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Purpose: Depression is a mood disorder accompanied by intensive molecular and neuro-
chemical alterations. Currently, available antidepressant therapies are not fully effective and 
are often accompanied by several adverse impacts. Accordingly, the ultimate goal of this 
investigation was to clarify the possible antidepressant effects of prodigiosins (PDGs) loaded 
with selenium nanoparticles (PDGs-SeNPs) in chronic unpredictable mild stress (CUMS)- 
induced depression-like behavior in rats.
Methods: Sixty Sprague Dawley rats were randomly allocated into six groups: control, 
CUMS group (depression model), fluoxetine (Flu, 10 mg/kg)+CUMS, PDGs+CUMS 
(300 mg/kg), sodium selenite (Na2SeO3, 400 mg/kg)+CUMS, and PDGs-SeNPs+CUMS 
(200 mg/kg). All treatments were applied orally for 28 consecutive days.
Results: PDGs-SeNPs administration prevented oxidative insults in hippocampal tissue, 
as demonstrated by decreased oxidant levels (nitric oxide and malondialdehyde) and 
elevated innate antioxidants (glutathione, glutathione peroxidase, glutathione reductase, 
superoxide dismutase, and catalase), in addition to the upregulated expression of nuclear 
factor erythroid 2-related factor 2 and heme oxygenase-1 in rats exposed to CUMS. 
Additionally, PDGs-SeNPs administration suppressed neuroinflammation in hippocampal 
tissue, as determined by the decreased production of pro-inflammatory cytokines (tumor 
necrosis factor-alpha, interleukin-1β, and interleukin-6), increased anti-inflammatory 
cytokine interleukin-10, and decreased inflammatory mediators (prostaglandin E2, 
cyclooxygenase-2, and nuclear factor kappa B). Moreover, PDGs-SeNPs administration 
in stressed rats inhibited neuronal loss and the development of hippocampal apoptosis 
through enhanced levels of B cell lymphoma 2 and decreased levels of caspase 3 and 
Bcl-2-associated X protein. Interestingly, PDGs-SeNPs administration improved hormo-
nal levels typically disrupted by CUMS exposure and significantly modulated hippocam-
pal levels of monoamines, brain-derived neurotrophic factor, monoamine oxidase, and 
acetylcholinesterase activities, in addition to upregulating the immunoreactivity of glial 
fibrillary acidic protein in CUMS model rats.
Conclusion: PDGs-SeNPs may serve as a prospective antidepressant candidate due to their 
potent antioxidant, anti-inflammatory, and neuroprotective potential.
Keywords: chronic unpredictable mild stress, prodigiosin-loaded selenium nanoparticles, 
oxidative stress, neuroinflammation, apoptosis, neurochemical markers
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Introduction
Depression is among the most common neuropsychiatric 
illnesses, affecting approximately 300 million people of all 
ages worldwide1 and representing a vast economic and 
social burden.2 Although the causative factors underlying 
depression are not clearly understood, sufficient evidence 
has suggested that neural oxidative insults, inflammation, 
and apoptosis, associated with neurodegeneration and 
reduced neurogenesis and neural plasticity, underlies the 
onset of major depressive disorder.3 The depletion of anti-
oxidant molecules due to the overproduction of reactive 
oxygen species (ROS) has been demonstrated to play an 
essential role in the development of depression.4 The 
pathophysiology of depression is also associated with acti-
vation of monoamine oxidase activity, suppression of 
monoaminergic neurotransmitters, and stimulation of pro- 
inflammatory mediators that regulate apoptotic signaling 
pathways resulting in neuronal loss.5,6

Although depression is considered to be a multifactorial 
mood disorder, stress is believed to be a major contributor, 
causing neural biochemical alterations and promoting the 
progression of depression symptoms.7 Chronic unpredictable 
mild stress (CUMS) has been widely employed as 
a mechanism for inducing depression-like behaviors in 
experimental animals to scrutinize the pathophysiological 
mechanisms underlying depression and evaluate novel anti-
depressant drug efficacy.8 The CUMS model is commonly 
associated with increased anxiety-like behavior and impaired 
hypothalamic-pituitary-adrenocortical (HPA) axis function.9 

The CUMS model is associated with reduced sucrose intake 
and reduced responsiveness, which are the primary symp-
toms of anhedonia, a central property of depressive 
disorders.10 Several medications are used for depression 
treatment, such as monoamine oxidase (MAO) inhibitors, 
tricyclic antidepressants, and selective serotonin reuptake 
inhibitors (SSRIs).11,12 However, the currently available 
depression therapies are not fully satisfactory for all 
patients13 and are accompanied by several adverse side 
effects.14 Thus, further investigations remain necessary to 
discover novel protocols for the development of safer and 
influential pharmacological therapies for depression.

Due to their availability, safety, and high efficiency, natural 
compounds are widely used to treat neurological disorders. 
Prodigiosins (PDGs), 2-methyl-3-pentyl-6-methoxyprodigi-
nine, are atripyrrole red pigments produced by many micro-
organisms, including Serratia marcescens and Serratia 
rubidaea.15 These bacterial secondary metabolites are 

characterized by their varied ranges of therapeutic benefits 
and bioactivities, such as antibacterial, antimalarial, 
antifungal,16 anticancer,17 antimetastatic,18 and immunosup-
pressive functions.19 Intriguingly, PDGs can suppress lipopo-
lysaccharide (LPS)-induced inflammatory responses by 
inhibiting the activation of c-Jun N-terminal kinase (JNK), 
p38 mitogen-activated kinase (MPAK), and nuclear factor 
kappa B (NF-κB).20 However, the neuroprotective potency of 
PDGs has not received sufficient attention.

Selenium (Se) is a primary trace element with enor-
mous human health benefits and unique biological and 
pharmacological properties, including protective effects 
against neurodegenerative diseases.21 Se can interact in 
the dynamics of the electron transport chain, modulate 
neurogenesis, mediate Ca2+ transport in neurons, and 
maintain redox balance.22 Several Se-based nanoformula-
tions have been developed and tested for efficacy against 
neurological diseases. For example, epigallocatechin- 
3-gallate-stabilized Se nanoparticles were found to inhibit 
amyloidβ (Aβ) aggregation in an Alzheimer’s disease 
model.23 Sialic acid and resveratrol modified with Se 
nanoparticles were able to effectively suppress 
Cu2+-mediated Aβ aggregation and promote fibril disag-
gregation into non-toxic oligomers.24,25 In addition, Se 
nanoparticles displayed powerful antioxidant potency, and 
selenoproteins promote endogenous antioxidant activities 
in brain tissue.22,26

The primary purpose of the current study was to 
explore the antidepressant and neuroprotective activity of 
PDGs-SeNPs against CUMS-induced depression-like 
behaviors in rats by evaluating behavioral changes, redox 
status, and inflammatory and apoptotic responses, in par-
allel with the evaluation of hormonal and neurochemical 
alterations in hippocampal tissue that are associated with 
the development of depression.

Materials and Methods
Synthesis of Prodigiosin-Loaded Selenium 
Nanoparticles (PDGs-SeNPs)
A volume of 10 mL of 10 mM sodium selenite (Na2SeO3) 
was mixed with 10 mL of PDGs (3.5 mg/mL) with mag-
netic stirring for 24 h. The obtained mixture (PDGs- 
SeNPs) was lyophilized using a vacuum freeze dryer 
(LabconcoFreezone 4.5 Liter Freeze Dry System, 
Marshall Scientific, Hampton NH, USA), and the obtained 
powder was used in the current investigation.
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Characterization of the Prepared 
Nanoparticles (PDGs-SeNPs)
The average diameter, size distribution, and surface 
charges of PDGs-SeNPs were determined by the 
Zetasizer Nano ZS particle analyzer (Zetasizer Nano 
ZS90, MalvernPanalytical, UK). The molecular structure 
of PDGs-SeNPs was detected using Fourier-transform 
infrared spectroscopy (FTIR; PerkinElmer, USA). The 
crystalline size of the nanoparticles was characterized by 
X-ray diffraction (XRD; Malvern Panalytical, UK). 
Moreover, transmission electron micrographs were 
recorded using a high-resolution transmission electron 
microscope (TEM; JEOL Ltd., Japan) equipped with an 
electron diffraction pattern.

Animals
Sixty healthy male Sprague Dawley rats (weight 150 ± 10 g) 
were purchased from the animal house of King Fahd for 
Medical Research, King Abdulaziz University, Jeddah, 
Saudi Arabia. All experimental protocols were approved 
by the Committee of Research Ethics for Laboratory 
Animal Care, Taif University (approval no. HAO-02- 
T-105). The 8th edition of the National Institute of Health 
for laboratory animals uses guidelines were followed in this 
procedure.

Before starting the experiment, the rats were main-
tained for two weeks in the laboratory animal room, with 
an indoor temperature of 21–25°C, relative humidity of 
45%–55%, and a light:dark cycle of 12:12 h. Commercial 
normal diet and clean drinking water ad libitum were 
provided to the animals.

Chronic Unpredictable Mild Stress 
(CUMS) Model
The establishment of CUMS was performed following the 
schedule previously described by Mao et al,27 with minor 
modifications. Briefly, the non-stressed control rats were 
maintained in standard plastic cages in another room, 
separate from the stressed rats. For the stress-exposed 
groups, each rat was separately assigned to one cage and 
subjected to the CUMS stress regime, which consisted of 
24-h exposure to water deprivation, food deprivation, the 
presence of a foreign object, or moist bedding (100 
g sawdust bedding in 200 mL water), combined with 
6-min forced swimming (8°C), 2-h restraint in an empty 
water bottle, 7-h cage tilt (45°C), exposure to white noise 
for 1-hand light exposure overnight. The stressors were 

applied twice a day in a random order for four weeks 
while avoiding applying the same stressor on two conse-
cutive days.

Experimental Protocol
Following the acclimatization period, the animals were 
randomly distributed into six groups (n= 10 animals / 
group) as follows: control (Control) group, unstressed 
rats were orally administered distilled water; CUMS 
group (depression model), rats were exposed to CUMS 
and orally administered distilled water; Flu+CUMS 
group, rats were exposed to CUMS and orally adminis-
tered fluoxetine (Flu, 5 mg/kg/day)28 suspended in dis-
tilled water; PDGs group, rats were exposed to CUMS 
rats and gavaged with prodigiosin (PDGs, 300 mg/kg/ 
day);29 Na2SeO3+CUMS group, rats were exposed to 
CUMS and gavaged Na2SeO3(2 mg/kg/day).28 PDGs- 
SeNPs+CUMS group, rats were exposed to CUMS and 
gavaged with PDGs-SeNPs (0.5 mg/kg/day).30 All treat-
ments lasted for 28 consecutive days. Fluoxetine and 
sodium selenite were obtained from Sigma-Aldrich 
(St. Louis, MO, USA).

Behavioral Tests
Open-Field Test (OFT)
The open-field test (OFT) was performed as described by 
Dong et al.31 The open-field apparatus was a four-sided, 
black, square cage (100 × 100 × 40 cm), divided into 25 
equal small squares using black lines. Each animal was 
placed alone at the center of the testing area, and their 
behavior was monitored freely for 5 min. The distance 
moved, vertical activity (rearing or wall climbing), the 
total number of entries to the periphery and central zone, 
the time spent in the center zone, and grooming activity 
were carefully recorded. After each test, the cage was 
completely cleaned with 75% alcohol.

Sucrose Preference Test (SPT)
The sucrose preference test (SPT) was conducted accord-
ing to the methods previously described by Özkartal et -
al.32 Briefly, after 4 weeks of CUMS exposure, the 
animals were maintained individually in cages and pro-
vided with two bottles of sucrose solution (1%, w/v) on 
the first day. One of the bottles was replaced with a bottle 
of tap water for the second day. After the adaptation 
period, rats were denied nourishment and water for 24 
h. Rats were then allowed free access to two bottles, one 
containing sucrose solution (1%, 100 mL) and the other 
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containing tap water (100 mL), for approximately 3 h. 
The consumed volumes of sucrose solutions and tap 
water were recorded. The sucrose preference was 
assessed as the ratio between sucrose solution consump-
tion and total liquid consumption [Sucrose preference (%) 
= sucrose consumption/(water consumption + sucrose 
consumption) ×100%].

Measurement of Body Weight
Each individual rat was weighed using an electronic balance 
every Monday (9:00 am). The overall body weight was 
calculated as the mean of the weekly body weights (g).

Sampling and Hippocampal Tissue 
Preparation
Twenty-four hours after behavioral testing, the rats were 
anesthetized using intraperitoneally injected ketamine 
(100 mg/kg) and xylazine (10 mg/kg). Individual intracardiac 
blood samples were collected from different groups in labeled 
tubes, centrifuged at 2000 x g for 10 min and stored at –80°C 
until use for hormonal level estimation. Additionally, the 
hippocampus was rapidly excised and washed twice with 
isotonic saline. The tissue samples were processed for tissue 
homogenates, gene expression analysis, and histopathological 
evaluation. All the biochemical markers were estimated in the 
hippocampal tissue homogenate (10% w/v), which was homo-
genized in ice-cold phosphate-buffered saline (10 mM; pH 
7.4). Monoamine neurotransmitters were evaluated in hippo-
campal tissue homogenized in 75% methanolic high-perfor-
mance liquid chromatography (HPLC) buffer (10% w/v). 
Both homogenates were then centrifuged at 4000 x g for 10 
min, and the resulting supernatants were stored at −80 °C.

Determination of Oxidative Stress Indices 
in the Hippocampal Tissue
The levels of the lipid peroxidation by-product malondial-
dehyde (MDA) and nitric oxide (NO) in the hippocampal 
tissue were determined using a colorimetric assay, as 
reported by Ohkawa et al33 and Green et al,34 respectively. 
The assessment of antioxidant indices, including catalase 
(CAT), superoxide dismutase (SOD), glutathione (GSH), 
glutathione peroxidase (GPx), and glutathione reductase 
(GR), was performed according to the established proto-
cols of Aebi,35 Nishikimi et al,36 Ellman,37 Paglia et al,38 

and Smith et al,39 respectively. Hippocampal protein levels 
were determined for all measurements using the protocols 
described by Bradford.40

Determination of Inflammatory 
Mediators in the Hippocampal Tissue
Specific enzyme-linked immunosorbent assay (ELISA) kits 
for rats (Novus Biologicals, Centennial, CO, USA) were 
employed to assess the levels of inflammatory mediators in 
the hippocampal tissue, including tumor necrosis factor-α 
(TNF-α; catalog No.: NBP1-92681), interleukin-1β (IL-1β; 
catalog No.: NBP1-92,02), interleukin-6 (IL-6; catalog No.: 
NBP1-92697), interleukin-10 (IL-10; catalog No.: NBP1- 
92701), prostaglandin E2 (PGE2; catalog No.: NBP1- 
02321), and cyclooxygenase-2 (COX-2; catalog No.: 
NB600-971), according to the manufacturer’s guidelines.

Determination of Apoptotic Proteins in 
the Hippocampal Tissue
Hippocampal levels of B cell lymphoma 2 (Bcl-2) and 
Bcl-2-associated X protein (Bax) were quantified using 
ELISA kits purchased from Elabscience (Houston, TX, 
USA). Caspase-3 activity was estimated colorimetrically 
using kits obtained from Sigma-Aldrich (St. Louis, 
MO, USA).

Determination of Monoamine Levels in 
the Hippocampal Tissue
Hippocampal levels of serotonin (5-HT), dopamine (DA), 
and norepinephrine (NE) were estimated by HPLC using 
an electrochemical detector, according to the technique 
described by Pagel et al.41 Acetonitrile (87:13, v/v) and 
sodium citrate buffer (pH 4.5) were employed as the 
mobile phase. Frozen hippocampal tissue homogenates 
were filtered using nylon filters (0.22 mm) before injection 
into the HPLC system. Elution was performed at a 0.8 mL/ 
min flow rate, and the working electrode potential was 
adjusted to 0.75 V. The standard curves were generated 
via the injection of standard solutions of various known 
concentrations into the HPLC system (Supplementary 
Materials; Figure S1) and were used to calculate the final 
concentrations of all tested neurotransmitters.

Determination of Acetylcholinesterase 
(AChE), Monoamine Oxidase (MAO) 
Activities and Brain-Derived Neurotrophic 
Factor (BDNF) in the Hippocampal Tissue
Hippocampal acetylcholinesterase (AChE) activity was 
determined using the colorimetric protocol reported by 
Elman et al.42 MAO activity was estimated 
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fluorometrically at 550 nm (excitation wavelength) and 
404 nm (emission wavelength), using 5-hydroxytrypta-
mine (500 mM) as a substrate, according to the procedure 
described by Dar et al.43 The hippocampal level of brain- 
derived neurotrophic factor (BDNF) was assayed using 
ELISA kits obtained from Abcam (Catalog. No.: 
ab213899), according to the manufacturer’s instructions.

Determination of Serum Hormonal 
Levels
Serum cortisol levels were determined using rat-specific 
ELISA kits (catalog No.: K7430-100), purchased from 
BioVision (California, USA). Serum adrenocorticotropin hor-
mone (ACTH) and thyroid-stimulating hormone (TSH) were 
assayed using the ELISA methods previously described by 
Arlt and Stewart44 and Nicoloff and Spencer,45 respectively.

Quantitative Real-Time PCR
The TRIzol method (Invitrogen, Carlsbad, CA, USA) 
was used to extract total RNA from hippocampal tis-
sues. The corresponding cDNA was reverse transcribed 
from the extracted RNA using the Script cDNA synth-
esis kit (Bio-Rad, CA). The relative expression of each 
target gene was measured using SYBR Green PCR kits 
(Qiagen, Heidelberg, Germany) and specific primers for 
each gene on an Applied Biosystems 7500 Instrument. 
The primer sequences for nitric oxide synthase (Nos2), 
nuclear factor erythroid 2-related factor 2 (Nrf2, 
Nfe2l2), and heme oxygenase 1 (HO-1, Hmox1) are 
summarized in Table 1. The glyceraldehyde 3-phosphate 
dehydrogenase (Gapdh) gene (internal control gene) was 
used to normalize all target gene expression levels. PCR 
amplification conditions were 10 min at 95°C, followed 
by 40 cycles of 1 min at 94°C for denaturation, 1 min at 
55°C for annealing, and 20 s at 72°C for extension. The 
relative fold-change levels of all target gene expression 
levels were calculated using the comparative 
2−ΔΔCTmethod.46

Light Microscopy and 
Immunohistochemical Examinations
For histopathological examinations, hippocampal tissue spe-
cimens were fixed in buffered neutral formalin (10%). 
Hippocampal specimens were dehydrated, embedded in par-
affin, and sectioned (4–5 µm). Sections were stained using 
hematoxylin and eosin (H&E) and analyzed using a Nikon 
Eclipse E200-LED microscope (Tokyo, Japan, 200x and 
400× magnification). The degree of hippocampal damage 
was characterized using a semi-quantitative scoring system, 
with five grades assigned according to the severity of injury, 
as follows: 1, minimal injury (<1%); 2, slight injury (1%– 
25%); 3, moderate injury (26%–50%); 4, moderate/severe 
injury (51%–75%); and 5, severe injury (76%–100%).47 To 
detect glial fibrillary acidic protein (GFAP), hippocampal 
tissue sections were incubated overnight with an anti- 
GFAP antibody (Santa Cruz, CA, USA) at 4°C, followed 
by incubation with biotinylated secondary antibody at room 
temperature for 1-h. The 3,3ʹ-diaminobenzidine (DAB) per-
oxidase substrate kit was used to develop a brown color. The 
images were observed at a magnification of 400×, using 
a Nikon Eclipse E200 LED (Tokyo, Japan).

Data Analysis
One-way analysis of variance (ANOVA), followed by 
Duncan's post hoc test, was used to determine significant 
differences between biochemical and gene expression 
parameters using SPSS 26.0. To visualize the data, the 
mean ± standard deviation (SD) was recorded. A P-value 
lower than 0.05 was considered significant.

Results
Physical and Chemical Characterization of 
PDGs-SeNPs
After adding PDGs to sodium selenite, the solution was 
turned from colorless to red color. Size distribution by 
intensity revealed that the average size of the examined 
SeNPs was 121.7 nm (Figure 1A) with a mean zeta 

Table 1 Primer Sequences of Genes Analyzed in Real Time-PCR

Name Accession Number Sense (5ʹ—3ʹ) Antisense (5ʹ—3ʹ)

Gapdh NM_017008.4 AGTGCCAGCCTCGTCTCATA TCCCGTTGATGACCAGCTTC

Nfe2l2 NM_031789.2 CAGCATGATGGACTTGGAATTG GCAAGCGACTCATGGTCATC

Hmox1 NM_012580.2 TTAAGCTGGTGATGGCCTCC GTGGGGCATAGACTGGGTTC
Nos2 NM_012611.3 GGTGAGGGGACTGGACTTTTAG TTGTTGGGCTGGGAATAGCA

Abbreviations: Gapdh, Glyceraldehyde 3-phosphate dehydrogenase; Nfe2l2, Nuclear factor-erythroid 2-related factor 2; Hmox1, Heme oxygenase 1; Nos2, Nitric oxide 
synthase 2.
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potential of −23.3 mV which indicates the moderate 
stability of SeNPs biosynthesized with PDGs 
(Figure 1B). The FT-IR investigation result of synthe-
sized PDGs-SeNPs is illustrated in Figure 1C. A broad 
peak observed at 3306.85 cm−1 corresponds to O–H of 
alcohols and phenols structure. The absorption peak at 
2130.72 cm−1 corresponds to CΞCalkyne groups. The 
peak at 1638.39 cm−1 is due to the C=O asymmetric 
stretch carbon compounds. The absorption band at 
1438.07 cm−1 is due to the presence of O-H bending 
of alcoholic group. Whereas, the band at 1140.81 cm−1 
is attributed to the C-O stretching bond corresponding 
to aliphatic ether group. The absorption peak at 
1010.68 cm−1 is attributed to the CO-O-CO stretching 
of the anhydride. C=C stretching in alkene causes 
a band at 956.98cm−1. Finally, C-Se stretching in 
metal compound causes is indicated by the presence 
band at 614.87 cm−1. These results reveal the presence 

of various functional groups that may be responsible 
for both reduction and stabilization of the PDGs- 
SeNPs. Furthermore, the XRD pattern records revealed 
a broader pattern without any definite Braggs peaks. 
The obtained results indicate that PDGs-SeNPs are not 
crystalline; rather they are more amorphous 
(Figure 1D). The prepared PDGs-SeNPs calculated 
crystalline size is < 134 nm using Scherrer’s equation. 
This amorphous character is in agreement with the 
earlier studies carried out with lycopene48 and different 
bacterial sp.49 Moreover, TEM is employed to analyze 
the shape of the PDGs-SeNPs biosynthesized with 
PDGs. TEM image of PDGs-SeNPs revealed spherical 
particles within the diameter < 120–150 nm. These 
particles were well distributed with mild aggregation 
(Figure 1E). Moreover, based on our observations, 
there was no sign of aggregation and the color was 
stable (deep red color) until 40 days.

Figure 1 The prodigiosin-loaded selenium nanoparticles characterization, (A) Size distribution histogram as measured by a Malvern Zetasizer, (B) Surface charge histogram 
as measured by Zeta potential. (C) FT-IR spectra as detected using Fourier-transform infrared spectroscopy. (D) XRD spectra of PDGs-SeNPs. (E) Morphological shape of 
PDGs-SeNPs as observed by TEM.
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Effect of PDGs-SeNPs Treatment on 
Behavioral and Body Weight Changes 
Following CUMS Exposure
The impacts of PDGs-SeNPs treatment on CUMS-induced 
depression-like behaviors were measured using the OFT 
and SPT in the current study (Figure 2). The OFT total 
score was significantly reduced (p< 0.05) in the CUMS 
rats compared with that in control rats. Rats treated with 
Flu, PDGs, Na2SeO3, and PDGs-SeNPs exhibited signifi-
cant improvements (p< 0.05) in OFT scores compared 
with the CUMS group. Additionally, sucrose consumption 
(%) was significantly diminished (p< 0.05) in the CUMS 
group compared with the control group. Although all 
treatments significantly (p< 0.05) restored sucrose con-
sumption to near-normal levels, PDGs-SeNPs treatment 
appeared to be the most effective when compared with 
no treatment in CUMS model rats (Figure 2). Body weight 
declined significantly (p< 0.05) in the group exposed to 
CUMS for 28 consecutive days compared with that in the 
unstressed control group. Treatment with Flu, Na2SeO3, 
PDGs alone, or PDGs-SeNPs significantly (p< 0.05) 
increased the body weights of CUMS-exposed rats 
(Figure 2).

Effect of PDGs-SeNPs Treatment on 
Hippocampal Oxidative Damage 
Following CUMS Exposure
The hippocampal tissue in CUMS-exposed rats demon-
strated a disrupted oxidative status, characterized by 
increased MDA and NO production and the upregula-
tion of Nos2 mRNA expression. These changes were 
accompanied by a significant decrease (p< 0.05) in the 

levels of endogenous antioxidant proteins, including 
SOD, CAT, GSH, and its derived enzymes (GPx and 
GR), compared with those in the control group. The 
administration of PDGs alone or PDGs-SeNPs signifi-
cantly inhibited (p< 0.05) the development of oxidative 
insults following exposure to CUMS by enhancing the 
levels of the examined antioxidant proteins and deplet-
ing the levels of pro-oxidants in hippocampal tissue. 
Similarly, Na2SeO3 treatment significantly prevented 
(p< 0.05) oxidative damage associated with CUMS 
(Figures 3 and 4).

To elucidate the molecular mechanism underlying the 
antioxidant properties of PDGs-SeNPs treatment following 
CUMS exposure, Nfe2l2 and Hmox1 mRNA expression 
levels were investigated. Rats exposed to CUMS exhibited 
the downregulation of Nrf2 and HO-1 compared with the 
expression levels observed in the control group. By con-
trast, both antioxidant promoters were upregulated in the 
hippocampal tissue following the administration of PDGs 
alone or PDGs-SeNPs relative to the levels observed in the 
untreated CUMS group (Figure 5), demonstrating the 
potent antioxidant capacities of PDGs and PDGs-SeNPs 
against hippocampal oxidative damage induced by CUMS 
exposure (Figure 5).

Effects of PDGs-SeNPs Treatment on 
Neuroinflammation Following CUMS 
Exposure
CUMS-induced depression caused neuronal inflamma-
tion, identified by significant elevations (p< 0.05) in 
the hippocampal levels of pro-inflammatory cytokines 
(TNF-α, IL-1β, and IL-6) and other inflammatory 

Figure 2 Protective impacts of prodigiosin (PDGs), sodium selenite (Na2SeO3), and prodigiosin-loaded selenium nanoparticles (PDGs-SeNPS) administered orally to CUMS- 
exposed rats on the open-field test, sucrose consumption percentage, and body weight changes. Data were analyzed using one-way ANOVA, followed by Duncan’s post hoc 
test (p< 0.05), and are expressed as the mean ± SD (n=10 rats/group). aSignificant difference relative to the control group (Non-stressed). bSignificant difference relative to 
the CUMS group (depression model). CUMS: chronic unpredictable mild stress.
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mediators (PGE2 and COX-2), the upregulation of NF- 
κB, and reduced IL-10 levels compared with the levels 
observed in the control group. However, these hippo-
campal inflammatory responses were significantly sup-
pressed in all treated groups, especially in PDGs and 
PDGs-SeNPs treated rats, compared with the CUMS 
group, indicating the potent anti-inflammatory activity 
of these treatments in the CUMS-induced depression 
model (Figure 6).

Effects of PDGs-SeNPs Treatment on 
Apoptotic Proteins Following CUMS 
Exposure
To explore neuronal apoptotic events in the CUMS-induced 
depression model rats and the potential anti-apoptotic role of 
PDGs-SeNPs treatment, the levels of Bcl-2 and Bax and 
caspase-3 activity were examined in hippocampal tissue. 
Compared with the control group, rats exposed to CUMS 

Figure 3 Protective impacts of prodigiosin (PDGs), sodium selenite (Na2SeO3), and prodigiosin-loaded selenium nanoparticles (PDGs-SeNPS) administered orally to CUMS-exposed 
rats on hippocampal mRNA and levels of oxidative stress indicators. Data were analyzed using one-way ANOVA, followed by Duncan’s post hoc test (p< 0.05), and are expressed as the 
mean ± SD (n=10 rats/group). aSignificant difference relative to the control group (Non-stressed). bSignificant difference relative to the CUMS group (depression model). 
Abbreviations: MDA, malondialdehyde; NO, nitric oxide; Nos2, inducible nitric oxide synthase; CUMS, chronic unpredictable mild stress.

Figure 4 Protective impacts of prodigiosin (PDGs), sodium selenite (Na2SeO3), and prodigiosin-loaded selenium nanoparticles (PDGs-SeNPS) administered orally to CUMS- 
exposed rats on hippocampal antioxidant enzyme activities. Data were analyzed using one-way ANOVA, followed by Duncan’s post hoc test (p< 0.05), and are expressed as 
the mean ± SD (n=10 rats/group). aSignificant difference relative to the control group (Non-stressed). bSignificant difference relative to the CUMS group (depression model). 
Abbreviations: CAT, catalase; SOD, superoxide dismutase; GSH, glutathione; GPx, glutathione peroxidase; GR, glutathione reductase; CUMS, chronic unpredictable mild 
stress.
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exhibited significant elevations (p< 0.05) in the levels of 
apoptogenic proteins (Bax and caspase-3), whereas 
a significant reduction (p< 0.05) in the Bcl-2 level (anti- 
apoptotic protein) was observed. However, PDGs-SeNPs 
administration prevented the apoptotic cascade and reversed 
the CUMS-exposure-induced changes in apoptotic proteins 
compared with the untreated CUMS levels, indicating the 
protective role played by PDGs-SeNPs against neuronal loss 
following CUMS exposure. Flu and NaSeO3 treatments also 

restored alterations in the apoptotic proteins near the normal 
levels when compared with the control group (Figure 7).

Effects of PDGs-SeNPs Treatment on 
Hormonal Levels Following CUMS 
Exposure
Serum cortisol and ACTH levels were significantly 
increased (p< 0.05), whereas TSH levels were 
decreased in CUMS-exposed rats compared with those 

Figure 5 Protective impacts of prodigiosin (PDGs), sodium selenite (Na2SeO3), and prodigiosin-loaded selenium nanoparticles (PDGs-SeNPS) administered orally to CUMS- 
exposed rats on the mRNA expression levels of Nfe2l2 and Hmox1. Data were analyzed using one-way ANOVA, followed by Duncan’s post hoc test (p< 0.05), and are expressed as 
the mean ± SD (n=10 rats/group). aSignificant difference relative to the control group (Non-stressed). bSignificant difference relative to the CUMS group (depression model). 
Abbreviations: Nfe2l2, Nuclear factor erythroid 2-related factor 2; Hmox1, heme oxygenase-1; CUMS, chronic unpredictable mild stress.

Figure 6 Protective impacts of prodigiosin (PDGs), sodium selenite (Na2SeO3), and prodigiosin-loaded selenium nanoparticles (PDGs-SeNPS) administered orally to CUMS- 
exposed rats on hippocampal levels of neuroinflammatory markers. Data were analyzed using one-way ANOVA, followed by Duncan’s post hoc test (p< 0.05), and are 
expressed as the mean ± SD (n=10 rats/group). aSignificant difference relative to the control group (Non-stressed). bSignificant difference relative to the CUMS group 
(depression model). 
Abbreviations: TNF-α, tumor necrosis factor-alpha; IL-1β, interleukin-1β; IL-6, interleukin-6; IL-10, interleukin-10; PGE2, prostaglandin E2; COX-2, cyclooxygenase-2; NF- 
κB, nuclear factor kappa-B transcription complex; CUMS, chronic unpredictable mild stress.
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in control animals. The levels of the tested hormones 
returned to near-normal values, and the maximum 
effect was observed in the PDGs-SeNPs treated group 
(Figure 8).

Effects of PDGs-SeNPs Treatment on the 
Levels of Monoamines, AChE, MAO, and 
BDNF Following CUMS Exposure
A disturbance in cholinergic and monoaminergic neuro-
transmission was observed in CUMS-exposed rats, as indi-
cated by decreased levels of 5-HT, DA, and NE and reduced 
AChE activity in hippocampal tissue. Additionally, the 
CUMS-exposed rats revealed a significant increase in 
MAO activity compared with that in the control group. 
Interestingly, PDGs administration (either alone or as 

PDGs-SeNPs) significantly restored (p< 0.05) the levels of 
these neurotransmitters, and AChE and MAO activities 
were restored to near-normal values, demonstrating the 
potent neuromodulatory role played by PDGs-SeNPs 
against CUMS-mediated depression-like symptoms. Flu 
and Na2SeO3administration were also found to normalize 
the changes in the examined neurotransmitters to levels 
similar to those observed in the unstressed control group 
(Table 2).

CUMS-exposed rats exhibited a marked decrease 
(p< 0.05) in BDNF levels compared with that in the 
control rats. However, all treated groups showed 
a significant increase (p< 0.05) in BDNF levels (which 
returned to the control level) when compared with 
theCUMS group (Table 2).

Figure 7 Protective impacts of prodigiosin (PDGs), sodium selenite (Na2SeO3), and prodigiosin-loaded selenium nanoparticles (PDGs-SeNPS) administered orally to CUMS-exposed 
rats on hippocampal levels of apoptosis markers. Data were analyzed using one-way ANOVA, followed by Duncan’s post hoc test (p< 0.05), and are expressed as the mean ± SD (n=10 
rats/group). aSignificant difference relative to the control group (Non-stressed). bSignificant difference relative to the CUMS group (depression model). 
Abbreviations: Bcl2, B cell lymphoma 2; Bax, Bcl-2-associated X protein; CUMS, chronic unpredictable mild stress.

Figure 8 Protective impacts of prodigiosin (PDGs), sodium selenite (Na2SeO3), and prodigiosin-loaded selenium nanoparticles (PDGs-SeNPS) administered orally to CUMS- 
exposed rats on serum hormonal levels. Data were analyzed using one-way ANOVA, followed by Duncan’s post hoc test (p< 0.05), and are expressed as the mean ± SD 
(n=10 rats/group). aSignificant difference relative to the control group (Non-stressed). bSignificant difference relative to the CUMS group (depression model). 
Abbreviations: ACTH, Adrenocorticotropic hormone; TSH, Thyroid-stimulating hormone; CUMS, chronic unpredictable mild stress.
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Effects of PDGs-SeNPs Treatment on 
Histological Alteration in the 
Hippocampal Tissue Following CUMS 
Exposure
As presented in Figure 9, the hippocampal tissue sections 
obtained from the CUMS group exhibited severe neural 
cell degeneration, indicated by the presence of apoptotic 
neurons, pyknotic nuclei, vacuolation in the intraneuronal 
space, and inflammatory cell infiltration. By contrast, the 
groups that received PDGs and PDGs-SeNPs administra-
tion markedly improved hippocampal structures, and the 
development of neuronal impairments associated with 
CUMS was prevented (Supplementary Materials: 
Figure S2).

Effects of PDGs-SeNPs Treatment on 
Glial Fibrillary Acidic Protein (GFAP) 
Expression in Hippocampal Tissue 
Following CUMS Exposure
Immunohistochemical examination revealed the downre-
gulation in GFAP immunoreactivity in CUMS-treated rats 
compared with that in the control group, indicating astro-
cytic deactivation. However, PDGs-SeNPs administration 
effectively upregulated the GFAP immunoreactivity in 
hippocampal tissue following CUMS exposure (Figure 9).

Discussion
Depression is a multifactorial disease that involves both 
hereditary and environmental factors, and identifying the 

Table 2 Protective Impacts of Prodigiosin (PDGs), Sodium Selenite (NaSeO3), and Prodigiosin-Loaded Selenium Nanoparticles 
(PDGs-SeNPs) Administered Orally to CUMS-Exposed Rats on Hippocampal Monoamine Levels and Acetylcholinesterase and 
Monoamine Oxidase Activities

Parameters Experimental Groups

Cont CUMS Flu+CUMS PDGs+CUMS Na2SeO3+CUMS PDGs-SeNPs +CUMS

AChE activity (µmol/min/mg protein) 9.18 ± 0.58 13.37 ± 0.68a 9.62 ± 0.70b 11.42 ± 1.16ab 10.03 ± 0.73b 9.73 ± 0.71b

5-HT (µg/g tissue) 6.72 ± 0.53 3.73 ± 0.50a 6.71 ± 0.90b 4.45 ± 0.52ab 5.84 ± 0.65ab 6.38 ± 0.47b

DA (µg/g tissue) 0.120 ± 0.02 0.085 ± 0.02a 0.123 ± 0.02b 0.103 ± 0.01ab 0.113 ± 0.01b 0.122 ± 0.01b

NE (µg/g tissue) 0.22 ± 0.02 0.15 ± 0.01a 0.20 ± 0.02b 0.18 ± 0.02ab 0.21 ± 0.02b 0.22 ± 0.02b

MAO activity (% of control) 107.23 ± 9.35 229.16 ± 12.34a 133.44 ± 11.25b 198.52 ± 11.76a 165.38 ± 9.14ab 160.59 ± 8.36ab

BDNF level (pg/mg protein) 0.35 ± 0.03 0.19 ± 0.02a 0.28 ± 0.01ab 0.25 ± 0.02ab 0.36± 0.01b 0.38 ± 0.02b

Notes: Data were analyzed using one-way ANOVA, followed by Duncan’s post hoc test (p< 0.05), and expressed as the mean ± SD (n=10 rats/group). aSignificant difference 
relative to the control group (Cont; non-stressed); bSignificant difference relative to the CUMS group (Depression model). 
Abbreviations: AChE, Acetylcholinesterase; 5-HT, Serotonin; DA, Dopamine; NE, Norepinephrine; MAO, Monoamine oxidase; BDNF, Brain-Derived Neurotrophic Factor; 
CUMS, Chronic Unpredictable Mild Stress; Flu, Fluoxetine; PDGs, Prodigiosin; Na2SeO3, Sodium Selenite; PDGs-SeNPs, Prodigiosin Conjugated with Selenium 
Nanoparticles.

Figure 9 Protective impacts of prodigiosin (PDGs), sodium selenite (Na2SeO3), and prodigiosin-loaded selenium nanoparticles (PDGs-SeNPS) administered orally to CUMS- 
exposed rats on hippocampal histological alterations and glial fibrillary acidic protein (GFAP) expression. Black arrow: blood vessels congestion; red arrow: apoptotic 
neurons; blue arrow: neuron edema and degeneration.
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underlying pathways associated with the development of 
depression is urgently necessary to gain new insights 
regarding how to prevent and treat depression using 
newly developed pharmaceutical strategies.50 The cur-
rently available classical antidepressant drugs are typically 
associated with reduced efficacy in some populations and 
the occurrence of adverse effects.51 The use of metal- 
based nanoformulations has become a promising trend in 
the pharmaceutical industries to the enhanced bioavailabil-
ity, delivery progression, and drug inflow to the target 
tissues provided by these treatment formulations compared 
with typical drug formulations.52 Accumulating evidence 
has indicated the potential role of Se-based nanoparticles 
for the treatment of neural diseases.30 However, the role 
and mechanisms through which Se might regulate depres-
sive disorders have not yet been fully determined. To the 
author’s knowledge, this study is the first to investigate the 
neuroprotective effects of PDGs, either alone or in the 
form of stabilized-selenium nanoparticles (PDGs-SeNPs), 
in a CUMS-induced depression-like animal model. 
Nanoparticles’ size has a significant effect on their biolo-
gical activity. Generally, nanoparticles with a smaller size 
are more active than those with a bigger size.53 In the case 
of elemental Se, certain properties are certainly size- 
dependent. It is physiologically inactive above the micro-
metre size range.54 SeNPs have been shown to have a size 
effect on redox reactivity,55 and SeNPs with a size range 
of 5–200 nm have a size-dependent effect on directly 
scavenging several free radicals in vitro, including 
1,1-diphenyl-2-picrylhydrazyl and superoxide anion.56 

According to Pelyhe and Mézes57 and Wang et al,58 sele-
nium at the nanoscale exhibits a reduced hazardous effect. 
Additionally, these researchers demonstrated that prepar-
ing selenium in the form of nanoselenium increases sele-
nium bioavailability in the body.

One of the most commonly applied tests for evaluating 
anxiety-like behavior is the OFT, which can also be used to 
assess spontaneous activity in rodents.59 The SPT is com-
monly used to evaluate notable depression-like symptoms in 
rodents, anhedonia, or the lack of pleasure.32 Hu et al9 

reported reduced horizontal and vertical movement, locomo-
tion latencies, and prominent reduction of number of central 
zone entries in CUMS rats. A substantial reduction in sucrose 
solution consumption has also been reported in CUMS- 
exposed animals.7 Homogeneity in the reported responses 
of CUMS-treated animals in both the OFT and SPT has been 
identified across multiple studies.10,31,60 The observed 
changes in OFT performance in CUMS-exposed animals 

relative to unstressed animals indicate that CUMS exposure 
has a significant influence on anxiety, exercise, and explora-
tion levels.61 The observed reduction in sucrose consumption 
in the SPT reflects the suppression of the brain reward system 
associated with CUMS exposure, which serves as a proxy for 
depression in rodents.62 CUMS has also been associated with 
significant changes in body weight, which aligns with pre-
vious studies and likely reflects combined effects of stress, 
food deprivation, and sucrose consumption paradigms used 
during the CUMS protocol.31,60,63 Comparably, Zhang et al64 

reported that animals exposed to the CUMS paradigm 
showed reduced body weight gains relative to non-stressed 
animals. Following our discriminate analysis, we observed 
diminished OFT scores, reduced sucrose intake, and lower 
body weights in rats exposed to CUMS for four continuous 
weeks compared with those measures in control unstressed 
rats. However, our study showed that these changes could be 
ameliorated by PDGs and PDGs-SeNPs administration. This 
finding agrees with the findings of Ebokaiwe et al,65 Ali 
et al,66 and Yuan et al,30 who reported that SeNP administra-
tion attenuated neurobehavioral alterations following brain 
injury. Our study is considered the first investigation to assess 
the modification of depression-related behaviors through the 
administration of PDGs, either alone as PDGs-SeNPs in 
CUMS-exposed rats.

Oxidative stress plays a fundamental role in the patho-
genesis and progression of psychiatric diseases, including 
depression or bipolar disorder.67 One of the pathophysiol-
ogies of depression is the repeated or unpredictable expo-
sure to stress, which results in the upregulation of ROS 
generation and secretion, the depletion of innate antioxi-
dant proteins, and the induction of neurodegeneration and 
necrosis.68 The current study examined CUMS-induced 
hippocampal oxidative injury and identified the elevation 
of MDA and NO levels and Nos2 mRNA levels, in addi-
tion to the suppression of the antioxidant system, indicated 
by reduced antioxidant molecule activities, including 
GSH, GPx, GR, SOD, and GR, and the downregulation 
of the Nrf2/HO-1 pathway. PDGs-SeNPs administration 
protected hippocampal tissues by enhancing endogenous 
antioxidants and inhibiting pro-oxidant formation.

These results align with those reported by previous 
studies, in which a link between CUMS and the initiation 
of oxidative insults in brain tissues was demonstrated by 
increased levels of neuronal lipoperoxidation and NO pro-
duction, which was associated with a reduction in antiox-
idant markers and enzymes.6,69,70 This imbalance between 
oxidants and antioxidants has been attributed to ROS 
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overproduction. In support of previous studies, our find-
ings indicated the significant downregulation of Nfe2l2 
and Hmox1 mRNA expression levels in the hippocampal 
tissue of CUMS-exposed rats. The deactivation of the 
Nrf2/HO-1 signaling pathway plays an essential role in 
the development of oxidative injury following CUMS 
exposure.71 Nrf2 is a transcriptional mediator with cyto-
protective impacts mediated by controlling the expression 
of an array of antioxidant proteins, such as HO-1.72 The 
antioxidant activity of Se has been correlated with the 
incorporation of Se in selenoproteins and selenoenzyme 
structures, which can dampen ROS and reduce oxidative 
damage.73 In accordance with our findings, the treatment 
of epileptic mice with Se nanoparticles restored neuronal 
oxidative damage through the upregulation of GR, SOD, 
GPx, and CAT mRNA expression, increased GSH levels, 
and reduced MDA and NO generation,30 which were 
attributed to the enhancement of antioxidant regulators 
(Nrf2/HO-1). Se nanoparticles have been reported to 
have potent ROS scavenging activity and boosted several 
endogenous antioxidant proteins due to the small size of 
Se, which allows for more Se molecules to accumulate and 
scavenge free radicals.74 Due to their small size and large 
surface area, SeNPs had a greater number of atoms 
exposed to free radicals for the electron exchanger, imply-
ing a greater capacity for scavenging multiple free radicals 
than larger sized antioxidant enzymes, particularly SOD 
and GPx. Thus, SeNPs were able to significantly suppress 
oxidative stress markers and restore non-enzymatic and 
enzymatic antioxidants.58 Previous investigations examin-
ing Se or SeNPs have indicated their abilities to improve 
the activities and expression of endogenous antioxidant 
proteins and suppress ROS production following neuronal 
damage.66,75,76 Chitosan-stabilized Se nanoparticles also 
displayed more antioxidant power toward acrylamide- 
induced neural damage, as demonstrated by reduced cere-
bral MDA and NO levels and increased GSH levels.77 The 
antioxidant potential of PDGs may also be associated with 
free radical-scavenging properties and the ability to inter-
fere with NOS activity to suppress NO production.20 

PDGs have also been demonstrated to effectively inhibit 
ROS production associated with hypoxia-mediated brain 
injury by minimizing nitrotyrosine formation and hinder-
ing blood–brain barrier leakage, which suppresses CD11b 
leukocyte infiltration.78 Similarly, PDGs administration 
prevented the imbalance between gastric oxidants and 
antioxidants induced by HCl/ethanol through reduced 

lipid peroxide and NO levels and elevated antioxidant 
enzyme and GSH levels.29

Neural inflammation and apoptosis are prevalent etiolo-
gic factors associated with neurodegenerative and depressive 
disorders.79 Following CUMS exposure, our results revealed 
the overproduction of pro-inflammatory cytokines (TNF-α, 
IL-1β, and IL-6), COX-2, PGE2, and NF-κB in the hippo-
campal tissue. Earlier studies have reported increased levels 
of pro-inflammatory cytokines in the prefrontal cortex of 
animal models of depression.4,59,80 The inflammatory 
response that follows CUMS exposure has been suggested 
to be associated with enhanced COX-2/PGE2-driven inflam-
matory pathways and the increased activation of NF-κB, 
leading to increased pro-inflammatory cytokines 
production.81,82 By contrast, the administration of Se nano-
formulations exhibited neuroprotective activity via the sup-
pression of the inflammatory cascade in epileptic mice and 
diabetic rats.30,65 PDGs-SeNPs administration also success-
fully prevented hippocampal inflammatory events associated 
with CUMS exposure. Similarly, treatment with SeNPs was 
shown to inhibit the release of pro-inflammatory cytokines 
and reduce microglial inflammatory responses through the 
suppression of NF-κB.66 The neural anti-inflammatory prop-
erties of PDGs were previously illustrated in oxygen-glucose 
deprivation (OGD)-activated microglial cells and middle 
cerebral artery occlusion/reperfusion (MCAO/R)-injured 
mouse brains, through the regulation of NF-κB activation 
and nuclear translocation. Additionally, PDGs can suppress 
the activation of the COX-2/PGE2 pathway and myeloper-
oxidase activity, which are considered to serve as vital med-
iators of tissue oxidative stress and inflammation.29

A major underlying component associated with neuro-
degenerative disorders, including depression, is neuronal 
cell death. Apoptosis is the primary form of cell death and 
is tightly linked to oxidative insults, either directly or 
through the activation of inflammatory pathways.83 Our 
results revealed a significant acceleration in the apoptosis 
rate in neuronal cells of CUMS-exposed rats, as demon-
strated by a decline in the Bcl-2 level and an increase in 
Bax and caspase-3 levels. Previous studies have also 
reported disruptions in the Bcl-2/Bax regulatory pathways 
during depression.6,31,84 Emerging evidence suggests that 
neuronal cell death in depressed patients is coupled with 
excessive ROS levels and the activation of stress kinases, 
in addition to the activation of NF-κB.3 However, treat-
ment with PDGs-SeNPs prevented CUMS-induced neuro-
nal cell loss, as indicated by the decreased expression of 
pro-apoptotic proteins (Bax and caspase-3) the increased 
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expression of the anti-apoptotic protein Bcl-2. Earlier 
reports have demonstrated the anti-apoptotic activity of 
Se and Se-based nanoformulations.29,30,85 The anti-apop-
totic effects of SeNPs have been suggested to be asso-
ciated with the ability to modulate Ca2+ homeostasis and 
decrease intracellular Ca2+ concentrations via the regula-
tion of parvalbumin protein expression because increased 
Ca2+ levels induce apoptosis and necrotic cell death.65 

Additionally, PDGs administration has been reported to 
stimulate anti-apoptotic protein (Bcl-2) expression and 
downregulate Bax and caspase-3 activation.86

The HPA axis plays a vital role in the stress response.60 

The unusual release of cortisol has been associated with 
exposure to chronic stress.50,59,63 Here, we recorded 
a significant increase in cortisol and ACTH levels, accom-
panied by a decrease in the TSH level. In line with our 
study, CUMS exposure induced the elevation of serum 
ACTH and cortisol levels through the enhancement of 
HPA axis activity.4,6 The elevation of pro-inflammatory 
cytokine release following stress could activate the HPA, 
subsequently increasing cortisol secretion and inducing 
neuronal damage in brain tissue.87 Treatment with PDGs, 
either alone or in the form of PDGs-SeNPs, normalized 
serum levels of ACTH, TSH, and cortisol in CUMS- 
exposed rats, suggesting that these treatments were able 
to ameliorate the overactivity of the HPA axis mediated by 
stress. Se is necessary for peripheral corticosterone and 
ACTH metabolism and the activity of the selenoenzyme 
deiodinase, which catalyzes the deiodination of T4 into 
T3,88 which might explain the restoration of hormonal 
balance following SeNPs administration.

Although the specific pathophysiological mechanisms 
underlying depression are not yet completely clear, animal 
and human studies have illustrated that dysfunctional 
intracerebral neurotransmission, such as 5-HT, NE, and 
DA, is positively associated with the development of 
depression.80 In the current study, CUMS exposure dis-
rupted cholinergic and monoaminergic transmission, as 
demonstrated by reduced hippocampal levels of AChE, 
5-HT, DA and NE, which was associated with increased 
MAO activity. A previous report showed that the hyper-
activity of the HPA axis is correlated with a reduction in 
5-HT and NE levels in brain tissue.89 Additionally, 
a connection between the overproduction of inflammatory 
cytokines during stress and monoamine neurotransmitter 
metabolism has also been reported.90 Previous findings 
have demonstrated diminished levels of cholinergic and 
monoamine neurotransmitters in depressed animals.80,87 

Liu91 also described reduced AChE activity in CUMS- 
exposed animals, resulting in acetylcholine accumulation 
and subsequent neurological consequences. The decrease 
in 5-HT content in depression has been correlated with 
reduced synaptosomal uptake and the suppression of tryp-
tophan hydroxylase activity.92 In addition, increased cyto-
kine expression can promote NO synthesis and minimize 
tetrahydropterpine, resulting in a decline in tyrosine hydro-
xylase activity, preventing the conversion of tyrosine into 
DA.93 NE depletion in neural disorders, including depres-
sion, is likely due to the downregulation of α1 receptor 
density or the suppression of the dopamine-β-hydroxylase 
enzyme that is responsible for NE synthesis.30,94 Another 
theory that might explain decreased monoamine levels in 
depression is increased MAO activity, which is involved in 
the monoamine degradation process95 and was observed in 
our results. Our study is the first to explore the potential 
neuroprotective effect of PDGs, either alone or in the form 
of PDGs-SeNPs, highlighting the ability of PDGs to mod-
ulate neurotransmission in hippocampal tissues, particu-
larly monoamines. In agreement with our results, SeNPs 
administration elevated AChE activity and DA, NE, and 
5-HT contents in an epileptic model induced by neuronal 
intoxication with cadmium or acrylamide.30,96,97 The 
authors attributed this outcome to the ability of Se to 
inhibit MAO activity, in addition to the ROS scavenging 
activity and anti-inflammatory potency of Se.97 The 
administration of Se was also shown to suppress neurode-
generation and reduce the loss of dopaminergic neurons in 
a Parkinson’s disease model.98

BDNF is a neurotrophic factor that contributes to the 
maintenance and survival of neurons and is involved in 
synaptic plasticity. Accumulating data suggest that BDNF 
plays an important role in the development of depression 
and has been considered as a potential therapeutic target for 
antidepressant drugs.99 Our findings showed a significant 
decline in BDNF levels in the hippocampal tissue following 
CUMS exposure. These results are in line with those of 
previous studies.100,101 Reduced BDNF levels correlate 
with ROS production and the development of oxidative 
damage following exposure to CUMS.6 PDGs and SeNPs 
co-treatment was shown to significantly counteract the pro-
minent changes in BDNF levels, which could be attributed 
to their potent antioxidant capacities. Previous reports 
showed that Se and its nanoformulations could restore 
BDNF levels following neuronal damage.102,103

GFAP is the primary intermediate filament component 
of astrocytes and is widely used as a marker for astrocytic 
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activation.104 In agreement with previous studies, our find-
ings revealed a decrease in the immunoreactivity of hip-
pocampal GFAP in CUMS-exposed rats,105,106 which was 
attributed to apoptosis induced by chronic stress, reduced 
neurogenesis, and increased neuronal atrophy and cell 
death.107 Treatment with both PDGs and PDGs-SeNPs 
was able to efficiently restore GFAP immunoreactivity, 
indicating the activation of astrocytes. Although no pre-
vious reports have examined the effects of PDGs, either 
alone or combined with SeNPs, on GFAP expression in 
brain tissue, Se and SeNPs were found to dampen apopto-
tic cell death processes in the hippocampus, increase 
GFAP expression, reduce reactive astrogliosis, increase 
neuronal survival, and mitigate overall neuronal 
damage.85,108

Conclusion
Based on our findings, SeNPs with a size range of 120–150 
loaded with PDGs (PDGs-SeNPs) exerted neuroprotective 
effects against CUMS-induced depression-like behaviors, as 
demonstrated by ameliorated behavioral responses, the 
restoration of normal body weight, and the prevention of 
hippocampal oxidative insults associated with neuroinflam-
mation and neuronal cells loss. Additionally, PDGs-SeNPs 
displayed a neuroprotective role through the modulation of 
disrupted monoaminergic and cholinergic transmission, 
increased BDNF levels, and the activation of GFAP in 
hippocampal tissue.
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