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Background: As a key precancerous lesion, colorectal advanced adenoma (CAA) is closely 
related to the occurrence and development of colorectal cancer (CRC). Effective identifica-
tion of CAA-related biomarkers can prevent CRC morbidity and mortality. Lipids, as an 
important endogenous substance, have been proved to be involved in the occurrence and 
development of CRC. Lipidomics is an advanced technique that studies lipid metabolism and 
biomarkers of diseases. However, there are no lipidomics studies based on large serum 
samples to explore diagnostic biomarkers for CAA.
Methods: An integrated serum lipid profile from 50 normal (NR) and 46 CAA subjects was 
performed using ultra-high performance liquid chromatography tandem high-resolution mass 
spectrometry (UHPLC-HRMS). Lipidomic data were acquired for negative and positive 
ionization modes, respectively. Differential lipids were selected by univariate and multi-
variate statistics analyses. A receiver operator characteristic curve (ROC) analysis was 
conducted to evaluate the diagnostic performance of differential lipids.
Results: A total of 53 differential lipids were obtained by combining univariate and multi-
variate statistical analyses (P < 0.05 and VIP > 1). In addition, 12 differential lipids showed 
good diagnostic performance (AUC > 0.90) for the discrimination of NR and CAA by 
receiver operating characteristic curve (ROC) analysis. Of them, the performance of PC 
44:5 and PC 35:6e presented the outstanding performance (AUC = 1.00, (95% CI, 1.00– 
1.00)). Moreover, triglyceride (TAG) had the highest proportion (37.74%) as the major 
dysregulated lipids in the CAA.
Conclusion: This is the first study that profiled serum lipidomics and explored lipid 
biomarkers with good diagnostic ability of CAA to contribute to the early prevention of 
CRC. Twelve differential lipids that effectively discriminate between NR and CAA serve as 
the potential diagnostic markers of CAA. An obvious perturbation of TAG metabolism could 
be involved in the CAA formation.
Keywords: colorectal advanced adenoma, biomarker, serum lipidomics, UHPLC-HRMS, 
colorectal cancer

Introduction
Colorectal cancer (CRC), a common digestive system malignancy globally, is one 
of the top three causes of cancer-related mortality in both men and women, 
according to the latest cancer statistics.1 Colorectal carcinogenesis has generally 
been acknowledged as an adenoma-carcinoma sequence. That is, CRC develops 
mainly from colorectal adenoma (CA), which is precancerous lesions of the 
colorectum and take 10–15 years to develop CRC.2–4 Study showed that the 
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removal of CA can prevent cancer and reduce the mor-
tality rate of CRC by as much as 50%.5 Colorectal 
advanced adenoma (CAA) refers to any CA ≥ 1 cm in 
diameter or villous or serrated adenoma of high-risk 
pathological type, and/or high-grade intraepithelial 
tumor.6 At a median follow-up, researchers found that 
participants with CAA were more likely to develop 
CRC than participants without CAA (rate, 2.7 [95% CI, 
1.9–3.7]; P < 0.001).7 Therefore, screening and resection 
of CAA should be an effective way to reduce CRC 
mortality. However, the diagnostic strategy for CAA is 
relatively scarce at present in clinical.

Colonoscopy, as the “gold standard” in clinical prac-
tice, has high accuracy and can effectively detect various 
histological subtypes of colorectal polyps, including 
CAA and CA.8 However, patients’ poor compliance 
with its invasive examination and high technical require-
ment resulted in difficulties in early diagnosis limiting 
their mass screening.9 In addition, the diagnostic indica-
tors for CRC include the traditional diagnostic means 
(fecal immunochemistry test (FIT) and abdominal com-
puted tomography scan) and the new screening means 
(fecal DNA test), which have low sensitivity or specifi-
city for CAA. The sensitivity of FIT-DNA test to detect 
advanced precancerous lesions (advanced adenomas and 
sessile serrated polyps measuring ≥1 cm) was low with 
42% (95% CI, 39%–46%).10−12 In addition to clinical 
diagnostic methods, several scholars have made prelimin-
ary explorations of diagnostic markers for CAA. 
Respiratory volatile organic compounds,13 serum 
autoantibodies,14 serum M2-pyruvate kinase,15 fecal 
miRNA-135b,16 plasma matrix metalloproteinase,17 

serum circulating tumor DNA (ctDNA),18,19 and 
miRNA-21/59220,21 are still lack of high sensitivity or 
specificity for the CAA diagnosis. Furthermore, although 
the levels of nine amino acids in CAA tissue are signifi-
cantly different from those in normal intestinal mucosa, 
reliance on colonoscopy and invasive tissue samples is 
not suitable for its early screening.22 Plasma macrophage- 
suppressive cytokine-1 and urinary prostaglandin E2 
metabolites have also been reported as potential markers 
of CAA, but their diagnostic efficacy is still 
unknown.23,24 Accordingly, there is an urgent need for 
a minimally invasive diagnostic strategy with high per-
formance (sensitivity and specificity) to improve the 
CAA diagnosis and screening.

As endogenous mediators, lipids involve in many phy-
siological functions, such as cell signal transduction, 

apoptosis, proliferation, and membrane transport.25 

Dysregulation of lipid homeostasis has become an estab-
lished hallmark of numerous cancers including CRC.26,27 

With the exception of CRC, dysregulation of lipid metabo-
lism has also been confirmed in CAA patients. Fecal meta-
bolomics studies of CAA patients have found significantly 
altered levels of some bioactive lipids (including polyunsa-
turated fatty acids, secoiric acid, glycerolipids, glyceropho-
spholipids, sterolipids, and sphingolipids) in CAA patients 
relative to controls.28,29 Furthermore, some researchers have 
reported a close link between levels of blood lipid and risk of 
CA development. For instance, higher serum triglyceride 
levels were significantly associated with an increased preva-
lence of CAA, while there was an inverse association 
between levels of plasma HDL cholesterol and hazard of 
CA formation.30,31 With the increasing importance of lipid 
metabolism and functions, lipidomics, a important subdisci-
pline of metabolomics, has become a hot topic in scientific 
research of cancers currently. It not only provides insight into 
the physiological functions of lipid molecules but also offers 
a novel approach to the discovery of diagnostic biomarkers 
for diseases.32 Ultra-high-performance liquid chromatogra-
phy-high resolution mass spectrometry (UHPLC-HRMS) is 
an attractive analytical platform and is preferred for lipid 
analysis due to its high sensitivity, throughput, and 
resolution.33 Presently, few lipidomic studies involved in 
CRC progression mainly focus on the stage of CRC by LC- 
MS. In the plasma, triacylglycerols (TAGs), plasminogen 
(PlsEtns), and fatty acids (FAs) metabolism display obvious 
metabolic disturbances in CRC patients.4,33 Moreover, lyso-
phatidycholines (LPCs) and phosphatidylcholines (PCs) in 
tissues are reported as the biomarkers most closely associated 
with the development of CRC.34 However, no lipidomic 
studies with large-scale serum samples have been performed 
based on UHPLC-HRMS technique to explore the biomar-
kers for CAA diagnosis.

Therefore, we conducted a lipidomic study with large- 
scale serum samples of NR and CAA based on UHPLC- 
HRMS technique, aiming to disclose global serum lipid 
profiles of CAA and to explore lipid biomarkers with good 
diagnostic performance for CAA conducting to the early 
prevention of CRC.

Materials and Methods
Chemicals
Methanol, dichloromethane, isopropanol, and acetonitrile 
were of HPLC grade from Merck & Co. (Billerica, MA, 
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USA). Ultrapure water was prepared by a Millipore Milli- 
Q system (Billerica, MA, USA).

Subjects and Serum Sample Collection
The protocol of this study was approved by the Ethics 
Committee of Guangxi Zhuang Autonomous Region 
People’s Hospital (No. KY-DZX-202008), including collec-
tion of the details about serum samples and the subjects, and 
the written consent of all subjects before enrolling them in 
the study. A total of 50 NR subjects and 46 CAA patients 
were enrolled in this study, and the main clinical details are 
provided in Table 1. Inclusion criteria for NR subjects were 
as follows: (1) No CRC or other malignant tumor; (2) No 
family history of CRC; (3) No metabolic diseases, such as 
hypertension, hyperlipidemia and diabetes; (4) Did not take 
medicine that affects lipid metabolism before one month; (5) 
without any intestinal neoplasm by colonoscopy exam. The 
inclusion criteria of CAA subjects were as follows: (1) CA ≥ 
1 cm in diameter with colonoscopy and pathological diag-
nosis; (2) Histological types with villous or serrated adeno-
mas, and/or high-grade intraepithelial neoplasia; (3) No 
history of other metabolic diseases or malignancy. After 
8-hour fasting before surgery, the serum samples were col-
lected in a coagulation tube and centrifuged at 5000 rpm/ 
min, 4°C for 10 min. Finally, the supernatants were trans-
ferred into a new Eppendorf tube and stored at –80°C until 
further use.

Sample Preparation
Serum sample: 500 μL of a mixture of pre-cooling dichlor-
omethane-methanol (3:1, v/v) solution was added to 50 μL 
serum. After being vortexed for 5 min and placed in an ice 
bath for 10 min, the solution was centrifuged at 13,000 rpm/ 
min at 4°C for 10 min. 300 μL lower dichloromethane 
solution was dried in vacuum at room temperature. The 
dried samples were redissolved with 600 μL acetonitrile- 
isopropanol (1:1 v/v) solution, then vortexed for 2 min and 
ultrasonicated in ice bath for 5 min. After mixing for 1 min, 

the vials were centrifuged at 13,000 rpm/min at 4°C for 15 
min, and the supernatants were collected for lipidomics 
analysis. 5 μL of each sample was mixed together to serve 
as quality control (QC) samples. Before formal sample 
injection, the repeatability and stability of the analytical 
system and method was verified by balancing the analytical 
system with 6 blank samples and 6 QC samples.

UHPLC-HRMS Analysis
Aliquots of 5 µL of serum were subjected to a Dionex 
Ultimate 3000 liquid chromatography system (Sunnyvale, 
CA, USA) (SN: 7254012) equipped with a Waters Acquity 
UPLC HSS T3 column (1.8 μm, 2.1 × 100 mm; Milford, 
MA, USA) for the separation analysis. The mobile phase 
was represented by a gradient of eluent A (water: acetonitrile 
= 4:6, v/v, containing 0.1% formic acid and 10 mM ammo-
nium formate) and eluent B (isopropanol: acetonitrile = 9:1, 
v/v, containing 0.1% formic acid and 10 mM ammonium 
formate) with flow rate of 0.3 mL/min. The gradient condi-
tions were set as follows: 0.0–4.0 min, 30% to 60% B; 4.0– 
9.0 min, 60% to 100% B; 9.0–15.0 min,100% B; 15.0–18.0 
min,100% B to 30% B. The column temperature was 50°C.

The mass spectrometry analysis was performed on 
a Thermo Fisher Q Exactive Orbitrap mass spectrometry 
system (Waltham, MA, USA) (SN: SN02386L, operating 
in both ESI+ and ESI- mode. The mass range was set 
between m/z 100–1200. The key detected parameters were 
as follows: spray voltage, 3.5 kV; sheath gas flow rate, 50 
psi; auxiliary gas flow rate, 13 arb; capillary temperature, 
320°C; auxiliary gas heater temperature, 420°C; scan modes, 
full MS (resolution of 70,000) combined ddMS2 (resolution 
of 17,500) scan with stepped collision energy (10, 20, and 40 
eV). All data were acquired using the Thermo Scientific 
Xcalibur 3.1 software (Waltham, MA, USA).

Data Processing and Statistical Analyses
The original MS data files of both two sets of samples 
were imported into the Compound Discoverer TM 
Software Version 3.1 (Thermo Scientific, Fremont, CA, 
USA). Three-dimensional data (including RT, m/z, and 
peak intensity of all lipid features) were extracted to iden-
tify lipid metabolites and perform differential analysis 
(Student’ t-test or Mann–Whitney U-Test). A list of poten-
tial lipid species were generated according to Thermo 
mzCloud and mzVault with lipidomics database. The 
main parameters were as follows: minimum peak intensity, 
500,000, Mass error, 5 ppm, RT tolerance, 0.2 min, Peak 
intensity tolerance, 30%, S/N, 3.

Table 1 Information of Clinical Characteristics for Study Subjects

Group Gender 
(Female/ 
Male)

Age 
(Year)

Position Vienna 
Classification

NR 21/29 53 ± 8 – –
– –

CAA 18/28 57 ± 11 Rectum (19) High (24)

Colon (27) Low (22)
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The data were imported into SIMCA-P version 14.1 
(Umetrics, UMEA, Sweden) to conduct multivariate statisti-
cal analysis including the principal component analysis (PCA) 
and orthogonal partial least-squares discriminant analysis 
(OPLS-DA). The UV- or Pareto-scaling was applied to nor-
malize the intensities of lipid features prior to analytical model 
fitting. The quality of OPLS-DA model was evaluated by 
values of explanatory parameter, R2 and predictive parameter, 
Q2. To avoid overfitting of analytical mode, 200 permutations 
test was carried out on the model. The QC normalization was 
applied to uncover differential lipids between CAA and NR. 
Criteria of VIP > 1 and P < 0.05 were further used to select the 
differential lipids between the two groups. Finally, 
MetaboAnalyst 5.0 was used to analyze the receiver operating 
characteristic curve (ROC) of the differential lipids to explore 
the potential biomarkers to differentiate CAA from NR.

Results
The Differential Lipid Profiles Between 
NR and CAA
Direct observation of serum lipid profiles by TIC chroma-
tography revealed the obvious differences between NR and 
CAA groups in both ESI modes (Figure 1A-D). The tight 
clustering of QC samples in the PCA scoring plot in both 
ESI modes demonstrated that the analytical system met the 

requirement of lipidomic analysis (Figure 2A and B). In 
both ESI modes, the individual differences in lipid profiles 
were relatively small in the CAA group compared to the 
NR group, due to the better aggregation manifested by 
CAA patients (Figure 2A and B). In addition, lipid profiles 
were well differentiated between NR and CAA samples, 
which implies that there were some evident differences in 
serum lipids between the two groups (Figure 2A and B). In 
particular, the degree of separation was more pronounced 
in the ESI+ model relative to ESI- mode. To more clearly 
describe the differences in lipid profiles between NR and 
CAA, an OPLS-DA model was constructed using all 
detected lipid features. The two groups were clearly sepa-
rated at ESI+ mode (R2X [cum] = 0.379, R2Y [cum] = 
0.981, Q2 [cum] = 0.976) and ESI- mode (R2X [cum] = 
0.522, R2Y [cum] = 0.951, Q2 [cum] = 0.870), which 
indicated obvious difference of lipid features. 
Additionally, to guard against overfitting of the OPLS- 
DA model, 200 permutations test with R2Y (0.415 and 
0.696) and Q2 (−0.270 and −0.366) values was provided 
(Figure 2E and F) in ESI+ and ESI- modes, respectively, 
showing that the analytical model has high validity and 
predictability. Based on OPLS-DA model, VIP > 1 was 
used to select 7154 and 621 lipid features responsible for 
group differentiation under both modes, respectively. 

Figure 1 The TIC chromatography of normal (NR) and colorectal advanced adenoma (CAA) groups in both ESI modes. (A and B) TIC chromatography of NR in ESI+ and 
ESI- modes, respectively; (C and D) TIC chromatography of CAA in ESI+ and ESI- modes, respectively.
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Together, a total of 53 differential lipids with VIP > 1 and 
P < 0.05 were selected as potential lipid markers, includ-
ing 44 in ESI+ mode and 9 in ESI- mode (Table 2). These 
lipid species mainly consisted of FA (9.43%), SL (7.55%), 
DAG (13.21%), LPC (7.55%), PC (13.21%), TAG 
(37.74%), PE (7.55%), PG (1.89%), and PI (1.89%) 
(Figure 3). Hence, the percentage of TAG as a major 
component was more than 37%, suggesting that dysregu-
lation of TAG metabolism may be an important factor in 

the development of NR to CAA. To further investigate the 
distribution and trend of differential lipids in individuals, 
we then performed a clustering heatmap analysis with 53 
differential lipids between the two groups. Through sam-
ple clustering, we observed that both NR and CAA groups 
showed good clustering, indicating that the intra-group 
difference and inter-group proximity of these lipid profiles 
were relatively pronounced. For example, compared with 
NR, palmitic acid, docosanamide, and PC 35:6e showed 

Figure 2 Multivariate statistical analysis for lipid profile between the NR and CAA groups. (A and B) 3D PCA analysis of the two groups in ESI+ and ESI- modes, 
respectively; (C and D) 3D OPLS-DA analysis of the two groups in ESI+ and ESI- modes, respectively. R2X[cum] = 0.379 and 0.522, R2Y[cum] = 0.981 and 0.951, Q2[cum] = 
0.976 and 0.870; (E and F) Permutation test (200 permutations) corresponding to OPLS-DA model in ESI+ and ESI- modes, respectively.
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a significantly up-regulated in CAA, while TAG 57:1 
displayed an obviously up-regulated (Figure 4 and 
Table 2).

Evaluation of Diagnostic Performance of 
Serum Differential Lipids Between NR 
and CAA Groups
After selecting the lipids with notable difference between 
groups, potential lipid biomarkers of CAA were further 
defined based on the diagnostic ability of these 53 differ-
ential lipids. Prior to ROC analysis, samples and differen-
tial lipids were normalized using sum and auto scaling 
methods to reduce the effects of individual differences 
and systematic errors (Figures 5A-D). After that, we even-
tually 12 differential lipids were identified with good diag-
nostic performance (AUC > 0.900) (Figure 6) and their 
identification results based on MS fragments and retention 
time matched with Thermo Lipidblast and mzCloud 
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Figure 3 The proportion of differential lipids between two groups. 
Abbreviations: FA, fatty acid; SL, sphingolipid; DAG, diacylglycerol; LPC, lysopho-
sphatidylcholine, PC, phosphatidylcholine; TAG, triacylglycerol; 
PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol.
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databases are presented in Figure 7. Among them, PC 
35:6e and PC 44:5 had the highest AUC values (AUC = 
1.000, (95% CI, 1–1)), indicating excellent diagnostic 
performance for CAA, while docosanamide had the rela-
tively low AUC values (AUC = 0.919, (95% CI, 0.847– 
0.981)) (Figures 6A and L).

Based on the above ROC analysis results, we further 
studied the variation trend of these 12 lipids with good 
distinguishing performance between the two groups. The 
results suggested that the levels of docosanamide, methyl 
palmitate, palmitic acid, PC 31:2, PC 35:6e, PC 37:7, and 
PC 44:5 significantly increased, while LPC 17:0, LPC 
18:0, PC 18:0e, PC 42:9, and TAG 57:1 were dramatically 
down-regulated in the CAA group (Figure 8). Of them, 
palmitic acid, PC 35:6e, PC 37:7, and PC 44:5 had the 
most significant change trend, which were consistent with 
the previous heat map results (Figure 4).

Exploration of the Underlying Mechanism 
Associated with Formation of CAA
As shown in Table 2, we totally identified 53 differential 
lipids, which mainly include 5FAs, 4SLs, 7DAGs, 4LPCs, 
7PCs, 20TAGs, 4PEs, 1PG and 1PI, of which 1/20 of 
TAG, 4/7 PC, 3/5 FA and 1 PI were significantly up- 
regulated, and the rest of them were all remarkably down- 
regulated in CAA group. These differential lipids are 
mainly involved in the metabolism of glycerophospholi-
pids (GPs), fatty acids (FAs), and glycerides (GLs). Of 
them, the levels of 12 potential diagnostic lipid markers’ 
ability also showed a similar change trend with those of 
differential lipids between groups. Compared with NR 
group, FA (3/3) and PC (4/6) in the CAA group showed 
a significant up-regulation trend, while LPC (2/2) and 
TAG (1/1) all showed a significant down-regulation trend 
in CAA group. Therefore, TAG, as a lipid species that 

Figure 4 Heat map analysis of 53 differential lipids between NR and CAA groups. The color bars represent the log10 value of the ratio for each lipid species and only 
statistically significant changes are shown (VIP > 1, P < 0.05).
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Figure 5 Normalization of the differential lipids between the NR and CAA groups. (A and B) Sample normalization of two groups in ESI+ and ESI- modes, respectively; 
(C and D) Lipids normalization of two groups in ESI+ and ESI- modes, respectively.
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accounts for up to 37.74% in differential lipids, and its 
metabolic disturbance is considered to be the main influen-
cing factor of CAA formation.

Discussion
In this study, we explored serum lipidomics 
with UHPLC-HRMS as a prospective approach to iden-
tify serum lipid biomarkers in CAA. Using 
this method, we detected a total of 53 differential lipids 
between NR and CAA and most of them belonged to 
TAG, indicating the disequilibrium of TAG 
metabolism was involved in CAA pathogenesis. 
Among them, 12 differential lipids with good diagnos-
tic ability (AUC > 0.900) served as potential serum 
biomarkers of CAA.

GPs, characterized by phospholipids and their struc-
tural diversity, suggest their involvement in many 

physiological and pathological processes, including 
the progression of CRC.35 PC, a major component of 
GPs, was demonstrated to have a positive correlation 
between its metabolic disorder and CA risk.36 In addi-
tion, serum levels of PC 34:1 and PC 36:4 were dis-
turbed in patients with benign colorectal disease 
compared to controls.37 Moreover, phospholipids asso-
ciated with choline can be considered as good biomar-
kers of CRC.38,39 Similarly, in the current study, serum 
PC levels were also dysregulated in the CAA group 
and showed good diagnostic properties (AUC > 0.900) 
to distinguish NR from CAA. As a metabolite of PC, 
LPC is the most studied biomarker of CRC. It was 
reported that LPC (18:1) and LPC (18:2) were found 
to be significantly lower in the plasma of CRC patients 
than in healthy groups (P < 0.001).38 Another study 
based on plasma lipidomics also confirmed that LPC 

Figure 6 Performance evaluation of differential lipids between NR and CAA groups. (A) PC 35:6e; (B) PC 44:5; (C) Palmitic acid; (D) PC 31:2; (E) PC 37:7; (F) PC 42:9; (G) 
PC 18:0e; (H) TAG 57:1; (I) Methyl palmitate; (J) LPC 18:0; (K) LPC 17:0; (L) Docosanamide.
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18:2 and LPC 18:3 had good diagnostic performance 
(AUC > 0.900) as a potential biomarker for CRC.34 In 
addition, the increase n LPC in CRC tissue showed the 
possibility as potential biomarkers in CRC.40 

Analogously, our study firstly found that LPC also 
showed favorable diagnostic performance for CAA, as 
shown by LPC 17:0 (AUC = 0.931, (95% CI, 0.866– 
0.973)) and LPC 18:0 (AUC = 0.922, (95% CI, 0.865– 
0.934)) (Figure 6).

FAs are essential components of biological mem-
branes and are key substrates for energy metabolism. It 
has been found that many cancer cells contain higher 
levels of FAs than normal cells because cancer cells 
require more lipids for energy synthesis and more 
membranes for exuberant metabolism.41 Therefore, 
they are also key targets for tumor-preventive effects. 
Our results show that palmitic acid, methyl palmitate, 
and docosanamide showed good diagnostic perfor-
mance (AUC > 0.900) for distinguishing NR from 
CAA. Likewise, palmitic acid (OR, 3.75; P = 0.04) 
was found to be more likely to present adenomas per 
unit increase relative to those without colonic polyps, 
and its ability to discriminate between CRC patients 
and controls was excellent (specificity and sensitivity 
>80%).42,43 In addition, a panel of biomarkers 

including palmitic acid was used to discriminate 
between early CRC patients and healthy controls 
achieved good diagnostic accuracy (sensitivity of 
0.981 and specificity of 1.000) with an AUC value of 
0.991, superior to carcinoembryonic antigen.44

As a class of glycerides, disturbances in serum or 
plasma TAGs levels have a close association with an 
increased risk of CA.30,45,46 Among the 53 differential 
lipids, TAGs account for 37.74% in the total composition, 
and their metabolic imbalance may be involved in the 
formation of NR to CAA. Meanwhile, study revealed 
that serum TAGs may influence colorectal tumorigenesis 
through the mechanisms involving bile acid excretion, 
circulating hormones, and energy supply to tumor cells.47 

Besides, in our result, TAG 57:1 presented good diagnostic 
performance for CAA (AUC = 0.939, (95% CI, 0.879– 
0.982)). Similarly, the combined use of increased low- 
density lipoprotein cholesterol (LDL-C) and TAG levels 
to differentiate patients with polyps was effective on 
account of sensitivity of 50.0% and specificity of 89.6% 
(AUC = 0.733).48

Conclusion
To our knowledge, this is the first study to profile the 
serum lipidomics and explore the diagnostic biomarkers 

Figure 7 The identification of 12 differential lipids with good diagnosis between NR and CAA groups. (A) PC 35:6e; (B) PC 44:5; (C) Palmitic acid; (D) PC 31:2; (E) PC 
37:7; (F) PC 42:9; (G) PC 18:0e; (H) TAG 57:1; (I) TAG 57:1; (J) Methyl palmitate; (K) LPC 18:0; (L) LPC 17:0; (M) Docosanamide.
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in CAA patients based on the global lipidomics using the 
UHPLC-HRMS technique. The serum lipid profiles pre-
sent obvious difference and 53 differential lipids were 
found between NR and CAA. Of them, TAGs were the 
main differential lipids, indicating that the abnormal meta-
bolism of TAG may be involved in the CAA formation. In 
addition, a total of 12 differential lipids exhibit the out-
standing performance (AUC > 0.900) to discriminate 
between NR and CAA, serving as the potential diagnostic 
markers for CAA. Undoubtedly, further validation is 
needed for the clinical application of our discovery due 
to limitations in clinical samples and lipid standards.

Abbreviations
CRC, colorectal cancer; CA, colorectal adenoma; CAA, 
colorectal advanced adenoma; FIT, fecal immunochemis-
try test; UHPLC-HRMS, ultra-high-performance liquid 
chromatography-high resolution mass spectrometry; QC, 
quality control; TAGs, triacylglycerols; DAG, diacylgly-
cerol; PlsEtn, plasminogen; FAs, fatty acids; PCs, phos-
phatidycholines; LPCs, lysophatidycholines; GPs, 
glycerophospholipids; GLs, glycerides; SLs, sphingoli-
pids; PG, phosphatidyl glycerol; PI, phosphatidylInositol; 
OPLS-DA, orthogonal partial least-squares discriminant 
analysis; PCA, principal component analysis; ROC, 

Figure 8 The trend of differential lipids in NR and CAA groups. (A) Docosanamide; (B) LPC 17:0; (C) LPC 18:0; (D) Methyl palmitate; (E) Palmitic Acid; (F) PC 18:0e; (G) 
PC 31:2; (H) PC 35:6e; (I) PC 37:7; (J) PC 42:9; (K) PC 44:5; (L) TAG 57:1. *Means the significant difference of levels of differential lipid between NR and CAA. The levels of 
differential lipids were displayed with mean ± SEM.
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receiver operating characteristic curve, AUC, area under 
the curve; LDL-C, low-density lipoprotein cholesterol.
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