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Purpose: To investigate the potential mechanism and molecular characteristics of linezolid- 
non-sensitive Enterococcus faecium from a tertiary hospital in southwest China and char-
acterize the relevant plasmids.
Patients and Methods: Linezolid-non-sensitive Enterococcus faecium (LNSEFM) isolates 
collected from January 2014 to December 2018 were screened for resistant genes 23s rRNA, 
rplC, rplD, rplV, optrA, cfr, poxtA, by PCR. Molecular epidemiological analysis was per-
formed by multilocus sequence typing (MLST). The optrA-and-poxtA co-harboring strain 
EFM_7150 was subjected to the whole genome sequencing (WGS) by Illumina HiSeq and 
Oxford Nanopore MinION.
Results: A total of 15 LNSEFM with linezolid MICs ranging from 4 to 16 mg/L were 
identified. About 66.7% (10/15) of isolates were linezolid-resistant. About 46.7% (7/15) of 
strains were positive for optrA. Two types of optrA variants (P and EYDNDM) were 
identified. About 13.3% (2/15) of isolates had poxtA. 1 harbored a L22 protein alteration 
(Ser77Thr). One isolate coharbored optrA (EYDNDM variant) and poxtA. There was no 
mutation in the gene that encoded the ribosomal protein L3/L4 or the domain V of 23S rRNA. 
No cfr gene was detected. Based on WGS data, optrA was associated with Tn558 inserted to 
radC gene and poxtA was flanked by IS1216E.
Conclusion: OptrA is primary mechanism in linezolid-resistant Enterococcus faecium. This 
is the first report ofoptrA variants P and EYDNDM identified in Enterococcus faecium and 
optrA-and-poxtA co-harboring Enterococcus faecium clinically in southwest China. Besides, 
Tn558 and IS1216Es may play an important role in the dissemination of optrA and poxtA, 
respectively. The findings revealed the potential threat to nosocomial infection by optrA and 
coexistence of optrA and poxtA in Enterococcus faecium. Thus, clinical surveillance of 
linezolid-resistant Enterococcus is urgently needed.
Keywords: optrA, poxtA, linezolid-non-sensitive Enterococcus faecium, WGS

Introduction
Enterococcus is a Gram-positive opportunistic pathogen, normally residing in the 
gastrointestinal tracts of humans, which is regarded as the most common cause of 
nosocomial infections, such as meningitis, bacteremia, pneumonia, surgical wound 
infection, and urinary tract infection.1 Its strong intrinsic and acquired resistance 
leads to resistance to a major group of antibiotics such as vancomycin. Hence, 
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a better understanding of the mechanism of resistance and 
transmission could support better strategies to monitor and 
control drug resistance.

The oxazolidinone linezolid targeted at the large (50S) 
subunit of bacterial ribosomes is considered as the last 
resort to methicillin-resistant Staphylococcus aureus 
(MRSA), vancomycin-resistant Enterococcus (VRE), and 
other multi-drug Gram-positive bacteria.2 However, line-
zolid-resistant isolates have been increasingly monitored 
since their clinical use in 2000.3,4 Linezolid-resistant 
Enterococcus (LRE) represents a significant threat to clin-
ical treatment. The most common resistance mechanism is 
mutations in the central loop of the domain V region of the 
23S rRNA gene, especially G2576T and varying copy 
numbers.5 Moreover, mutation or deletion of genes that 
encode the 50S ribosomal subunit proteins L3, L4, L22 and 
acquisition of resistance genes such as optrA, poxtA also 
lead to increased linezolid MIC.6–8 Oxazolidinone and 
phenicol transferable gene optrA was first detected in 
a clinical Enterococcus faecalis from China in 2015.7 

Following its first report, optrA has also been discovered 
in many countries such as Colombia, Tunisia, Poland.9–11 

It is mostly reported in Enterococcus but also detected in 
Staphylococcus sciuri, Streptococcus suis, and other 
Gram-positive or Gram-negative strains.12 OptrA is often 
located on chromosomes or plasmids and can be trans-
mitted by mobile genetic elements such as transposons and 
insertion sequences.13–15 The most recently reported poxtA 
gene, mediating resistance to oxazolidinones, tetracy-
clines, and phenicols, was first described in an MRSA 
isolate from respiratory secretion of an Italian patient.8 

Since its first report, it has also been detected in isolates 
from animals and humans in many countries, including 
Italy, Greece, and China.8,16,17 Otherwise, poxtA is found 
more in the environment or food-producing animals than 
human samples and Enterococcus faecium has higher pre-
valence than Enterococcus faecalis.

Our previous transcriptomics and proteomics studies 
showed that optrA played an important role in linezolid- 
resistance E. faecalis at the First Affiliated Hospital of 
Chongqing Medical University and that sexual phero-
mones could promote optrA transmission.18–21 However, 
the mechanism of linezolid in E. faecium is not yet clear. 
Therefore, the purpose of this study is to investigate the 
mechanism of linezolid in E. faecium and reveal its trans-
mission by whole-genome sequencing. To the best of our 
knowledge, we monitored the emergence of optrA- 
mediated linezolid resistance in E. faecium. Besides, this 

is the first report of optrA variants, P and EYDNDM 
identified in E. faecium, and optrA and poxtA co-exist in 
the same strain in southwest China.

Materials and Methods
Bacterial Strains and Antimicrobial 
Susceptibility Tests
A total of 1891 E. faecium strains were obtained at the 
First Affiliated Hospital of Chongqing Medical University 
from January 2014 to December 2018. Excluding dupli-
cate strains, 15 LNSEFMs were collected from six types of 
samples, including urine, blood, secretion, seroperitoneum, 
drainage, and bile. Then, they were stocked at −80°C with 
glycerol. Antimicrobial susceptibility tests were initially 
confirmed by AST-GP67 cards (BioMérieux) on the 
VITEK-2 Compact system (bioMérieux, Lyon, France), 
including linezolid (LZD), clindamycin (CLI), dalfopristin 
(DAF), tetracycline (TET), erythromycin (ERY), cipro-
floxacin (CIP), moxifloxacin (MOX), levofloxacin 
(LEV), vancomycin (VAN), ampicillin (AMP), penicillin 
(PEN), tigecycline (TIG), streptomycin (STR), and genta-
micin (GEN), and then linezolid MIC is manually recon-
firmed by the broth microdilution method. All results were 
determined according to the CLSI guidelines,22 and the 
E. faecalis ATCC29212 was used as a reference strain.

DNA Extraction and Molecular 
Detection of Mutation and Resistance 
Genes
Following the manufacturer’s protocol, genomic DNA was 
extracted from bacteria cultured in the logarithmic growth 
phase using the HiPure Bacterial DNA Kit (Magen, 
Guangzhou, China). To investigate the mechanism of line-
zolid resistance, the mutation of 23s rRNA ribosomal 
proteins L3 (rplC), L4 (RplD), L22 (rplV) and the presence 
of cfr, optrA, and poxtA were identified using a previously 
described method.18 Primers and reaction conditions are 
shown in Supplementary Table S2. All positive PCR pro-
ducts were sent to Sangon Biotech (Shanghai) Co., Ltd. for 
bidirectional sequencing and blasted against the NCBI 
nucleotide database. Nucleotides of 23S rRNA and 
amino acid sequences of L3, L4, and L22 were compared 
with the reference E. faecium Aus0004 (GenBank 
Accession No. CP003351) using DNASTAR package 
MegAlign (Version 7.1.0). The optrA sequence was com-
pared with plasmid pE349 (GenBank Accession No. 
NG_048023.1).
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Multi-Locus Sequence Typing (MLST)
According to the E. faecium MLST scheme, 7 housekeep-
ing genes (adk, pstS, gyd, purK, gdh, ddl, atpA) were 
amplified using multi-locus sequence typing (MLST) for 
an analysis of sequences on the Enterococcus faecium 
database (https://pubmlst.org/mlst). Primers are listed in 
Supplementary Table S2.

Whole Genome Sequencing (WGS) and 
Bioinformatic Analysis
Whole-genome sequencing and bioinformatic analysis on 
optrA-and-poxtA co-harboring isolate EFM-7150 were 
conducted by Shanghai Majorbio Bio-Pharm Technology 
Co., Ltd. (Shanghai, China). Following the manufac-
turer’s protocol, Wizard® Genomic DNA Purification 
Kit (Promega) was used to extract genomic DNA. 
Genomic DNA was sequenced using a combination of 
Illumina and Nanopore sequencing platforms. For 
Illumina sequencing, 5 μg of genomic DNA was used 
for library construction. An Illumina HiSeq X Ten with 
2 × 150 bp paired-end reads (Illumina) was used to 
sequence those libraries. For Nanopore sequencing, 
Covaris G-TUBE (Covaris, MA) was used for spinning 
15 μg of genomic DNA to cut the genomic DNA into ~10 
kb fragments, followed by magnetic bead purification and 
sequencing adapter connection to both ends. After remov-
ing low-quality reads, the following reads were assembled 
into a contig using HGAP and canu.23 In the end, Pilon 
(1.23) was applied for error correction of Nanopore 
assembly results. Gene prediction was performed using 
bioinformatics software Glimmer (3.0) and GeneMarkS.24 

Each set of query nucleotide sequences was aligned with 
NR, Swiss-Prot and Pfam databases. Circular representa-
tion of complete plasmids sequences was visualized using 
the GView server.25 And Plasmid replicons were identi-
fied using PlasmidFinder (2.1) (https://cge.cbs.dtu.dk/ser 
vices/PlasmidFinder/).

Nucleotide Sequence Accession Number
Nucleotide sequences of EFM_7150 complete chromo-
some and two key plasmids pEF7150-3, pEF7150-5 were 
collected in GenBank under accession numbers 
CP079927, CP079928, CP079929, respectively.

Clinical Data
Patient demographics and clinical data including patient 
age, sex, date, sample, wards, and antibiotic usage were 

collected from the hospital information system (HIS) and 
laboratory information system (LIS).

Ethical Approval Statements
This retrospective study was approved by the Evaluation 
Committee and the Biomedical Ethics Committee of 
Chongqing Medical University (2021–515). In light of 
the retrospective and anonymous nature of the study, the 
Ethics Committee did not require written informed consent 
provided by participants.

Results
Clinical Information and Antimicrobial 
Susceptibility Testing
A total of 15 nonduplicated LNSEFM isolates were recov-
ered from 1891 Enterococcus according to VITEK-2 
Compact by the BMD method (Supplementary Table S1). 
Table 1 shows that 15 isolates were obtained from eleven 
different wards, the most common is gastrointestinal sur-
gery (n = 3) and urology surgery (n = 3), and there is only 
one isolate in other wards. Urine is the most common 
source, followed by secretion. According to clinical data, 
10 patients were discharged, and 5 patients were trans-
ferred. Penicillin, aminoglycosides, carbapenems and 
cephalosporins were used during the treatment period.

The 15 strains of LNSEFM linezolid MIC spread from 
4 to 16 mg/L, of which 5 strains were intermediary, and 10 
strains were resistant to linezolid. In addition, the highest 
drug resistance rate is penicillin (93.3%), erythromycin 
(93.3%), and ampicillin (93.3%), followed by levofloxacin 
(86.7%), moxifloxacin (86.7%), and ciprofloxacin 
(86.7%). All strains are sensitive to vancomycin and tige-
cycline (Supplementary Table S1).

Screening of Linezolid-Resistant 
Mechanism and Sequence Type (STs)
The most common mechanism of linezolid resistance in 
Enterococcus faecium is 23S rRNA gene mutation, but the 
presence of resistance genes was found to be the main cause 
in this study.26 The molecular mechanism of linezolid resis-
tance in 15 LNSEFM is detected in Table 1, showing that the 
positive rate of optrA gene is 46.7%, while the detection rate 
of poxtA is 13.3%. Of these, one strain carried both poxtA 
and optrA. The majority of LR E. faecium (70%, 7/10) had 
optrA. Compared with pE394, two of optrA proteins are 
wild-type. Four strains had a single point mutation T481P 
(P variant), and EFM_7150 had K3E, N12Y, Y176D, 
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Table 1 Clinical Information and Screening of Linezolid-Resistant Mechanism

Date Samples Age/Sex Wards Outcome Antibiotics Usage Bacterial 
Type

MLST LZD MIC 
(mg/L)

VA MIC 
(mg/L)

Mechanismsa

L22 optrA poxtA

2014.10.03 Urine 86/male Geriatrics Discharge Penicillin 

Aminoglycosides 
Carbapenems

Infection 414b 4 1

2015.04.20 Blood 66/male Urology Surgery Discharge Aminoglycosides 

Cephalosporins 
Carbapenems

Infection 1161 8 0.25 WT

2015.05.22 Urine 70/male Emergency ward Transfer Cephalosporins Colonization 80b 4 0.25

2015.06.15 Secretion 69/male Vasculr Surgery Discharge Cephalosporins 
Carbapenems

Infection 8 8 1 +

2015.07.12 Urine 47/Famale Urology Surgery Transfer Penicillin Infection 117b 8 0.25 WT

2015.08.08 Ascites 86/male Gastrointestinal 
Surgery

Discharge Carbapenems Infection 1850b 4 0.25

2015.08.18 Urine 74/male Neurology Transfer None Infection 78b 4 0.25

2016.08.04 Drainage 78/male ICU Discharge Cephalosporins Colonization 1160 8 0.25
2016.02.09 Urine 46/Famale Rehabilitation Transfer Cephalosporins Infection 78b 8 0.25

2017.01.27 Drainage 70/male Gastrointestinal 

Surgery

Discharge Cephalosporins Colonization Unclassified 8 0.25 P

2018.03.09 Urine 78/male Urology Surgery Discharge Cephalosporins Infection Unclassified 8 0.25 P

2018.07.20 Bile 51/Famale Hepatobiliary 

Surgery

Discharge Cephalosporins Colonization Unclassified 4 0.25 Ser77Thr

2018.08.10 Secretion 61/male Dermatology Discharge Penicillin Colonization 425 8 0.5 P

2018.10.02 Secretion 74/male Nephrology Transfer None Colonization 8 16 0.5 P

2018.11.07 Secretion 65/male Gastrointestinal 
Surgery

Discharge Penicillin  
Cephalosporins 

Fluoroquinolones

Infection 117b 8 0.25 EYDNDM +

Notes: P, T481P; EYDNDM, Lys3Glu, Asn12Tyr, Tyr176Asp, Asp247Asn, Gly393Asp, Ile622Met. aNo mutations in genes encoding domain V of 23S rRNA or ribosomal proteins L3/L4 were found. bIsolates belonging to CC17 clone. 
Abbreviation: ICU, intensive care unit.
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D247N, G393D, I622M (EYDNDM variant). One LR 
E. faecium had a L22 protein alteration. No isolates con-
tained cfr gene and L3/L4 alteration. No genetic mechanism 
was identified in 6 isolates (40%), among which 5 were LI 
E. faecium. As shown in Table 1, a total of 9 sequence types 
(ST) were identified among 15 isolates, of which 3 isolates 
were new ST with 1 to 2 alle mutation. Besides, 46.7% 
isolates belonged to CC17 clone complex.

Characteristics of Plasmids and the 
Genetic Environment of optrA and poxtA
The complete genome of Enterococcus faecium_7150 was 
constructed using the data from the Illumina HiSeq and 
Oxford Nanopore MinION. The complete genome has 
3,083,859 bp nucleotide and 307,877 reads with a GC con-
tent of 37.93%. The plasmids carrying optrA or poxtA are 
shown in Figure 1. The majority of CDSs code gene in the 
forward orientation are shown in Supplementary Tables S3 
and S4. pEF7150-3 with the GC content of 36.91% has 
a size of 72,048 bp and 85 Coding sequences were identified. 
While pEF7150-3 is not completely identical to any other 
plasmid in the Gene Bank at the moment, as shown from the 
result of blast analysis, the region around 16,790 bp contain-
ing the optrA and fexA genes demonstrated 99.9% similarity 
and a query coverage of 22% to Enterococcus avium C674 
(GenBank accession no. MH018573.1), Staphylococcus 
sciuri S49-1 optrA gene cluster (GenBank accession no. 
KX447572.1). Tn558 mediating fexA gene transfer was 

identified in pEF7150-3 and chromosome. Tn558 and 
optrA were inserted downstream of the radC gene (encoding 
a DNA repair protein). Moreover, the transcriptional regula-
tor gene araC was located upstream of optrA.

pEF7150-5 with GC content of 36.11% is 21,754 bp in 
size and has 22 CDSs. It belongs to rep2 family and the 
incompatibility (Inc) 18 group plasmids.27,28 pEF7150-5 
shared 100% identity with a query coverage of 100% to 
pM16/0594 (GenBank accession no. MN831411.1), pC25- 
1 (GenBank accession no. MH784601.1), pC27-2 (GenBank 
accession no. MH784602.1), pHN11 (GenBank accession 
no. CP038176.1). Moreover, on plasmid pEF7150-5, the 
tetracycline resistance gene tet (L) and tet (M) were also 
identified. The poxtA gene was flanked by two IS1216E 
elements in the same orientation, which is responsible for 
horizontal gene transfer of poxtA, as previously described in 
S. aureus AOUC-0915, E. faecium Efa-955.8,29

Discussion
Linezolid is an effective drug for treating multidrug- 
resistant Gram-positive bacterial infection. However, the 
rate of linezolid-resistant has steadily risen in recent years, 
posing a threat to public health. Zyvox® Annual Appraisal 
of Potency and Spectrum (ZAAPS), Linezolid Experience 
and Accurate Determination of Resistance (LEADER), 
which monitor global pathogens and the changes in resis-
tance to linezolid over time, suggest that the rates of line-
zolid-non-sensitive were 0.70% and 0.74%, 

Figure 1 Structure of two resistant gene plasmids in E. faecium_7150. (A) Structure of the optrA-carrying plasmid pEF7150-3. (B) Structure of the poxtA-carrying plasmid 
pEF7150-5. The peripheral circle represents CDS, and arrows indicate the CDSs and their transcription directions. The second and third circle shows GC skew and GC 
content respectively. The purple square refers to other function gene. The yellow square refers to other resistant gene. The red square refers to linezolid resistant gene. The 
grey square refers to mobile genetic elements.
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respectively.30,31 In our study, the 5-year prevalence rate of 
linezolid-resistant E. faecium in our hospital was 1.9%, 
which is higher than that of China (1.0%).32 Most strains 
(93.3%) display a multidrug-resistant phenotype (resistant 
to at least three antimicrobial categories), but all strains are 
susceptible to vancomycin. It should be noted that nearly 
half of the isolates belong to CC17 clone that has posed 
a potential threat to public health, resulting in restricted 
treatment options worldwide. On antibiotics usage, 
infected patients had no history of linezolid use during 
hospitalization, indicating that LNSEFM infection was 
not associated with linezolid use.

It is well known that mutations in the domain V of the 
23S rRNA are the most common mechanism of linezolid 
resistance among E. faecium, and optrA appears to be 
almost ubiquitous among the linezolid-non-susceptible 
E. faecalis.26 Surprisingly, we did not find 23S rRNA 
mutations but a high prevalence of optrA, which is at 
odds with the Sentry data.33 This discrepancy may be 
explained by geographical variation. Almost all resistant 
isolates, except intermediates, have resistance genes. 
Nonetheless, we fail to find any previously described 
mediated genes in linezolid resistance in one isolate 
(MIC 8mg/L). We speculate that the observed phenotype 
could be related to cell wall thickness or biofilm 
formation.34 Although it has been shown that L22 protein 
mutation could reduce linezolid sensitivity by interfering 
with binding sites, this mutation is uncommon in 
Enterococcus.6 Ser77Thr was detected in one LR 
E. faecium in our study, but the relationship between L22 
protein mutation and linezolid MIC remains unclear. 
Increased copy number of 23S rRNA gene resulted in 
increased resistance expression in the previous study,35 

but there is no evident correlation between optrA variants 
and oxazolidinone mic in Enterococcus.36 Cai et al 
revealed that different optrA variants and their genetic 
context have the potential to regulate linezolid MIC at 
a variety of levels.37 It is still important to investigate 
other optrA variants and oxazolidinone resistance level. 
We identified new types of optrA variants, P and 
EYDNDM in E. faecium. P variant was distributed in 
Clostridium difficile and Campylobacter jejuni and 
EYDNDM variants were found in Enterococcus faecalis, 
Staphylococcus aureus, Staphylococcus sciuri, 
Enterococcus avium.12 Given that the relationship between 
optrA variants and linezolid MIC remains unclear, novel 
optrA variants in E. faecium is of concern.

To the best of our knowledge, mobile genetic elements 
contribute significantly to the transmission of resistant 
genes.38 Tn558 carrying fexA gene is located on both the 
chromosome and the plasmids in EFM_7150. It integrates 
optrA through the radC gene in pEF7150-3, resulting in 
a similar genetic environment to many isolates, such as 
E. avium C674 isolated from the stool samples of healthy 
populations in Hangzhou and S. sciuri isolated from 
Sichuan province and Guangdong province.37,39,40 

Notably, Fan et al revealed that optrA can exist in methi-
cillin-resistant coagulase-negative staphylococci including 
S. sciuri S49-1.39 Clinicians need to be alert to the pre-
valence of optrA in other superbugs such as VRE.

The recently discovered poxtA, a member of the ABC- 
F proteins family, shares the homology of 32% with optrA. 
PoxtA was detected more often in the natural environment 
than in the clinical setting. The IS1216E-PoxtA-IS1216E 
segment in our study is similar to S. aureus AOUC-0915, 
and clinical E. faecium from Italy, Spain, indicating that 
the genetic background of poxtA is relatively single.8,16,41 

In addition to the conjugative plasmid pE035 detected in 
China, Enterococcus harboring both the optrA and poxtA 
genes were also found in the environment and human 
samples from Pakistan, Ireland, Spain, France17,42–45 

Unexpectedly, there does not seem to be any obvious 
synergistic effect when optrA and poxtA coexist. Because 
the MIC of EFM_7150 is not only similar to optrA or 
poxtA alone isolates in our study but also to E. faecium 
C10004 isolated from Spain (8mg/L).44 Furthermore, it is 
higher than strain isolated from Shanghai (0.5mg/L).46 

Despite the emergence of co-existence of optrA and 
poxtA worldwide, limited genetic context was identified 
and we hope to obtain more genomic data to explain 
whether there are other mechanisms or negative 
regulation.

Last but not the least, these results must be taken 
cautiously and with some limitations in mind. First, since 
it included just one center and the relative small number 
LNSEFM, the results of this study may deviate from other 
sets of studies. Second, the evidence that only one isolate 
co-harboring optrA and poxtA is not sufficient. Additional 
sequencing results that reveal the genetic environment will 
be more convincing. Nonetheless, our findings indicate the 
emergence of optrA in Enterococcus faecium. 
Furthermore, optrA and poxtA can coexist in clinical set-
tings and may be transmitted through MGEs. This is real- 
world clinical experience and providing a useful informa-
tion for enterococcal infection.
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Conclusion
In summary, this research revealed the emergence of 
optrA in E. faecium, and the prevalence of optrA gene 
is higher than that of poxtA in Enterococcus faecium from 
2014–2018 in our hospital. MGEs, particularly 
Transposons and insertion sequences may contribute sig-
nificantly to the dissemination of optrA and poxtA, 
respectively. Although linezolid is currently effective in 
the treatment of enterococcal infections, advanced mon-
itoring of changes in the resistance mechanism of line-
zolid is needed in the future.

Abbreviations
LNSEFM, linezolid-non-sensitive Enterococcus faecium; 
LR, linezolid resistant; LI linezolid intermediate; MGEs, 
mobile genetic elements.
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