients experienced 
grade ≥3 AEs being the most frequent hypophosphatemia 
(12%), arthralgia (6%), stomatitis (5%), hyponatremia (5%) 
and abdominal pain (5%). Following these data, in 
April 2020 and later in May 2021, the FDA approved pemi-
gatinib and infigratinib as the first targeted therapy 
for second- and later-line treatment of locally advanced/ 
metastatic iCCA having FGFR2 fusions or rearrangements.67

Several ongoing phase II and III trials are currently 
evaluating FGFR inhibitors activity in FGFR-positive 
iCCA either in first or later lines (Table 2).

Toxicity Profile of FGFR2 Inhibitors and 
Its Management
The safety profile of FGFR2 inhibitors has been reported 
to be largely manageable in clinical trials, with the occur-
rence of mostly mild to moderate treatment-related 
adverse events. FGFR-inhibitor-related toxicities can be 
classified into class-specific (due to the class effect of 
FGFR blockade) and non-specific and are superimposable 
between different FGFR2 inhibitors.68 The most 

frequently reported class-specific side effect is hyperpho-
sphatemia, defined as serum phosphate levels >5.5 mg. 
This is an on-target off-tumour effect of FGFR1 inhibition, 
occurring in 55–81% of cases, caused by disruption of the 
FGF23/FGFR1 signaling, an important player in the phos-
phate homeostasis. For patients developing hyperphospha-
temia while on FGFR-directed therapy, strategies to 
manage it span from the use of dietary modifications 
(low phosphate diet) to phosphorous-lowering agents 
(including both phosphate binders Sevelamer, Lanthanum 
and phosphaturic agents such Acetazolamide) depending 
on its severity. Rarely, dose reductions or interruptions are 
recommended for G3-G4 hyperphosphatemia (>7 mg/dL), 
until return to ≤ G2. Other recognized class-specific 
adverse events of FGFR inhibitors include ophthalmologic 
toxicity, among which dry eye (19–21%) is the most fre-
quently occurring, followed by peculiar retinal toxicities 
including pigment epithelial detachment (4%) and central 
serous retinopathy (9%). Although these are usually mild 
or asymptomatic, a comprehensive ophthalmologic exam-
ination is advisable before initiating FGFR2-directed 
therapies and on demand in the event of vision changes 
in order to avoid permanent sequelae for the patient. 

Table 2 Selected Ongoing Trials Evaluating FGFR Inhibitors in Advanced Cholangiocarcinoma

Treatment Arms Study 
Phase

Setting Primary End 
Point

Clinical Trials.gov 
Identifier

Pemigatinib vs 

gemcitabine+cisplatin

III First Line PFS NCT03656536 

(FIGHT-302)

Infigratinib vs 

gemcitabine+cisplatin

III First Line PFS NCT03773302 

(PROOF)

Futibatinib vs 

gemcitabine+cisplatin

III First Line PFS NCT04093362 

(FOENIX)

Derazantinib II After at least one prior systemic therapy ORR and PFS at 3 

months

NCT03230318

Derazantinib II After at least one prior systemic therapy ORR NCT03230318 

(FIDES-01)

BGJ398 (Infigratinib) II After at least one prior regimen containing gemcitabine 

with or without cisplatin

ORR NCT02150967

Futibatinib II After at least one prior systemic gemcitabine and 

platinum-based chemotherapy

ORR NCT02052778

Erdafitinib II After at least one prior systemic therapy ORR NCT02699606

Erdafitinib II After at least one prior systemic therapy ORR NCT04083976

Pemigatinib II After at least one prior systemic therapy ORR NCT04256980

Abbreviations: ORR, overall response rate; PFS, progression free survival.
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Regarding their management, the FGFR inhibitor should 
be withheld immediately in case of grade ≥3 toxicity and 
for resolved after 4 weeks following onset, the FGFR 
inhibitor can be restarted at a lower dose under the close 
supervision of a specialist. Of note, persistent grade ≥2 
ocular side effect despite a reduced dose or any grade ≥4 
ocular side effect should led to permanently discontinue 
the FGFR inhibitor.69 FGFR-inhibitor-associated dermato-
logic toxicities: stomatitis (20–40%), alopecia (24–46%), 
nail toxicity (5–17%), and diarrhea (15% to 60%) have 
been reported in clinical trials.62–66

Finally, fatigue is the most commonly described non- 
specific adverse event during FGFR2 blockade (32–71%). 
Importantly, a thorough knowledge of the unique safety 
profile of this drug class and patient education are key to 
avoid unnecessary dose reductions and interruptions which 
can jeopardize treatment intensity. In fact, prevention, 
prompt recognition and early treatment of these adverse 
events, better if within a multidisciplinary team, may result 
in prolonged exposure to FGFR inhibition and a better 
treatment efficacy.

Discussion
Less than a decade from the discovery of FGFR2 fusions 
in iCCA,45 over the last few years various highly potent 
and selective FGFR2 tyrosine kinase inhibitors have dis-
played a clinical meaningful and consistent antitumour 
activity across phase II trials of previously treated, unre-
sectable advanced, FGFR2 fusion or rearranged iCCA. 
Very recently, in May 2021, infigratinib has become 
the second FGFR2 inhibitor after pemigatinib to grant 
regulatory approval for this indication in the US.70 The 
drug development process of FGFR2 targeting has pro-
ceeded at a surprisingly brisk pace, fostered by the unpre-
cedented results seen in a molecularly selected subset of 
iCCA without convincingly available therapeutic options 
after failing cisplatin/gemcitabine combination. In pre-
treated patients, FGFR inhibitors produced objective 
responses in the range of 21% to 41%, disease control 
rates of 82–83% and an estimated mPFS in the range of 
5.7 to 6.9 months. More interestingly, preliminary assess-
ments have reported an impressive median OS above 20 
months.62–66 These results compare very favourably with 
the daunting data of chemotherapy trials, where objective 
responses were uncommon (around 5%) and overall survi-
val hardly exceeded 6 months in all comers.71 Moreover, 
anti-FGFR2 agents seem to be better tolerated than cyto-
toxics, with predictable and manageable side effects that 

do not adversely impact on response and a quality of life 
maintained during treatment.68,72

Of great interest, the earlier use of FGFR2 inhibitors in 
the therapeutic path of iCCA, has resulted in a higher 
activity compared to later lines (ORR of 34% for second 
line vs 13.8% for third and fourth line).73 Collectively, 
these data have laid the foundation for the design and the 
conduct of large first-line phase III randomized controlled 
trials that are currently underway to evaluate FGFR2- 
directed therapy against standard-of-care chemotherapy 
in the molecularly selected population of fusion-positive 
iCCA. Such ongoing trials included the PROOF trial 
(NCT03773302) with infigratinib, the FIGHT-302 trial 
(NCT03656536) with pemigatinib, and the FOENIX- 
CCA3 trial (NCT04093362) with futibatinib and these 
results are eagerly awaited within the oncology commu-
nity. Although the targeting of FGFR2 has emerged as 
a milestone in the advancement of precision oncology in 
iCCA, several challenges remain to be addressed to 
advance further its development in the next future. 
Among them, as one could expect for oncogene-addicted 
tumours under the selective pressure of a targeted inhibi-
tion, both primary and acquired resistances invariably 
occur that led to treatment failure with transitory responses 
followed by disease progression. Regarding the former, 
a clinico-genomic analysis has reported initial data show-
ing that FGFR2-fusion patients with specific co-occurring 
alterations, particularly in tumor-suppressor genes, such as 
BAP1, PBRM1, CDKN2A/B, and TP53, experience worse 
outcomes when treated with pemigatinib.74 As concerns 
the latter, intriguing translational findings using serial 
ctDNA analysis and on-treatment tissue biopsies have 
identified polyclonal FGFR2 kinase domain gatekeeper 
mutations as acquired resistance mechanisms to pemigati-
nib and infigratinib, that act by impairing their binding 
affinity to the target receptor.75 Interestingly, the same 
research group also showed that the third-generation, irre-
versible, FGFR inhibitor futibatinib (TAS-120), may be 
active in patients who developed secondary resistance to 
ATP-competitive inhibitors, thanks to its capability of 
covalently binding the FGFR2.33 To this end, ctDNA 
analysis represents a useful tool not only to track emerging 
resistance mechanisms to targeted inhibition but also to 
strategically guide the sequencing of FGFR inhibitors that 
could in turn extend the duration of its clinical benefit in 
FGFR2-dependent tumours.

Another avenue which deserves investigation in 
patients developing resistance to FGFR2 is to combine 
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FGFR2 inhibitors with other compounds aimed at block-
ing alternative oncogenic pathways. To this end, preclini-
cal evidence from Krook et al76 demonstrated that the 
PI3K/AKT/mTOR signaling is upregulated in FGFR2 
pE565A mutant iCCA cells, and the addition of an 
mTOR inhibitor to FGFR2-directed therapy has synergis-
tic effect in the same in vitro model.

Although the field of precision oncology is just in its 
infancy in iCCA, the FGFR2 blockade has been representing 
a successful story for a cancer type until recently regarded as 
an orphan disease. However, the molecular heterogeneity 
and the clonal evolution of FGFR2-fusion positive iCCA 
under FGFR2 blockade represent a barrier to the full accom-
plishment of its potential. The application of next-generation 
technologies such as NGS and ctDNA analysis will give 
more insights into molecular vulnerabilities and together 
with the development of both next-generation FGFR2 inhi-
bitors and innovative treatment combinations could represent 
the key for tackling a historically hard-to-treat cancer type.

Conclusions
iCCA still poses a great clinical challenge since its inci-
dence is steadily rising and the conventional treatment 
options produced disappointing outcomes, making it one 
of the deadliest cancer worldwide. In recent years, thanks 
to the improved knowledge of disease biology, CCA has 
emerged as a multifaced disease characterized by distinct 
molecular subset each with peculiar clinicopathologic and 
therapeutic implications. Among them, the FGFR2 gene 
fusions hallmarked a specific iCCA subgroup which are 
increasingly being validated as therapeutic targets with 
various FGFR inhibitors in advanced-phase clinical devel-
opment. When compared with historical controls, efficacy 
data of anti-FGFR2 agents are unprecedented and their 
tolerability is good. Despite this, some research questions 
remain to be addressed in the near future, mainly concern-
ing the ways to circumvent resistance mechanisms as well 
as the need for more selective and potent anti-FGFR 
agents. The results of ongoing trials evaluating FGFR- 
directed therapy versus standard-of-care chemotherapy 
will ascertain the role of targeted agents in the front-line 
setting of this molecular subset of CCA. Over the last few 
years, we are witnessing a paradigm change in the man-
agement of iCCA towards a more personalized and precise 
treatments approach that can improve reshape the outcome 
of patients affecting by this burdensome disease.
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