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Abstract: A series of novel amphiphilic macromolecules composed of alkyl chains as the hydro-

phobic block and poly(ethylene glycol) as the hydrophilic block were designed to inhibit highly 

oxidized low density lipoprotein (hoxLDL) uptake by synthesizing macromolecules with negatively 

charged moieties (ie, carboxylic acids) located in the two different blocks. The macromolecules 

have molecular weights around 5,500 g/mol, form micelles in aqueous solution with an average 

size of 20−35 nm, and display critical micelle concentration values as low as 10−7 M. Their charge 

densities and hydrodynamic size in physiological buffer solutions correlated with the hydrophobic/

hydrophilic block location and quantity of the carboxylate groups. Generally, carboxylate groups 

located in the hydrophobic block destabilize micelle formation more than carboxylate groups in 

the hydrophilic block. Although all amphiphilic macromolecules inhibited unregulated uptake of 

hoxLDL by macrophages, inhibition effi ciency was infl uenced by the quantity and location of 

the negatively charged-carboxylate on the macromolecules. Notably, negative charge is not the 

sole factor in reducing hoxLDL uptake. The combination of smaller size, micellar stability and 

charge density is critical for inhibiting hoxLDL uptake by macrophages.

Keywords: polymeric micelles, amphiphilic macromolecules, highly oxidized low-density 

lipoproteins, scavenger receptor inhibition

Introduction
Atherosclerosis is a process characterized by the buildup of low density lipoproteins 

(LDL) within the vascular intima and ensuing interactions between macrophages and 

their extracellular matrix molecules; it is the single leading cause of death in America 

(Williams and Tabas 1995; Olsson et al 2001; Camejo et al 2002; Thom et al 2006). 

Recent advances in nanotechnology for cardiovascular health are abundant and include 

the application of nanosensors to monitor nitro-oxidative species (oxidative stress) 

produced in the failing heart (Malinski 2005), microarrays or microchips for the study 

of cardiovascular disease (Carella et al 2003), electrospun nanofi bers as tissue engi-

neered vascular grafts (He, Ma, et al 2005; He, Yong, et al 2005; Ma et al 2005), and 

carbon nanotubes implanted for anticoagulant and antithrombotic properties (Endo 

et al 2005; Meng et al 2005). In contrast to the implantable devices described above, 

an avenue of particular interest in nanotechnology is the use of a “nano-blocker” to 

prevent highly oxidized LDL (hoxLDL) uptake via scavenger receptors. Native LDL 

uptake is mediated by feedback inhibition, whereas binding of hoxLDL to macro-

phage scavenger receptors leads to unregulated cholesterol accumulation and foam 

cell formation. Thus, controlling binding to hoxLDL is an important focus for new 

atherosclerotic treatments (Brown and Goldstein 1983; Steinberg 1997).

Previous work on LDL uptake has focused on synthetic compounds that target and 

bind scavenger receptors, such as SR-A and CD36 that appear to be of primary importance 
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in atherogenesis (Yoshiizumi et al 2004; Boullier et al 2005; 

Broz et al 2005; Guaderrama-Diaz et al 2005). For example, 

phosphocholine as a ligand for CD36 has been shown to inhibit 

the binding of hoxLDL in CD36-expressing cells (Boullier 

et al 2005). In addition, sulfatide derivatives for targeting SR-A 

have been shown to reduce acetylated LDL binding and uptake 

(Yoshiizumi et al 2004). Although previous efforts to develop 

scavenger receptor blockers are encouraging, increased effi ciency 

may be reached through the use of an organized 3D presentation 

of the targeting groups or a multifunctional particle to simultane-

ously target several scavenger receptors (Chnari et al 2006). To 

create a multifunctional nano-blocker, one could exploit the fact 

that all scavenger receptors share an affi nity for anionic ligands 

(Krieger et al 1993).

We previously reported a unique series of polymers, 

amphiphilic scorpion-like macromolecules (AScM) (Tian et 

al 2004), that self-organize into micelles and not only act as 

a drug delivery system but also decrease hoxLDL’s uptake. 

Previous results show promise for AScMs as a hydrophobic 

drug carrier in terms of low CMC (critical micelle concentra-

tion), low cytotoxicity, high drug loading effi ciency, and sus-

tained release (Djordjevic et al 2005; Tao and Uhrich 2006). 

These macromolecules consist of three major components: 

poly(ethylene glycol) (PEG), mucic acid, and aliphatic acid 

chains, as seen in Figure 1 (Tian et al 2004). These building 

blocks were chosen because they are naturally occurring or 

biocompatible compounds, and each component is joined 

by potentially biodegradable ester bonds. PEG contributes 

to the hydrophilicity and is used to prevent the non-specifi c 

adsorption of proteins, mucic acid is a multi-hydroxylated 

saccharide providing reaction sites for further modifi cation 

of the polymer, and aliphatic acid chains control the polymer 

hydrophobicity.

Previous studies have focused on anionic AScMs that 

spontaneously form micelles at concentrations above the CMC 

(10−7M) (Tian et al 2004). Each AScM is functionalized with 

a carboxylic acid, such that the micellar nanoparticle displays 

anionic charges in an organized and clustered confi guration. 

The anionic AScMs reduced hoxLDL uptake by up to 80%, and 

both SR-A and CD36 receptors were involved in the uptake of 

the polymers and hoxLDL (Chnari et al 2005, 2006).

In this paper, we present a series of macromolecules that 

maintain two structural elements as previously described: 

mucic acid derivatives as the hydrophobic component and 

PEG as the hydrophilic component. For this investigation, 

the location and number of carboxylic acid groups were 

varied with our synthetic design; carboxylate groups can be 

precisely located in either the hydrophobic or hydrophilic 

domains, or in both domains (Figure 2).

The inhibition ability of these novel macromolecules for 

highly oxidized LDL by macrophages were studied as well 

as their solution properties, including micelle aggregation 

size, CMC and charge density.

Materials and methods
Chemical reagents for synthesis
Heterobifunctional poly(ethylene glycol) (HCl·NH

2
-

PEG-COOH) with molecular weight of 5000 Da was 

obtained from Nektar (San Carlos, CA). 4-(Dimethylamino)

pyridinium p-toluenesulfonate (DPTS) was prepared as previ-

ously described. Monomethoxy-poly(ethylene glycol) (mPEG) 

with molecular weights of 5000 Da was purchased from 

Sigma-Aldrich. All PEG reagents were dried by azeotropic 

distillation with toluene. β-Glutamic acid, 5-aminoisophthalic 

acid, 4-hydroxybenzoic acid, N-hydroxyl succinimide (NHS), 

triethylamine (99.7%) and 1,3-dicyclohexylcarbodiimide 

(DCC) in 1 M methylene chloride solution were purchased 

from Aldrich and used as received. All other reagents and 

solvents were reagent grade and used as received.

Macromolecules 1CM, 0CM and 1CP
The macromolecules 1CM, 0CM and 1CP were prepared as 

previously described (Tian et al 2004; Chnari et al 2006).

Chemical characterization
Chemical structures and compositions were confi rmed by 
1H and 13C NMR spectroscopy with samples (∼5–10 mg/ml) 

Aliphatic Acid

20 nm

(a)

(b)

Mucic Acid PEG

Figure 1 Schematic of an amphiphilic macromolecule: at concentrations greater 
than 10-7 M, the unimers in (a) self-aggregate to form micellar nanoparticles (b) 
with hydrodynamic diameters of ~20 nm.
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dissolved in CDCl
3
 solvent on Varian 400 MHz spectrom-

eters, using tetramethylsilane as the reference signal. IR 

spectra were recorded on a Mattson Series spectrophotometer 

(Madison Instruments, Madison, WI) by solvent (methylene 

chloride) casting on a KBr pellet. Negative ion-mass spectra 

were recorded with a ThermoQuest Finnigan LCQTM
DUO 

System (San Jose, CA) that includes a syringe pump, an 

optional divert/inject valve, an atmospheric pressure ioniza-

tion (API) source, a mass spectrometer (MS) detector, and 

the Xcalibur data system. Meltemp (Cambridge, Mass) was 

used to determine the melting temperatures (T
m
) of all the 

intermediates.

Gel permeation chromatography (GPC) was used to 

obtain molecular weight and polydispersity index (PDI). 

It was performed on Perkin-Elmer Series 200 LC system 

equipped with Pl gel column (5 µm, mixed bed, ID 7.8 mm, 

and length 300 mm) and with a Water 410 refractive index 

detector, Series 200 LC pump and ISS 200 Autosampler. 

Tetrahydrofuran (THF) was the eluent for analysis and sol-

vent for sample preparation. Sample was dissolved into THF 
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Figure 2 Nomenclature for amphiphilic macromolecules, where R in the chemical structures represents a lauroyl carbonyl group.
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(∼5 mg/ml) and fi ltered through a 0.45 µm PTFE syringe fi lter 

(Whatman, Clifton, NJ) before injection into the column at 

a fl ow rate of 1.0 ml/min. The average molecular weight of 

the sample was calibrated against narrow molecular weight 

polystyrene standards (Polysciences, Warrington, PA).

Synthesis of 1CM1CP
Mucic acid lauroyl derivative (1) was prepared as previously 

described (Tian et al 2004). Compound 1 (0.47 g, 0.50 mmol) 

was mixed with thionyl chloride (20 ml, 270 mmol) and heated 

to refl ux temperature for 4 hours. After cooling to room tem-

perature, the excess thionyl chloride was removed by rotary 

evaporation. The acyl chloride intermediate was dissolved in 

5.0 ml anhydrous methylene chloride solution with 2.0 ml 

pyridine. Heterobifunctional poly(ethylene glycol) (HCl·NH
2
-

PEG-COOH) (M
w
 = 5.0 kDa) (0.50 g, 0.10 mmol) in 5.0 ml 

methylene chloride solution was added dropwise over 2 min. 

After 24 hours stirring at room temperature, the reaction mix-

ture was acidifi ed by 0.1 N HCl aqueous solution (10 ml × 2) 

and washed by brine (10 ml). The organic portion was dried 

over sodium sulfate, concentrated by rotary evaporator and 

added into diethyl ether (60 ml) to precipitate the product.

1CM1CP was obtained as white waxy solid. 0.52 g, 86% 

yield. 1H NMR (CDCl
3
) (d ): 5.59 (d, 1H, CH), 5.62 (d, 1H, 

CH) 5.21 (m, 1H, CH), 5.02 (m, 1H, CH), 3.64 (m, ∼0.4kH, 

CH
2
 on PEG), 2.38 (t, 4H, CH

2
), 2.21 (t, 4H, CH

2
), 2.57 

(t, 2H, CH
2
-COOH of PEG), 1.61 (m, 4H, CH

2
), 1.51 (m, 

4H, CH
2
), 1.25 (m, 48H, CH

2
), 0.88 (t, 12H, CH

3
). IR (KBr, 

cm−1): 2911 (C-H), 1754 (C = O), 1250, 1105, (C-O). T
m
: 

58.0–59.5 °C; GPC: M
w
: 5500; PDI: 1.1.

Synthesis of 1BM
Molecule 1 (0.94 g, 1.0 mmol) was mixed with thionyl chloride 

(20 ml, 270 mmol) and heated to refl ux temperature for 4 hours. 

After cooling to room temperature, the excess thionyl chloride 

was removed by rotary evaporation. A solution of anhydrous 

THF (10 ml) and pyridine (5.0 ml) was added to the reaction 

mixture. 4-Hydroxybenzoic acid (0.55 g, 4.0 mmol) dissolved 

in THF (5.0 ml) was added dropwise over 2 min at 0 °C. The 

reaction was warmed to room temperature and stirred for 

6 hours. The reaction was quenched by adding 1 N HCl (400 

ml) to the reaction mixture. The solid was collected by vacuum 

fi ltration and obtained as intermediate product, 2.

Intermediate 2 was obtained as white solid, 0.89 g, 75% 

yield. 1H NMR (CDCl
3
) (d): 8.02 (d, 4H, ArH), 6.95 (d, 4H, 

ArH), 5.59 (m, 2H, CH), 4.94 (m, 2H, CH), 2.32 (m, 8H, 

CH
2
), 1.49 (m, 8H, CH

2
), 1.25 (m, 48H, CH

2
), 0.86 (t, 12H, 

CH
3
). IR (KBr, cm−1): 2930 (C-H), 1752 (C = O), 1250, 

1148 (C-O), 742 (Aromatic C-C). T
m
: 154.5–156.5 °C. FW: 

1167; MS: 1165.5.

Intermediate 2 (0.59 g, 0.50 mmol), mPEG (M
w
 = 5.0 

kDa, after azeotropic distillation) (0.50 g, 0.10 mmol) and 

DPTS (0.16 g, 0.50 mmol) were dissolved in methylene 

chloride (10 ml) and DMF (1.5 ml) solution. 1 M DCC in 

methylene chloride solution (1.0 ml, 1.0 mmol) was added 

slowly. After 24 hours stirring at room temperature, the side 

product was removed by fi ltration. The organic solution was 

washed by 0.1 N HCl aqueous solution (10 ml × 2) and brine 

(10 ml). The organic portion was dried over sodium sulfate 

and concentrated by rotary evaporator. Diethyl ether (15 ml) 

was added to precipitate the product 1BM. Additional ethyl 

ether (15 ml × 2) was used to wash the product.

1BM was obtained as white waxy solid. 0.54 g, 88% yield. 
1H NMR (CDCl

3
) (d): 8.00 (d, 4H, ArH), 6.93 (d, 4H, ArH), 

5.60 (m, 2H, CH), 4.94 (m, 2H, CH), 2.31 (m, 8H, CH
2
), 1.47 

(m, 8H, CH
2
), 1.25 (m, 48H, CH

2
), 0.88 (t, 12H, CH

3
). IR (KBr, 

cm−1): 2956 (C-H), 1755 (C = O), 1258, 1106 (C-O), 733 (Aro-

matic C-C). T
m
: 55.4–56.5 °C. GPC: M

w
: 5500; PDI: 1.2.

Synthesis of 2CM
Compound 1CM (0.60 g, 0.10 mmol; after azeotropic dis-

tillation with toluene) and NHS (0.50 g, 0.43 mmol) were 

dissolved in 20 ml methylene chloride and DMF (0.8 ml). 

DCC in methylene chloride (0.50 ml, 0.50 mol) was added 

dropwise under argon. After 12 h, the side product was 

removed by vacuum fi ltration. The isolated solution was 

directly reacted with β-glutamic acid (0.020 g, 0.43 mmol) 

in the present of triethylamine (1.0 ml, 7.0 mmol). After 8 

hours, the reaction mixture was washed by 0.1 N HCl aque-

ous solution (10 ml × 2), brine (10 ml), dried over sodium 

sulfate and concentrated by rotary evaporator. Diethyl ether 

(15 ml) was added to precipitate the product 2CM.

2CM was obtained as white waxy solid. 0.43 g, 71% 

yield. 1H NMR (CDCl
3
) (d): 5.62 (m, 2H, CH), 5.08 (m, H, 

CH), 3.66 (m, ∼0.4kH, CH
2
 on PEG), 2.38 (t, 4H, CH

2
), 2.21 

(t, 4H, CH
2
), 1.61 (m, 4H, CH

2
), 1.51 (m, 4H, CH

2
), 1.25 (m, 

48H, CH
2
), 0.88 (t, 12H, CH

3
). IR (KBr, cm−1): 2925 (C-H), 

1750 (C = O), 1229, 1146 (C-O). T
m
: 54.6–55.2 °C.

 
GPC: M

w
: 

5500; PDI: 1.2.

Synthesis of 0BM
Compound 1CM (0.60 g, 0.10 mmol; after azeotropic 

distillation with toluene), DPTS (0.31 g, 1.0 mmol) and 

p-phenetidine (0.80 ml, 1.0 mmol) were dissolved in 

methylene chloride (20 ml). DCC in methylene chloride 

(0.20 ml, 0.20 mol) was added dropwise under argon. After 
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12 h, the side product was removed by vacuum fi ltration. 

The organic portion was washed by 0.1 N HCl solution 

(10 ml × 2), brine (10 ml), dried over sodium sulfate and 

concentrated under rotary evaporator. Diethyl ether (15 

ml) was added to precipitate the product.

0BM was obtained as white waxy solid. 0.56 g, 92% yield. 
1H NMR (CDCl

3
) (d): 7.21 (d, 2H, ArH), 6.71 (d, 2H, ArH), 

5.78 (d, 1H, CH), 5.49 (d, 1H, CH) 5.38 (m, 1H, CH), 4.95 

(m, 1H, CH), 3.66 (m, ∼0.4kH, CH
2
 on PEG), 2.38 (t, 4H, 

CH
2
), 2.21 (t, 4H, CH

2
), 1.61 (m, 4H, CH

2
), 1.51 (m, 4H, 

CH
2
), 1.25 (m, 48H, CH

2
), 0.88 (t, 12H, CH

3
). IR (KBr, cm−1): 

2917 (C-H), 1737 (C = O), 1250, 1120 (C-O), 780 (Aromatic 

C-C). T
m
: 55.5–57.2 °C.GPC: M

w
: 5500; PDI: 1.2.

Dynamic light scattering study
Dynamic light scattering (DLS) analyses were performed 

using a Malvern Instruments Zetasizer Nano ZS-90 instru-

ment (Southboro, MA), with reproducibility being verifi ed 

by collection and comparison of sequential measurements. 

Polymer solutions (1.0 wt %) in phosphate buffered aqueous 

solution (PBS) (pH 7.4) were prepared. Measurements were 

performed in triplicate at a 90° scattering angle at 25 °C. 

Z-average sizes and standard deviation of polymers in solu-

tion were collected and analyzed.

Fluorescence spectroscopy
Critical micelle concentration (CMC) measurements were 

carried out on a Spex fl uoroMax (Piscataway, NJ) spectro-

fl uorometer at 25 °C. Using pyrene as the probe molecule, a 

stock solution at 5.00 × 10−7 M in pH 7.4 PBS solution was 

prepared. Polymer samples were dissolved in the stock pyrene 

solutions then diluted to specifi c concentrations. Excitation 

was performed from 300 nm to 360 nm, using 390 nm as the 

emission wavelength. Pyrene maximum absorption shifted 

from 332 nm to 334.5 nm upon secondary micelle formation. 

The ratio of absorption of polymer (334.5 nm) to pyrene only 

(332 nm) was plotted as the logarithm of polymer concentra-

tions. The infl ection point of the curves was taken as CMC.

Zeta potential
Charge densities of all polymeric micelle solutions were 

measured by the zeta potential method using a Malvern 

Instruments Zetasizer Nano ZS-90 instrument (Southboro, 

MA), with reproducibility verifi ed by collection and com-

parison of sequential measurements. Instrument settings and 

calculation parameters were defi ned as temperature at 25 °C, 

dispersant viscosity at 0.89 cP and dielectric constant of 

78.5. The viscosity of the samples was estimated to be that 

of water. All the samples measured were prepared at 10−4 M 

in PBS solution (pH 7.4).

Preparation of micelles for in vitro testing
Micelles were freshly prepared and used within 7 days at 

10−4 M in serum-free RPMI medium (without FBS). The 

micelles were then combined with serum-free RPMI and/or 

hoxLDL to create a fi nal macromolecule concentration of 

10−6 M.

Lipoprotein model: LDL oxidation
Highly oxidized LDL (hoxLDL) was prepared within fi ve 

days of each experiment. BODIPY-labeled and unlabeled 

human plasma derived LDL (Molecular Probes, OR) was oxi-

dized for 18 hours in the presence of 10 µM CuSO
4 
(Sigma) at 

37 °C and 5% CO
2
 (Oorni et al 1997; Chang et al 2001). The 

oxidation was stopped with 0.01% w/v EDTA. Thiobarbitu-

ric acid reactive substances (TBARS), lipid hydroperoxide 

(LPO), conjugated dienes, and electrophoretic mobility (with 

the help of Dr. Schaich) was performed to ensure accurate 

and consistent oxidation levels were attained.

LDL internalization
The internalization of hoxLDL by macrophage cells was 

assayed by incubating fluorescently labeled hoxLDL 

(10ug/mL) with IC21 macrophages for 24 hours at 37 °C 

and 5% CO
2
. The cells were then washed twice with serum-

free RPMI medium. The cell-associated fl uorescence was 

measured by acquiring images on a confocal microscope 

(Sun Microsystems, Santa Clara, CA) and quantifying the 

fl uorescence intensity using Image Pro Plus 5.1 software 

(Media Cybernetics, San Diego, CA) and normalized to 

cell number.

Cell culture
IC21 macrophages, a well established differentiated murine 

cell line acquired from ATCC, were used for all studies. 

The cells have morphology and structure comparable to 

that of freshly isolated activated mouse peritoneal mac-

rophages, and have demonstrated LDL receptor activity 

(Traber et al 1981). IC21 cells degrade acetylated LDL 

and thus an acceptable model for the study of cholesterol 

and lipoprotein metabolism by macrophages. These cells 

are an economical alternative to freshly isolated mouse 

peritoneal macrophages. The cells were propagated with 

RPMI media containing 0.4 mM Ca2+ and Mg2+, (ATCC) 

and supplemented with 10% fetal bovine serum (FBS). 

The cells were maintained in an incubator with 5% CO
2
 at 
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37 °C and harvested prior to reaching confl uence. All cell 

assays were performed in triplicate.

Results
Synthesis of the macromolecules
Several different amphiphilic macromolecules were synthe-

sized in which the number and location of carboxylate groups 

were modifi ed (Figure 3).

The 1CM, 0CM and 1CP were prepared as described 

in previous work (Chnari et al 2006). The design rationale 

for each macromolecule is as follows. 1CM1CP probes the 

combinatorial activity of a carboxylic acid present in both the 

hydrophilic and hydrophobic blocks of AScMs. It was suc-

cessfully synthesized by coupling (NH
2
-PEG-COOH) with 

mucic acid acyl derivatives (1) activated as acyl chloride. 

1BM was prepared to investigate any differences between 

aliphatic and aromatic carboxylates, in this molecule, car-

boxylates are located in the hydrophobic domain. Our fi rst 

attempt to generate an aromatic carboxylate group was not 

successful; we attempted to couple molecule 1CM directly 

with 4-hydroxybenzoic acid. However, the low nucleophilic-

ity of the phenol yielded unacceptably low coupling effi cien-

cies. Instead, we prepared the symmetric intermediate (2), 

which was easy to purify and then successfully coupled with 

mPEG-OH (5k) to obtain 1BM. The macromolecule 0BM 

was prepared as a control for 1BM and synthesized through 

direct esterifi cation of the carboxylate on polymer 1CM. 

2CM was designed to study how two carboxylates in the 

hydrophobic block may synergistically infl uence hoxLDL 

uptake. Overall, all coupling reactions were achieved in 

reasonably high coupling effi ciency and high yield. All seven 

macromolecules displayed a comparable molecular weights 

(∼5500) and melting temperatures (∼56 °C).

Physical properties of the AScMs
The molecules are similar in size (23–27 nm) in aque-

ous media (Table 1) except for 2CM, which is slightly 

larger (∼35 nm), and all macromolecules display mono-

modal size distributions. The CMC values are in similar 

range, again with the exception of 2CM, which has the 

Figure 3 Synthetic outline for the amphiphilic macromolecules.
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highest CMC value (1.8 × 10−6 M); the CMC values is 

approximately 7 times larger than the CMC of 1CM, for 

example.

With respect to charge density, the polymers 0CM 

and 0BM are charge neutral yet still register slightly 

negative zeta potential values (Table 1). 1CM, 1CP and 

2CM, display a similar zeta potential value (∼ –10mV). 

Solutions of 1CM1CP display the most negative zeta 

potential (∼ –20 mV), which is double the values for 

1CM, 1CP and 2CM.

Highly-oxidized LDL uptake inhibition 
studies
At 24 hours, hoxLDL uptake in macrophages was signifi cantly 

reduced in the presence of the anionic nano-sized micelles, 

namely 1CM, 1CP, 1CM1CP, 2CM and 1BM (Figure 4). The 

degree of uptake was normalized to controls without polymers 

present; positive controls included the neutral micelles (0CM 

and 0BM). Among the effective hoxLDL uptake inhibitors, the 

1CM1CP micelles resulted in the highest inhibition of hoxLDL 

uptake, reducing hoxLDL internalization more signifi cantly 

(p < 0.05) than all the other polymer micelles.

Discussion
Synthesis and solution-based properties
Micelle formation and nanoscale size are both important in 

hoxLDL inhibition; our hypothesis about the macrophage 

receptors is that they are slightly positively charged, such that 

nanoscale micelles with a high density of negative charges are 

more accessible via electrostatic interactions.

All seven amphiphilic macromolecules self-organized to 

form micelles in aqueous solutions, as indicated by the CMC 

values near 10–6 to10–7 M. The critical micelle concentration 

(CMC) is a crucial parameter that measures the stability 

of amphiphiles. All amphiphilic macromolecules have 

relatively low CMC values (from 10–6 to 10–7 M), a critical 

characteristic for biological applications as low CMC values 

indicate higher stability upon dilution in blood plasma. Most 

of the AScMs have similar CMC values, indicating that a 

single negative charge does not prevent self-aggregation into 

Table 1 Particle sizes, critical micelle concentrations and zeta-potential values of the amphiphilic macromolecules at pH 7.4

 1CM 0CM 1CP 1CM1CP 1BM 2CM 0BM

Z-average size 23.2 ± 5.2 27.4 ± 2.5 23.6 ± 5.9 23.1 ± 4.8 23.4 ± 3.7 35.1 ± 4.7 23.9 ± 4.2
(nm) at 10−4M       
CMC (M) 3.2 × 10−7 5.7 × 10−7 1.0 × 10−7 8.8 × 10−7 7.0 × 10−7 1.8 × 10−6 7.8 × 10−7

Zeta-potential −10.4 −0.47 −9.60 −20.1 −15.3 −9.20 −3.46
(mV) at 10−4M        

Figure 4 After 24 hours, percent of hoxLDL uptake by macrophages in the presence of amphiphilic macromolecules, compared to hoxLDL alone. Macromolecule concen-
tration is 10−6 M.
* represents a signifi cant decrease (P < 0.05) in comparison to hoxLDL alone.
# represents a signifi cant decrease (P < 0.05) in comparison to hoxLDL with 1BM or 1CM.
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micelles at pH 7.4. Notably, molecule 2CM has a relatively 

higher CMC value compared to the other macromolecules. 

Two aliphatic carboxylate groups on hydrophobic domain of 

polymeric micelles appear to slightly inhibit micelle forma-

tion, possibly due to the repulsion between adjacent negative 

charges formed in slightly basic (pH 7.4) solution.

Similar to the CMC data, molecule 2CM displays dif-

ferent behavior than the other macromolecules in terms 

of size. The micellar sizes of all AScMs, except 2CM, are 

approximately 20 nm (Table 1), indicating that a single 

negative charge does not change the micelle aggregation 

size. In contrast, molecule 2CM is larger in size (35 nm) 

than the other macromolecules. Compared with the other 

macromolecules, 2CM is relatively less hydrophobic due to 

the presence of two carboxylates in the hydrophobic block, 

resulting in a “looser” aggregation or larger size.

Zeta potential measurements determines the surface charge 

densities, which is expected to be negative for the carboxyl-

ate-containing amphiphilic macromolecules. The neutral 

macromolecules (0CM and 0BM) registered slight negative 

charges (–3.5 mV and –0.4 mV, respectively). 1BM has a 

slightly more negative zeta potential than 1CM as benzoic 

acid is more acidic than the aliphatic carboxylic acid. Notably, 

1CM1CP has the most negative value (–20 mV) likely because 

it contains two carboxylate groups, one in the hydrophobic 

block and one in the hydrophilic block. Molecule 2CM also 

bears two negative charges, but both carboxylates reside within 

the hydrophobic core. As a result, the charge density does not 

increase in comparison with 1CM.

Inhibition of hoxLDL uptake by 
amphiphilic nanoparticles
The uncontrollable internalization of hoxLDL by macrophage 

cells is an essential aspect in atherosclerotic progression 

(Patel et al 2000). It has previously been proven that 1CM 

molecules signifi cantly reduce hoxLDL uptake through 

blockage of SR-A and CD36 scavenger receptors (Chnari 

et al 2006). The mechanism that leads to enhanced hoxLDL 

internalization with the anionic micelle particles relative 

to similar neutral polymers is not completely understood; 

therefore, nanoparticles with anionic groups placed in precise 

locations were prepared and evaluated.

The key fi nding in this study is that charge alone does not 

determine the extent of hoxLDL internalization reduction by 

macrophage cells. 1CM1CP is the most effective macromol-

ecule in reducing hoxLDL internalization, while the similarly 

charged 2CM reduced hoxLDL uptake even less than 1CM. 

We hypothesize that the size of the 2CM might modulate the 

behavior of nanoparticle binding to the scavenger receptors. 

Scavenger receptors typically bind to particles and are then 

internalized through clathrin-coated pits (Platt and Gordon 

2001). Previous studies have shown that the increased size of 

PEGylated nanoparticles, nanoscale iron oxide contrast agents, 

and colloids can promote their scavenger receptor mediated 

uptake in macrophages (Moghimi and Szebeni 2003; Raynal 

et al 2004; Vonarbourg et al 2006). However, consequences 

for scavenger receptor ligands such as hoxLDL were not 

evaluated. The exact mechanism for micellar nanoparticle 

binding in our system is not clear, but we offer two potential 

mechanisms. For example, the larger 2CM micellar nanopar-

ticles (∼35 nm) may promote the internalization of scavenger 

receptors in relation to the smaller diameter of 1CM1CP 

micelle (23.1 nm) and cooperatively facilitate hoxLDL uptake 

through mechanisms not yet clear. Alternately, the larger 

nanoparticles may interfere with folding and internalization 

of scavenger receptors. In either case, the major result is that 

the reduction in hoxLDL internalization is not addressed from 

charge alone: The 1CM decreases hoxLDL internalization 

more signifi cantly than 2CM, even though both exhibit similar 

values of zeta potential (∼ −10 mV).

Conclusion
Several amphiphilic scorpion-like macromolecules were 

synthesized to investigate how the number and location of 

carboxylate groups infl uence hoxLDL inhibition. All mac-

romolecules self-organized into stable nanoscale micelles in 

an aqueous environment. Carboxylate groups located in the 

hydrophobic block infl uenced micelle size and CMC more 

than carboxylate groups in the hydrophilic block. Overall, 

molecule 1CM1CP demonstrates several unique characteris-

tics: small size (23.1 nm), low CMC (∼10−7 M) and high zeta 

potential (∼ –20 mV). The combination of size, nanoparticle 

stability and charge density appear to be critical for inhibition 

hoxLDL uptake by macrophages.

Future investigations will focus on identifying the mode 

of micelle internalization, with a view to support or disprove 

the hypothesis that micelle diameter affects scavenger 

receptor occupancy. Mixed micelles will also be tested to 

determine whether a micelle can be created that will decrease 

hoxLDL internalization even more signifi cantly than the 

1CM1CP alone.

Acknowledgments
The authors gratefully acknowledge funding support from the 

National Science Foundation (BES-9983272; BES 0201788); 

and the American Heart Association (9951060T; 0455823T). 

Powered by TCPDF (www.tcpdf.org)



International Journal of Nanomedicine 2007:2(4) 705

Nanoscale amphiphilic macromolecules as lipoprotein inhibitors

We thank Angela Bae and Eric Wydra for assistance in the 

synthesis and characterization; and Professors Joachim Kohn 

and Stephan S. Isied (Chemistry, Rutgers) for access to their 

equipment.

References
Boullier A, Friedman P, Harkewicz R, et al. 2005. Phosphocholine as a 

pattern recognition ligand for CD36. J Lipid Res, 46:969–76.
Brown M , Goldstein J. 1983. Lipoprotein metabolism in the macrophage: 

implications for cholesterol deposition in atherosclerosis. Ann Rev 
Biochem, 52:223–61.

Broz P, Benito S, Saw C, et al. 2005. Cell targeting by a generic receptor-
targeted polymer nanocontainer platform. J Control Release, 
102:475–88.

Camejo G, Olsson U, Hurt-Camejo E, et al. 2002. The extracellular matrix 
on atherogenesis and diabetes-associated vascular disease. Athero-
sclerosis Supp, 3–9.

Carella M, Volinia S , Gasparini P. 2003. Nanotechnologies and microchips 
in genetic diseases. J Nephrol, 16:597–602.

Chang M, Potter-Perigo S, Wight T, et al. 2001. Oxidized LDL bind to 
nonproteoglycan components of smooth muscle extracellular matrices. 
J Lipid Res, 42:824–33.

Chnari E, Nikitczuk J, Uhrich K, et al. 2005. Nanoscale anionic macromol-
ecules can inhibit cellular uptake of differentially oxidized low density 
lipoproteins. Biomacromolecules, 26:3749–58.

Chnari E, Nikitczuk J, Wang J, et al. 2006. Engineered Polymeric nanopar-
ticles for Receptor-Targeted Blockage of Oxidized Low Density 
Lipoproteins Uptake and Atherogenesis in macrophages. Biomacro-
molecules,

Djordjevic J, Barch M, Uhrich K. 2005. Polymeric micelles based on amphi-
philic scorpion-like macromolecules: novel carriers for water-insoluble 
drugs. Pharm Res, 22:24–32.

Endo M, Koyama S, Matsuda Y, et al. 2005. Thrombogenicity and blood 
coagulation of a microcatheter prepared from carbon nanotube-nylon-
based composite. Nano Lett, 5:101–5.

Guaderrama-Diaz M, Solis C, Velasco-Loyden G, et al. 2005. Control of 
scavenger receptor-mediated endocytosis by novel ligands of different 
length. Mol Cell Biochem, 271:123–32.

He W, Ma Z, Yong T, et al. 2005. Fabrication of collagen-coated biode-
gradable polymer nanofi ber mesh and its potential for endothelial cells 
growth. Biomaterials, 26:7606–15.

He W, Yong T, Teo W, et al. 2005. Fabrication and endothelialization of 
collagen-blended biodegradable polymer nanofi bers: potential vascular 
graft for blood vessel tissue engineering. Tissue Eng, 11:1574–88.

Krieger M, Acton S, Ashkenas J, et al. 1993. Molecular Flypaper, Host 
Defense, and Atherosclerosis: structure, binding properties, and func-
tions of macrophage scavenger receptors. J Biol Chem, 268:4569–72.

Ma Z, He W, Yong T, et al. 2005. Grafting of gelatin on electrospun 
poly(caprolactone) nanofi bers to improve endothelial cell spreading and 
proliferation and to control cell Orientation. Tissue Eng, 11:1149–58.

Malinski T. 2005. Understanding nitric oxide physiology in the heart: a 
nanomedical approach. Am J Cardiol, 96:13i–24i.

Meng J, Kong H, Xu H, et al. 2005. Improving the blood compatibility of 
polyurethane using carbon nanotubes as fi llers and its implications to 
cardiovascular surgery. J Biomed Mater Res A, 74:208–14.

Moghimi S, Szebeni J. 2003. Stealth liposomes and long circulating 
nanoparticles: critical issues in pharmacokinetics, opsonization, and 
protein-binding properties. Prog Lipid Res, 42:463–78.

Olsson U, Ostergren-Lunden G, Moses J. 2001. Glycosaminoglycan-lipo-
protein interaction. Glycoconj J, 18:789–97.

Oorni K, Pentikainen M, Annila A, et al. 1997. Oxidation of low density 
lipoprotein particles decreases their ability to bind to human aortic 
proteoglycans. J Biol Chem, 272:21303–11.

Patel R, Moellering D, Murphy-Ullrich J, et al. 2000. Cell signaling by 
reactive nitrogen and oxygen species in atherosclerosis. Free Radical 
Biol Med, 28:1780–94.

Platt N, Gordon S. 2001. Is the class A macrophage scavenger receptor 
(SR-A) multifunctional? – The mouse’s tale. J Clin Invest, 108:649–54.

Raynal I, Prigent P, Peyramaure S, et al. 2004. Macrophage endocytosis 
of superparamagnetic iron oxide nanoparticles: mechanisms and 
comparison of ferumoxides and ferumoxtran-10. Investig Radiology, 
39:56–63.

Steinberg D. 1997. Low density lipoprotein oxidation and its pathobiological 
signifi cance. J Biol Chem, 272:20963–6.

Tao L, Uhrich K. 2006. Novel amphiphilic macromolecules and their in 
vitro characterization as stabilized micellar drug delivery systems. 
J Colloid Interf Sci, 298:102–10.

Thom T, Haase N, Rosamond W, et al. 2006. Heart Disease and Stroke Sta-
tistics – 2006 Update: A Report From the American Heart Association 
Statistics Committee and Stroke Statistics Subcommittee. Circulation, 
113:e85–e151.

Tian L, Yam L, Zhou N, et al. 2004. Amphiphilic scorpion-like macro-
molecules: design, synthesis, and characterization. Macromolecules, 
37:538–42.

Traber M, Defendi V, Kayden H. 1981. Receptor activities for low-density 
lipoprotein and acetylated low-density lipoprotein in a mouse macro-
phage cell line (IC21) and in human monocyte-derived macrophages. 
J Exp Med, 154:1852–67.

Vonarbourg A, Passirani C, Saulnier P, et al. 2006. Evaluation of pegylated 
lipid nanocapsules versus complement system activation and macro-
phage uptake. J Biomed Mater Res, 78A:620–8.

Williams K , Tabas I. 1995. The response-to-retention hypothesis of early 
atherogenesis. Arterioscler Thromb Vasc Biol, 15:551–61.

Yoshiizumi K, Nakajima F, Dobashi R, et al. 2004. 2,4-Bis(octadecanoyl
amino)benzenesulfonic acid sodium salt as a novel scavenger recep-
tor inhibitor with low molecular weight. Bioorg Med Chem Lett, 
14:2791–5.

Powered by TCPDF (www.tcpdf.org)



Powered by TCPDF (www.tcpdf.org)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


