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Abstract: Photodynamic therapy (PDT) is a noninvasive therapy for cancer and bacterial 
infection. Metal-free semiconducting conjugated polymers (SCPS) with good stability and 
optical and electrical properties are promising photosensitizers (PSs) for PDT compared with 
traditional small-molecule PSs. This review analyzes the latest progress of strategies to 
improve PDT effect of linear, planar, and three-dimensional SCPS, including improving 
solubility, adjusting conjugated structure, enhancing PS-doped SCPs, and combining thera-
pies. Moreover, the current issues, such as hypoxia, low penetration, targeting and biosafety 
of SCPS, and corresponding strategies, are discussed. Furthermore, the challenges and 
potential opportunities on further improvement of PDT for SCPs are presented. 
Keywords: semiconducting conjugated polymers, photosensitizer, photodynamic therapy, 
enhancing phototherapy strategies

Introduction
Photodynamic therapy (PDT) is a noninvasive treatment method that can prevent 
several side effects of chemotherapy and radiotherapy. PDT interferes with the 
balance between reactive oxygen species (ROS) generation and detoxification by 
selecting the appropriate wavelength of light-activated PSs and destroys the com-
ponents of cancer cells. Traditional photosensitizers (PSs) are small organic mole-
cules that usually have short excitation wavelength, low structural stability, and 
poor solubility.1 Therefore, SCPS with light-harvesting capability to absorb visible 
light and near-infrared (NIR) and efficient energy transfer due to its delocalized 
p-system2–4 have been actively developed. SCPS have a conjugated structure and 
high stability, and its boundary contains hydrophilic groups, which has good 
biocompatibility5 and essentially prevents the toxic side effects of heavy metal 
ions and small molecules on the organism compared with inorganic semiconductors 
TiO2,6 ZnSe/ZnS,7 and CdSe.8 These properties promote the application of SCPS in 
the biomedical field, such as fluorescence imaging,9–11 PDT,12,13 photothermal 
therapy (PTT),14,15 and antibacterial application.16,17

Brief History of PDT Based on SCPS
The groundbreaking report on conjugated polymer PDT can be traced back to the study 
by Ikada in 1997. Under light irradiation, PEG-fullerene C60 may successfully create 
singlet oxygen (1O2).18 However, fullerene has low solubility and activity, resulting in 
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the delayed development of SCPs for PDT. Carbon-based 
nanomaterials, such as graphene quantum dots (GQDs) and 
graphitic carbon nitride (g-C3N4), have the advantages of 
chemical inertness, ease of operation, high photostability, 
and good biocompatibility.19–22 These materials’ electronic 
bands are analogous to conductive metals, and their chemical 
composition and electronic structure are highly adjustable.23 

In the last 10 years, many types of SCPS have emerged, such 
as polypyrrole,24 polythiophene,25 poly (cyclopentadithio-
phene, benzothiadiazole),26 polyfluorene,27 porphyrin-based 
covalent organic framework (COF).28 The historical devel-
opment of SCPS in PDT is shown in Figure 1.

Basic Principle of SCPs in PDT
Generally, PSs in the ground singlet state (S0) can be excited 
to the first excited singlet state (S1) under light irradiation 
and then go through the intersystem crossing (ISC) to reach 
the first excited triplet state (T1). PSs at T1 can directly 
interact with the substrate to generate ROS and induce 
tumor tissue destruction through apoptosis or necrosis, vas-
cular injury, and inflammation-mediated immune response. 

Based on photophysics and photochemistry, PDT can be 
divided into type I and II PDT (Figure 2A).

For type I PDT, electron transfer or hydrogen abstrac-
tion between PSs and substrate generate short-lived free 
radicals, which then immediately react with molecules, 
such as water and oxygen, to generate hydrogen peroxide 
(H2O2), superoxide radical (O2

•−), and hydroxyl radical 
(•OH).1,29 SCPS with denser orbits show the lowest unoc-
cupied molecular orbital (LUMO) and highest occupied 
molecular orbital (HOMO) levels. HOMO and LUMO 
represent the valence band maximum and conduction 
band minimum, respectively, of inorganic semiconductors 
(Figure 2B).30 The release of ROS (O2

•−, •OH) from water 
by SCPS involves two parallel reactions: reduction reac-
tion and oxidation reaction. First, the incident light energy 
is greater than the bandgap of SCPS, which can be excited. 
Second, the lower edge of the conduction band (EC) and 
upper edge of the valence band (EV) of SCPS represent the 
ability of reduction and oxidation, respectively. For exam-
ple, the redox potential of O2 /O2

•− is −0.33 V at pH 7, and 
SCPS (EC<−0.33 eV) can bring electrons to O2, resulting 
in O2

•− formation.31 If hydrogen is extracted from water to 

Figure 1 Timeline of SCPs for PDT.
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form hydroxyl radicals, EV >1.99 eV are required because 
the redox potential of H2O/•OH at pH 7 is 1.99 V.31 If Ev 
is >0.82 eV and the redox potential of H2O/O2 is 0.82 V at 
pH 7,32 O2 will be generated, which makes up for the lack 
of hypoxia in the tumor microenvironment. The bandgap 
of SCPs is 0.85–2.90 eV (Table 1),33–44 when changing the 
type and content of monomers. To drive both O2

•− and 
•OH generation, the bandgap of SCPS is at least equal to 
the electrochemical potential (~2.22 eV). However, its 
tissue penetrability is only a few hundred microns. 
Reducing the bandgap can redshift the absorption edge 
and increase the light absorption in NIR to improve the 

tissue penetration. However, narrow bandgap means that 
O2

•− and •OH cannot be obtained simultaneously. 
Therefore, for type I PDT, many researchers only satisfy 
one type of O2

•−, •OH, or enhance the type II PDT process 
to increase the yield of 1O2. Type II PDT is energy transfer 
from PSs at T1 to triplet oxygen (3O2), resulting in cyto-
toxic singlet oxygen 1O2.45 The energy band between 1O2 

and 3O2 is approximately 0.96 eV, indicating that type II 
PDT could use longer wavelength light.1 The activity of 
ROS is •OH >1O2, which can cause extensive destruction 
of DNA chains, proteins, and cell membranes,46 while 1O2 

has higher reactivity to electron-rich acceptors of C=C, 
indole, and aromatic heterocycles.47

This review summarizes the latest strategies of 
SCPS, which can overcome the tumor-associated barriers 
for significantly enhanced efficiency of PDT. First, we 
highlight the techniques to improve PDT effect of linear 
SCPS by improving solubility, adjusting conjugated 
structure, enhancing PS-doped SCPs, and combining 
therapies. Next, planar and three-dimensional (3D) 
SCPs are outlined briefly. Meanwhile, the current issues, 
such as hypoxia, low penetration, targeting and biosaf-
ety of SCPS, and corresponding strategies, are summar-
ized. Furthermore, the challenges and prospects for 
SCPs are also discussed. We hope this review sheds 
light on the development of PDT to accelerate the clin-
ical translation of SCPS.

Linear SCPs
Linear SCP is mainly composed of π-conjugated main 
chains and has unique conductive and photophysical 
properties due to its extended conjugation and config-
urable side chain, such as large absorption cross- 

Figure 2 (A) Schematic illustration of SCPs photophysical and photochemical basis of PDT. (B) Reduction potential diagram of reactive oxygen species.

Table 1 Bandgap of SCPs

SCPs Bandgap 
(eV)

Reference

Polyaniline 2.90 [33]
Polythiophene 2.10 [34]

Ladder-type polythiophene 1.50–1.60 [34]

Polystyrene pyridine copolymer 2.00–2.55 [35]
Polystyrene Pyridine thiophene 

terpolymer

1.95–2.31 [35]

Fluorene-based copolymers 1.95–2.00 [36]
Poly(4,7-dithien–2-yl- 

2,1,3-benzothiadiazole)

1.10 [37]

Polypyridine 2.06 [38]
Polypyrrole 2.33–2.39 [39]

Polyacetylene 1.35 [40]

Fullerene 0.85–1.24 [41]
Black phosphorus 0.30–2.00 [42]

g-C3N4 2.70 [43]

Porphyrin-based COF 1.60 [44]

Abbreviations: COF, covalent organic framework; SCP, semiconducting conju-
gated polymers.
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section, excellent fluorescence brightness, excellent 
photostability and high emission rate, and low toxicity. 
Linear SCPs, including polythiophene, polyfluorene, 
and polyphenylene vinylene, have attracted consider-
able interest of researchers. However, due to the rela-
tively low photosensitive efficiency of these polymers, 
some methods, such as improving the solubility of 
linear polymers, adjusting the conjugated structure of 
polymers, extending the length of conjugated main 
chain, designing D-A structure, enhancing PS-doped 
linear SCPs, and combining therapies, are discussed 
for enhanced PDT.

Improving Water Solubility of Linear 
SCPs
Water-soluble SCPs can be obtained by introducing catio-
nic anions or other polar groups, which has excellent light 
capture ability and high fluorescence quantum yield. In 
2011, Liu and Wang et al first explored the anticancer 
activity of polythiophene.25 Polythiophene P1 was used 
for PDT (Figure 3).12 However, polythiophene is 
a hydrophobic SCP with poor water solubility and poor 
biocompatibility in Schanze et al introduced cation imida-
zole P2 to improve water solubility and broaden the visible 
light absorption.48 Gary Bobo prepared amphiphilic catio-
nic phosphine-based polythiophene P3.49 Moreover, 
Zhang prepared water-soluble P4 with high 1O2 quantum 
yield (42%), photostability and pH stability.50 Based on 
P4, Zhang shortened the hydrophobic carbon chain and 
prepared pure water-soluble P5 for enhanced PDT.10 Liu 
synthesized a cationic water-soluble P6 with a quantum 
yield of 78%.51 P6 entered the cells by hydrophobic inter-
action and by π-π stacking and formed loose aggregates. 
Then, sulfhydryl groups are oxidized by high H2O2 levels 
in cancer cells to form disulfide bonds. Moreover, Ge et al 
prepared highly water-dispersible P7/(DSPE-PEG 2000), 
which generates more 1O2 under the irradiation of 532 nm 
laser.11 Xing prepared P8/polyisocyanide (PIC) hybrid 
hydrogel. PIC hydrogel has fiber structure and nonlinear 
mechanical properties and can be used as template for P8. 
It has higher ROS generation than P8 under red light and 
has good thermal reversibility and biocompatibility.17 

Therefore, introducing charged or sulfhydryl groups into 
the side chain of linear SCPs and combining with solubi-
lizers can effectively enhance water solubility and biocom-
patibility to extend retention time in vivo and 
enhance PDT.

Adjusting Conjugated Structure of Linear 
SCPs
The common method to enhance the efficiency of PSs is to 
improve the ISC from the lowest excited state (S1) to the 
lowest triplet state (T1).

According to the perturbation theory, the rate constant 
(kISC) of ISC is given by the following formula:52

kISC /
1Ψ ĤSO
�
�

�
�3Ψ

� �
=exp ΔE2

ST
� �

where 1Ψ ĤSO
�
�

�
� 3Ψ

� �
is the spin–orbit coupling (SOC) 

matrix element, ĤSO is the SOC Hamiltonian, and ΔEST is the 
energy gap between the singlet and triplet states. According 
to the formula, increasing SOC matrix element can increase 
the kISC value. Extending SCP conjugate length53 or adding 
heavy atoms, such as iodine,54 bromide, and selenium- 
platinum,55 into organic p-conjugated system can improve 
SOC and kISC. However, heavy atoms may lead to dark 
toxicity in biological applications. Another method is to 
reduce ΔEST by designing the conjugated structure of donor 
(D) and acceptor (A) units.56 Therefore, we will discuss the 
following methods of improving the efficiency of SCPS to 
generate more ROS for PDT.

First, extending the length of conjugated main chain 
improve the ISC. Bazan designed oligomers and P9 with 
DTPEAQ as repeating unit. The 1O2 quantum yield of P9 
is 82% and that of the oligomer DTPEAQ is only 38%.3 

Similarly, Liu synthesized two SCPs P10 and P11, based 
on the small-molecule TPEDC.57 The singlet and triplet 
energy levels of SCPs are usually much denser than those 
of their small-molecule analogs, which is beneficial to 1O2 

generation in the ISC process (Figure 4).
Based on SCPs, the conjugated length is further 

extended. Xu and Tan et al added a phenylene acetylene 
group to polythiophene main chain (P12),13 which is help-
ful in enhancing the light trapping of polymer main chain 
to ensure strong fluorescence and photosensitivity. P12 can 
effectively generate 1O2 under white light, destroy lysoso-
mal membrane and lysosomal enzyme in the cytoplasm, 
and promote cell death. Moreover, by introducing ethynyl 
and vinyl as the bridge, Xu synthesized three water-soluble 
P13–15. The two-photon absorption cross-section at 800 
nm of P15 (ethylene bridge) was 4.5 times that of P14 
(acetylene bridge) and 36 times that of P13.27 Larger two- 
photon absorption cross-section can effectively absorb 
longer wavelengths and treat diseased tissues more deeply.

Second, designing the conjugated structure of donor 
(D) and acceptor (A) units could reduce ΔEST. 
Combination of D and A into a molecule could produce 
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Figure 3 Chemical structures of SCPs for PDT (electron acceptors are shown in blue; electron donors are shown in red).
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new hybridized molecular orbitals with higher HOMO 
level and lower LUMO level to render a small bandgap 
with long wavelength absorption.58 Ge introduced isoin-
digo derivatives into the main chain of polythiophene and 
prepared small bandgap D-A SCPs P16. It has a significant 
NIR absorption peak at 782 nm and an obvious 1O2 

quantum yield under NIR.59 Yang synthesized a three- 
component P17 with low dark toxicity and high 1O2 quan-
tum yield of 42.2% in dichloromethane solvent.60 Based 
on “fluorene-phenylene” structural unit P18, Wang 
designed electron-rich thiophene P19 and electron- 
deficient benzothiadiazole P20 to improve optical proper-
ties. Adding electron-deficient groups to the fluorene- 
phenylene structure can significantly improve ROS 
generation.61 Guo et al62 synthesized P21–23 containing 
dibenzothiophene-S and S-dioxide derivative acceptors 
and introduced SO units into conjugated main chains, 
which had a narrower bandgap, thus enhancing the elec-
tron transport capacity. 63 P22 has a relatively large two- 
photon absorption cross-section of 3.29×106 GM and good 
ROS generation capacity.

Tang et al64 prepared four types of SCPs P24–27 with 
electron donating (red) and withdrawing groups (blue) 
(Figure 5). The ROS generation rate of poly(fluorene 
cophenylene acetylene) derivatives P25, P26, and P27 is 
higher than that of poly(fluorene-phenylene) derivative 
P24, and the D-π-A structure is better than the A-π-A 
structure. Similarly, Tang et al65 designed three SCPs 
P28–P30 with three small molecules, BTB, TCNT, and 
MAQM. The results showed that SCPs have higher ROS 
generation efficiency than small molecules. They also 

designed D-A-D and A-D-A (L1vsL2, L3vsL4, L5vsL6, 
blue as receptor unit). The A-D-A structure has higher 
photosensitive efficiency than the D-A-D structure (L1 < 
L2, L3 < L4, L5 < L6).

The abovementioned results show that introducing 
electron-withdrawing groups into the linear conjugated 
main chain can effectively improve ROS generation, and 
its performance is affected by the proportion and arrange-
ment order of D-A units; for example, D-π-A is superior to 
A-π-A, and A-D-A is superior to D-A-D.

PS-Doped Linear SCPs
Fluorescence resonance energy transfer (FRET) effect 
refers to SCPs as donor and other photosensitizers (por-
phyrin, isoindigo derivatives) as acceptor and excitation 
energy transfer from SCPs to PSs leading to ROS genera-
tion. In 2011, Liu and Wang et al reported a water-soluble 
P31 (Figure 6), polythiophene-containing porphyrin in the 
side chain.25 The excitation energy transfer from polythio-
phene main chain to porphyrin improved ROS generation. 
Compared with porphyrin, the survival rate of cancer cells 
is significantly reduced under 470 nm irradiation. Yang 
et al50 synthesized P33 and P34 with tamoxifen and por-
phyrin receptors, respectively. The MCF-7 cells viability 
of P33 only decreased to 60%, while that of P32 decreased 
to 40%. The abovementioned two studies show that the 
short energy transfer distance of side chain porphyrin 
improved the ROS generation efficiency. SCPs can also 
be a chemical energy receptor. Liu et al66 designed P35 as 
donor and tetraphenyl-porphyrin as acceptor. Meanwhile, 
P35 is also a chemical energy receptor from H2O2 

Figure 4 Chemical structures and singlet and triplet energy levels of three model compounds. 
Notes: Reproduced with permission from: Wang S, Wu W, Manghnani P, et al. Polymerization-enhanced two-photon photosensitization for precise photodynamic therapy. 
ACS Nano. 2019;13(3):3095–3105.57 Copyright © 2019, American Chemical Society.
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Figure 5 Chemical structures of SCPs (electron acceptors are shown in blue; electron donors are shown in red).
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reaction. This energy transfer strategy has strong NIR 
chemical luminescence and good 1O2 generation 
capability.

Moreover, Zhang et al67 added porphyrin into conju-
gated main chain (P36). It has the best absorbance at 700– 
850 nm and can generate ROS without pH effect. Wu 
et al68 also introduced tetraphenyl-porphyrin into the 
main chain of P37, which not only achieved high quantum 
yield of 1O2 generation (35%) but also solved issues of PS 
leaching and low dark toxicity, effectively damaging can-
cer cells and inhibiting xenograft tumor. Without cova-
lently linking porphyrins to SCPs side or main chains, 
Wang et al synthesized anionic water-soluble P38 and 
cationic porphyrin (TPPN) complexes by electrostatic 
interaction between anionic SCPs and cationic 
porphyrins.69 P38 and TPPN have an effective energy 

transfer. Moreover, TPPN’s energy is transferred to the 
triplet state by ISC; then, 3O2 is sensitized to improve 1 

O2 generation efficiency and enhance PDT. Hydrophobic 
tetraphenyl-porphyrin and P39 were prepared to dense 
semiconductor polymer points by reprecipitation.70 The 
energy transfer efficiency is close to 100%, resulting in 
approximately 50% 1O2 quantum yield.

Hyperbranched SCPs
In addition to the traditional linear main chain structure, 
branched SCPs is also worth exploring. Adams and Cooper 
et al71 prepared a series of amorphous microporous organic 
polymer P40 with specific surface area of 1710 m2 g−1 and 
adjusted the bandgap in the range of 1.94–2.95 eV 
(Figure 7). The authors only found that this polymer had 
good performance of photocatalytic hydrogen evolution. 

Figure 6 Chemical structures of SCPs for PDT.
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Figure 7 Chemical structures of SCPs.
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The polymer with 1.94 eV bandgap can be used for PDT, 
but the PDT efficiency needs to be further studied. Zhou 
et al72 reported polymer P41 with aggregation-induced 
emission (AIE) characteristics, red emission peak at 638– 
649 nm, and 25.0–30.6% fluorescence quantum yield in the 
aggregated state. It is suitable for PDT as a PS. Huang 
et al73 designed a hyperbranched polymer P42. The QY in 
water is 27% at 800 nm. He also prepared P42/hyper-
branched polyether (photothermal agent)/Ce6 for two- 
photon excited PDT. The phase transition from the extended 
coil to the folded sphere shortens the distance between P42 
and Ce6, which is conducive to 1O2 generation by FRET.

Combined Therapies and Regulation of 
Drug Release by Microenvironment
With a small radius of action (<20 nm) and short lifespan 
(<40 ns) for 1O2,74 one strategy for overcoming these 
limitations is combining with other therapies. To achieve 
the combination of PDT and chemotherapy, PSs and che-
motherapeutic drugs need to be used in a drug delivery 
system to regulate drug release through ROS concentra-
tion, pH, and temperature in the tumor microenvironment. 
Liu et al75 regulated the release of chemotherapeutic 
drugs by ROS. They combined P43 with doxorubicin 
(DOX) by a ROS-cleavable thioketal linker. P43 gener-
ates ROS under light, which can not only kill cells but 
also cut the linker at a specific location to release DOX. 
The results showed that the combination therapy has 
a stronger inhibitory effect on cell viability than single 
therapy. Furthermore, the release of chemotherapeutic 
drugs can be activated by hypoxia. Pu et al76 synthesized 
a nanodrug system, amphiphilic P44 linked with PEG and 
chemotherapeutic drug isophosphatin mustard intermedi-
ate (IPM-Br) (Figure 8A). Catalyzed by nitro reductase, 
the hypoxia specifically initiated the cleavage and release 
of IPM-Br, leading to cell death. Its PDT efficiency is 18 
times higher than that of the control group. Moreover, the 
antitumor effect is 4.3 times higher than that of P44 under 
NIR and hypoxia. Therefore, the combination of PDT and 
hypoxia-activated chemotherapy can be used in collabora-
tive amplification of cancer therapy. Shen et al77 designed 
a system for hypoxia activation and release of chemother-
apeutic drugs. P45 was synthesized, in which dithiophe-
nylbenzotriazole was used in ROS generation, 
dithiophenylpyrazine as NIR imaging agent, and 2-nitroi-
midazole as side chain hydrophobic component for 
hypoxia response transduction. The DOX was 

encapsulated by double emulsion solvent evaporation/ 
extraction and coated with polyethylene alcohol. In 
hypoxia, the side chain can be transformed into hydro-
philic 2-aminoimidazole P46 through the single electron 
reduction of a series of nitroreductases and biological 
reducing agents (eg, abundant coenzymes in tissues), 
promoting the degradation of DOX/SCP nanoparticles. 
This SCP release system can effectively generate ROS 
and induce hypoxia to promote its release in cells for 
combined therapy.

In addition to combined chemotherapy, Pu et al78 

designed P47 to induce photodynamic-immuno metabolic 
therapy by 1O2. The 1O2 generated from P47 can not only 
induce PDT but also stimulate the release of tumor- 
associated antigen and activate kinase, leading to loss 
of Kyn and increase in the proliferation and infiltration 
of effector T cells, improving the whole-body anticancer 
immunity. The researchers adjusted the ROS level 
according to pH conditions. Zhu and Fang et al79 

revealed a compound with P48 and CeO2, which can 
change the ROS level according to the changing micro-
environment and reduce the damage to the surrounding 
normal tissue (Figure 8B). As a photosensitizer, P48 has 
strong absorption in NIR, and nanoceria can be an ROS 
scavenger and converter according to pH and generate 
less radicals under neutral condition to distinguish nor-
mal tissue and tumor and improve the therapeutic 
selectivity.

PDT depends on ROS but is limited by the oxygen 
level of the tumor microenvironment. PTT depends on the 
photothermal conversion of nonradioactive decay, regard-
less of the oxygen supply. The combination of PDT and 
PTT can compensate each other to improve phototherapy. 
For example, Yuan prepared P49.80 Its temperature rose 
rapidly to 69.5°C in 5 min to severe photothermal cell 
damage under 808 nm laser irradiation. Recently, amphi-
philic P3 was found to assemble with siRNA effectively, 
deliver siRNA targeting luciferase gene in MDA-MB-231 
cancer cells expressing luciferase, and lead to 35% and 
52% gene silencing effect. Meanwhile, the photodynamic 
activity of P3 was restored after siRNA delivery, proving 
their potential in the combination of PDT and gene 
therapy.49

Thus, improving the solubility by side chain modifica-
tion could prolong the duration of efficacy in vivo. 
Adjusting the molecular composition of polymer could 
improve the electron and energy transfer in PDT and 
promote ROS generation. Combination with other 
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therapies improve hypoxia restriction. Therefore, the mer-
its of SCP modification can be integrated to enhance PDT.

Two-Dimensional (2D) SCPs
Studies show that extending the SCP size from 1D to 2D 
can reduce the Coulomb binding energy so that the electron 
hole pairs can be dissociated, thus increasing exciton dis-
sociation yield to generate ROS. Recently, popular 2D SCPs 

include g-C3N4, black phosphorus (BP), and GQDs. Many 
researchers reviewed the drug delivery, imaging, and photo-
therapy of 2D SCPs.19,20,81,82 This review focuses on the 
modification of 2D SCPs for enhanced PDT.

g-C3N4
Recently, g-C3N4 has attracted widespread attention as PSs 
for PDT. It is a 2D layered SCP with inherent 

Figure 8 (A) Schematic illustration of P44 for hypoxia-activated synergistic PDT and chemotherapy. Reproduced from: Cui D, Huang J, Zhen X, Li J, Jiang Y, Pu K. A semiconducting 
polymer nano-prodrug for hypoxia-activated photodynamic cancer therapy. Angew Chem Int. 2019;58(18):5920–5924.76 Copyright © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, 
Weinheim. (B) Schematic illustration of the self-regulated photodynamic properties of P48 at physiologically neutral, pathologically acid conditions and comparison between self- 
regulated and conventional. Reproduced with permission from: Zhu H, Fang Y, Miao Q, et al. Regulating near-infrared photodynamic properties of semiconducting polymer 
nanotheranostics for optimized cancer therapy. ACS Nano. 2017;11(9):8998–9009.79 Copyright © 2017, American Chemical Society.
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semiconductor characteristics, biocompatibility, and excel-
lent chemical stability.81 The bandgap is 2.7 eV, and 
O2

•−,1O2, and O2 can be generated under visible light.83 

Presently, the PDT bottlenecks of g-C3N4 are poor tissue 
penetration and hypoxia. To solve these issues, researchers 
adjust the optical properties of g-C3N4 by developing g- 
C3N4 quantum dots (QDs), doping, and heterojunction, 
which allow redshift light absorption and increase NIR 
absorption. Then, combined with other PSs and upconver-
sion materials, the utilization of light can be improved to 
maximum. Lastly, g-C3N4 can be combined with che-
motherapy and immunotherapy to improve the anticancer 
effect.

Modification of g-C3N4 Inherent Structure
First, regarding bulk size of g-C3N4 and poor solubility, 
researchers developed g-C3N4 QDs, which has good biocom-
patibility and small size and is beneficial in cell ingestion. 
Wei84 prepared g-C3N4 QDs (~30 nm) modified by nitrogen- 
rich monomer with better ROS generation. Zhang85 reported 
low cytotoxicity and good biocompatibility of g-C3N4 QDs 
(5 nm) an excellent PS for microwave-induced PDT. Second, 
the bandgap of g-C3N4 is 2.7 eV and can be activated by 
green light, which causes low penetration depth and limits 
therapeutic effect to the deep tumor. Reducing bandgap by 
element doping could broaden NIR absorption to increase 
penetration depth. Xu et al86 prepared 1.95 eV bandgap g- 
C3N5, corresponding to the absorption edge at 636 nm. The 
activity of g-C3N5 generated O2 and 1O2 is approximately 9.5 
times that of the original sample. Moreover, Cai et al87 doped 
g-C3N4 with alkali metal Zn2+ and K+, its absorption edge 
was adjusted from 460 nm to 663 nm, and the bandgap was 
reduced to 1.94 eV. The ROS release rate of doped g-C3N4 

was approximately 45.16% (the original sample was 7.95%). 
Lastly, heterojunction can promote electron transfer and ROS 
generation.88 Lu and Yang89 synthesized a g-C3N4@PDA 
heterojunction. The absorption range of PDA can be 
extended from ultraviolet (UV) to NIR (660 nm). Li and 
Yang reported 5–10 nm gold nanoparticle (AuNP) could 
absorb 670 nm light energy, and excited electrons were 
injected into g-C3N4 nanofilms, which extended the process 
of photoinduced charge separation and delayed the combina-
tion of electron–hole pairs to enhance type I PDT.90,91

PS-Doped g-C3N4 for PDT
PSs has a strong ability to generate ROS, but it is limited by 
oxygen concentration. g-C3N4 can generate oxygen by water 
splitting. Conversely, the energy transfer of PSs and g-C3N4 

can enhance PDT. Chen et al92 synthesized a water-soluble, 
pH-activated g-C3N4 nanomaterial with coupled porphyrin. 
1O2 was generated by FRET between g-C3N4 and porphyrin, 
which was highly toxic, especially in the more acidic envir-
onment of cancer cells. Similarly, Cai et al93 combined g- 
C3N4 with TMPyP4-porphyrin, which has good stability in 
physiological solution and selective aggregation in tumor 
cells. Under hypoxia, it can effectively inhibit A431 
human epidermoid cancer cell growth. Cheng et al94 pre-
pared iron-doped carbon nitride (Fe-C3N4)/Ru(II) complex/ 
hyperbranched SCP with poly(ethylene glycol). Poly(ethy-
lene glycol) is a high two-photon collector and FRET’s 
donor. O2 was released to compensate for oxygen consump-
tion during PDT and promote 1O2 generation under 800 nm 
two-photon radiation. The multiple PSs show more effective 
separation of electron hole pairs and significantly higher 
light utilization efficiency and enhanced PDT efficiency 
than any single PS.

Combined Therapy
g-C3N4 is an effective chemotherapeutic drug carrier for 
enhancing the anticancer effect because of its high spe-
cific surface area. For the first time, Li et al95 showed 
that g-C3N4 nanosheets to be used as a carrier of pH- 
responsive nanodrug DOX. Chen et al96 prepared g- 
C3N4 as core and ZIF-8 with DOX as shell. Wang et al97 

also used melamine and phloxine B precursor polymer-
ization to synthesize black g-C3N4 with PDT and PTT 
effects. Black g-C3N4 generated ROS after a single 808 
nm laser irradiation for 5 min. After 8 min, the tem-
perature exceeded 50°C, and mice tumor growth 
severely decreased. Lu et al98 prepared 2D Ti3C2 

(photothermal agent)/g-C3N4 heterostructure by the elec-
trostatic assembly, which prolonged g-C3N4 light 
absorption to NIR. It can produce O2

•− and •OH under 
670 nm for type I PDT and trigger water splitting to 
generate abundant O2 for type II PDT.

BP
Phosphorus atoms in the same layer of BP are connected 
with three other phosphorus atoms by chemical bonds, and 
the different layers are connected by van der Waals 
interaction.99 The bandgap of BP depends on the number 
of layers, ranging from 2.0 to 0.3 eV.100 BP has excellent 
biocompatibility and strong biodegradability in vivo, indi-
cating that BP is suitable for biomedicine. Zhang et al 
proved that stripped BP is an effective PS for generating 1 

O2 for the first time, with 0.91 1O2 quantum yield,101 
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which is far higher than those of other traditional PSs, 
such as porphyrin, phthalocyanine, and photodynamic 
nanomaterials.102,103 Modifications of improving PDT are 
as follows:

BP Quantum Dots (BPQDs)
Huang et al104 first synthesized BPQDs. It has good stabi-
lity in physiological medium without obvious cytotoxicity. 
More importantly, due to the ultra-small hydrodynamic 
diameter (5.4 nm), it can be rapidly excreted from the 
body through kidney clearance. Song et al105 designed to 
embed Ag+ into BPQD (~10 nm), and the direct bandgap 
of Ag+/BPQD is reduced to approximately 0.1 eV, corre-
sponding to 1300 nm wavelength, significantly increasing 
optical absorption.

PS-Doped BP for PDT
Wang et al106 prepared BP nanosheets coated with a water- 
soluble and positively charged AIE-PS (NH2-PEG-TTPy), 
which not only works on the biocompatibility and physio-
logical strength of BP nanosheets but also has solid fluor-
escence outflow at 672 nm and PDT capacity under 808 
nm NIR laser. C60 was covalently grafted onto the edge of 
BP nanosheets.107 Photoinduced electrons from BP to C60 

promoted •OH generation for type I PDT, and its stability 
in serum, phosphate-buffered solution, and water was sig-
nificantly improved. The hybridoma inhibition rate of 
BP-C60 was the highest (88.2%) compared with that of 
original BP (36.6%).

Combined Therapy
BP has an inherent photothermal effect. Lv et al108 and Ren 
et al109 prepared ultra-thin BP nanosheets (13 nm) with 
UCNPs. A 980 nm laser can achieve a photothermal conver-
sion efficiency of 30.84%, which is substantially greater than 
traditional AuNPs (22.63%) and gold nanorods (23.33%). 
BP was mixed with additional photothermal agents by the 
researchers. BP@PDA-Ce6

110 and BP-CuS111 had photother-
mal conversion efficiencies of 33.2% and 62.6%, respec-
tively. The researchers also combined BP with flaky,112 

biconical,113 spherical,114 and rod-shaped115 AuNPs to 
enhance light absorption, 1O2 generation, and thermotherapy 
via local surface plasmon excitation resonance. PDT com-
bined with chemotherapeutic agents such as DOX,116 

docetaxel,117 and resveratrol118 can enhance anticancer effi-
cacy, inhibit tumor growth, and support the temperature 
sensitivity and controlled release of drugs. Also, PDT of BP 
can be combined with gene therapy and immunotherapy. 
Delivering human telomerase reverse transcriptase-small 

interfering RNA (hTERT siRNA) is an important method 
of gene therapy. BP nanoparticles degrade in low pH and 
rich ROS environment, escape from acidic lysosomes by 
polyethyleneimine, and transfer and release siRNA into the 
cytoplasm for gene silencing therapy.119 Song and Yang120 

loaded BP with immune adjuvant (CpG- 
oligodeoxynucleotides), an effective adjuvant for increasing 
cytokine secretion by antigen presenting cells, activating 
T cells, and recruiting them into tumor tissues. The addition 
of an immune adjuvant to BP may prevent them from being 
eliminated from circulation. This drug generated a high ROS 
level under NIR, leading to the transformation of hydropho-
bic ROS-sensitive poly(propylene sulfide) to hydrophilic 
polymer, leading to disintegration.

GQDs
GQDs have excellent optical properties due to quantum 
limitation,121 which can be used as PDT PSs. The trans-
verse dimension is usually less than 10 nm122 compared 
with traditional PSs, which has many advantages, such as 
good biocompatibility, high water solubility, and light 
stability. Surface functional groups and structural modifi-
cations have a significant impact on GQDs; hence, surface 
modification and structural design can improve the PDT of 
GQDs.

First, doping GQDs with heteroatoms N,123 Cl,124 F,125 

Eu, Ag, and Se126 is an effective method, which can 
change its electronic density and optical properties to 
improve ROS generation efficiency. Second, PS-doped 
GQDs could enhance PDT.127 integrated Ce6 into GQDs 
via disulfide bonds. Redox-responsive Ce6/GQDs signifi-
cantly inhibited HeLa cell growth. Furthermore, GQD’s 
combination therapy is comparable to other SCPs such as 
chemotherapy with DOX,128 immunotherapy,129 

PTT130,131 and numerous combined therapies, all of 
which have been reviewed.22,132

Three-Dimensional (3D) SCPS

Carbon Nanomaterials
Fullerene C60 and its derivatives can generate ROS and have 
high quantum yield, which has gained the attention of 
researchers. Due to low solubility in aqueous solution and 
poor optical absorption in visible light and NIR, its applica-
tion of PDT is limited. Ikeda believed that the combination 
of C60 derivatives and solubilizers (eg, cyclodextrin, poly-
saccharide, lysozyme, and liposome) not only increases its 
water solubilization but also enhances its permeability and 
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retention effect. These water-soluble complexes C60-C70 

have high photoinduced cytotoxicity to HeLa, HaCaT, and 
RAW 264.7 cells under 350–500 nm light and no cytotoxi-
city (light >600 nm).133 Moreover, to improve the hydro-
philicity of C60, Lee et al134 prepared a composite of C60 

powder and nanodiamond by simple grinding, which is 
a stable aqueous colloidal suspension. A part of the diamond 
shell carbon is oxygenated for hydrophilic property so that 
the complex is scattered in water and physiological media. 
C60-diamond causes mice tumors to shrink through rapid 
cell ingestion and 1O2 generation under visible light.

COF
COF is a porous crystal material in which organic building 
blocks or elements (C, N, O, B) are connected by various 
covalent bonds to form 2D or 3D long-range ordered 
periodic structures. COF also has excellent properties135 

but contains heavy metal ions. COF has many advantages 
of free heavy metal, relative stability, good biocompatibil-
ity, strong π stacking conductive path, high specific surface 
area, and large pore volume, contributing to ROS or 
photon diffusion. Therefore, COF is an ideal PS candidate 
and shows great potential in PDT.

Improving Solubility of COF
COF’s biomedical application is limited due to its large size 
and poor colloidal stability in aqueous solution. In 2016, 
Chen et al applied COF to PDT for the first time. To improve 
COF water dispersivity, they28 synthesized a completely con-
jugated 2D COP (COP–P–SO3H; Figure 9). Sulfonic acid 
group not only improves water dispersivity but also signifi-
cantly reduces bandgap to enhance optical absorption and 

redshift absorption edge. Moreover, it has high quantum 
yield of 1O2, which is 1.2 times that of clinically approved 
PS (ie, PpIX). Liu et al136 used meso-5, 10, 15, 20-four 
(4-hydroxybenzene) porphyrin (THPP) and perfluorosulfo-
nic acid as connectors and then modified with carboxyl 
terminated polyethylene glycol (PEG5kCOOH) to prepare 
fluorinated nano-COP with excellent physiological stability. 
Even after freeze-drying treatment, there was no significant 
interference. Moreover, fluorinated chains of COP can effec-
tively load O2 and significantly enhance PDT. Recently, Liu 
et al137 selected bovine serum albumin as a model protein 
and biocompatible and water-soluble drug adjuvant and used 
5,10,15,20 tetrakis(4-aminophenyl)-21H,23H-porphyrin 
(TAPP) and 1,3,5-triamcinolone (TFP) as building blocks 
to synthesize stable COF, which had uniform morphology 
and good colloidal stability.

Adjusting Molecular Unit to Expand Conjugated 
Structure
Lang et al138 reported that sp3 hybrid carbon atoms in tetra-
phenylmethane were connected with planar porphyrins by 
Schiff-base reaction to form diamond-like porphyrin-based 
COF (Figure 10). The photosensitive COF was not affected 
by the high concentration of single porphyrin unit in the 
structure. It has advantages of good light stability, high 
spectral efficiency, and good dispersibility in polystyrene. 
Deng et al139 used molecules that cannot generate 1O2 by 
themselves to construct an expanded porous framework with 
high surface areas and permanent porosity. It has a 1.96 eV 
bandgap, which shows excellent overlap with O2

•−, leading 
to a significant improvement in type I PDT.

Figure 9 The scheme for synthesis of COP-P-SO3H. 
Notes: Reproduced with permission from: Xiang Z, Zhu L, Qi L, et al. Two-dimensional fully conjugated polymeric photosensitizers for advanced photodynamic therapy. 
Chem Mater. 2016;28(23):8651–8658.28 Copyright © 2016, American Chemical Society.
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PS-Doped COF
Pan et al140 integrated dye-labeled oligonucleotides into por-
phyrin-based COF, which effectively quenched dye fluores-
cence through FRET. Compared with porphyrin monomer, 

the large planar structure of the electron system of COF has 
better stability and higher ROS generation in aqueous solu-
tion under NIR irradiation. Li et al141 reported BODIPY- 
modified nano-COFs (110 nm). Based on imino-COFs, the 

Figure 10 Syntheses of precursors and COFs (precursors of connection unit are shown in blue). 
Notes: Reproduced with permission from: Hynek J, Zelenka J, Rathouský J, et al. Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of 
bacteria. ACS Appl Mater Interfaces. 2018;10(10):8527–8535.138 Copyright © 2018, American Chemical Society.
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free CHO (bond defect in COFs) is connected with amino 
substituted BODIPY by Schiff-base reaction, which is bene-
ficial for enhancing PDT. Recently, Ca-COF-BODIPY-2I is 
prepared.142 Covalently linked BODIPY-2I can generate 1O2 

under light, and intracellular Ca2+ overload can lead to pro- 
death through synergistic effect with 1O2.

Combined Therapy
Porphyrin material has been widely studied for PDT, but 
its photothermal effect is rarely reported. Pang et al143 

prepared porphyrin-based covalent organic polymer by 
solution aging at room temperature, which has high photo-
thermal conversion efficiency (21.7%) from 22.4°C to 
57.5°C in 10 min and good PDT performance. Moreover, 
Pang et al prepared COF/CuSe144 and COF/Ag2Se145 

nanocomposite, which achieved enhanced therapeutic 
effect through a combination of PDT and PTT.

Hydron-Bonded Organic Frameworks 
(HOFs)
Liu et al146 designed HOFs with large p-conjugated system 
and four carboxylic acid groups. They have multiple 
hydrogen bonds, strong P-P interaction, high chemical 
stability, high specific surface area of 2122 m2 g−1, bio-
compatibility, and low cytotoxicity. Moreover, they have 
periodically integrating photoactive pyrene and can effec-
tively encapsulate DOX for combined chemotherapy. 
Compared with MOFs and COFs, it has the advantages 
of mild synthesis conditions and good solution stability 
and can be used as excellent candidate materials for PDT.

Issues and Strategies for Enhanced 
PDT
Oxygen Reliance
Hypoxia is a typical pathological feature of almost all solid 
tumors and significantly reduces ROS generation. Type II 
PDT is limited by the oxygen concentration in the tumor 
microenvironment, which seriously restricts photodynamic 
efficacy. Furthermore, persistent hypoxia and damage to the 
vascular system can exacerbate hypoxia, eventually leading 
to failure of deep tumor therapy. Two methods are used to 
resolve hypoxia: reducing oxygen consumption and increas-
ing oxygen generation.147,148 For hypoxia, researchers 
increase oxygen supply by g-C3N4 water splitting149 and 
oxygen supply materials, such as CeOx, MnO2, and catalase, 
to catalyze the oxidation of H2O2 to O2. Conversely, they 
can reduce O2 consumption by targeting mitochondria and 
inhibiting tumor cell respiration (Table 2).

First, g-C3N4 bandgap was adjusted to allow its valence 
band to meet the requirement of O2 generation. Zhang et al149 

synthesized carbon point-doped g-C3N4, which enhanced its 
red light absorption and activated water splitting in vivo. 
When the O2 concentration is 1%, it has a good cancer cell 
growth inhibition effect, improves the O2 level in the tumor, 
and finally reverses the PDT resistance and tumor metastasis 
induced by hypoxia. Second, O2 supply materials, such as 
catalase,150 Fe-doped g-C3N4 (similar to peroxidase),151 

MnO2,152 and CeOx
153 catalyze the oxidation of H2O2 to O2.

Regarding BP, many artificial catalases, Pt 
nanoparticles,154–156 FeOCl/Mn2+,157 Fe-Pt NP158 and 
AuNPs159 effectively decompose the accumulated H2O2 

Table 2 Summary of Oxygen-Generating Strategies for Tumor Oxygenation

Materials O2 Generation Mechanism Reference

g-C3N4 Water splitting [149]

CeOx Ce4+ convert H2O2 to H2O and O2 [153]

Metformin Inhibition of the respiration of tumor cells [153]
Catalase Catalytic degradation of H2O2 [150]

Fe-doped-C3N4 Catalytic degradation of H2O2 [151]

MnO2 Catalytic degradation of H2O2 [152]
Heme Catalytic degradation of H2O2 [161]

Pt-NPs Catalytic degradation of H2O2 [154,159]

Au NPs Glucose decomposition and H2O2 production [158]
FeOCl and Mn2+ Catalytic degradation of H2O2 [156]

Fe-Pt NPs Fe-based Fenton reaction [157]

MOF MOF adsorption of O2 [160]
Cyanobacteria Photosynthesis [162]

Abbreviation: MOF, metal-organic framework.
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in the tumor and alleviate tumor hypoxia. Lei et al160 

precisely encapsulated a layer of phosphorus QDs and 
catalase in the inner and outer layers of MOF, respectively. 
The outer hydrogenase transformed H2O2 into O2, then O2 

is directly injected into the inner BP. The PDT efficiency 
of the drug system is 8.7 times than that without catalase. 
However, excessive H2O2 may lead to the off-target effect 
and change other normal biochemical processes. Ju et al161 

developed a double trigger O2 self-supporting nanosystem. 
The BP was functionalized with a blocker DNA duplex of 
50Cy5-aptamer-heme/30-heme labeled oligonucleotides. It 
could produce heme-dimer used to inactivate peroxidase. 
This system can not only enhance the stimulation effect of 
tumor microenvironment but also allow an 8.7-fold 
enhanced PDT. Recently, Huo and Shi group162 modified 
BP nanosheets with biocompatible photosynthetic cyano-
bacteria. Cyanobacteria may create O2 by photosynthesis 
when exposed to a 660 nm laser, and BPNs can activate O2 

to produce 1O2 for PDT.

Light Penetration
When light penetrates the tissue, it is absorbed or scat-
tered, and the red light and NIR light have the greatest 
penetration depth (λ = 600–1350 nm), usually 1–3 mm. In 
the past decades, the development of penetration depth of 
PDT was reviewed (Table 3).

Optimizing the chemical structure of SCPs can effec-
tively improve penetration depth. First, heteroatom-doped 
SCPs can achieve two-photon excitation, such as N-doped 
GQDs, which shows the advantages of two-photon excita-
tion PDT and generates more ROS.123 Second, two-photon 
excited g-C3N4 QD by reducing the size of g-C3N4 was 
developed to achieve charge transfer transformation and 
improve penetration depth of light.84 Third, adjusting the 
bandgap of SCPs can promote absorption edge redshift 
and enhance NIR absorption.

UCNP can convert NIR into UV and visible light.163 For 
example, Hsiao combined hydrophilic g-C3N4 with NaYF4: 
Yb3+/Tm3+ upconversion nanoparticles through positive 
ligand polylysine. UCNP can convert NIR into UV light 
and promote g-C3N4 to release blue-green visible light.164,165

Microwaves can pass through all types of tissues and 
induce PDT for deep cancer. Zhang et al85 reported an 
excellent microwave-induced g-C3N4 QDs. In vitro cell 
experiment results show that g-C3N4 QDs can enter osteo-
sarcoma UMR-106 cells under microwave radiation and 
generate 1O2, which enhances the microwave’s lethal 
effect on tumor cells.

The Cherenkov radiation of X-ray and radionuclide can 
be used as internal light source, which is no longer limited 
by external light source penetration. The high energy of 
X-ray photons cannot directly excite PSs, but the high- 
energy ionizing radiation can be converted into UV or 
visible light through the energy medium (namely 
Cerenkov radiation), thus activating PSs.166 For example, 
BP/Bi2O3

167 and Bi2S3
168 are highly efficient and biocom-

patible radiosensitizers that can be used in cancer coop-
erative radiotherapy. When the propagation speed of 
dielectric charged particles produced by the decay of 
radionuclides (eg, β+ and β−) is faster than that of light, 
Cherenkov radiation also occurs, which can emit UV and 
visible light (250–600 nm) in a wide energy range to 
activate PSs to generate ROS.88 However, recently, there 
is no relevant report on radionuclide Cherenkov radiation- 
excited organic SCPs, which are commonly used in TiO2 

and porphyrin molecules, such as 68Ga-TiO2
169 and 89Zr- 

porphyrin.170

The internal light source also includes chemilumines-
cence and bioluminescence. The chemiluminescence 
between luminol and hydrogen peroxide was used to acti-
vate semiconducting polymer to generate 1O2 with good 
anticancer and antifungal effects.171 Furthermore, there is 

Table 3 Summary of Light Penetration Strategies

Materials Light Penetration Mechanism Reference

N-doped GQDs/adjusting g-C3N4 size Two-photon excitation [84,123]

g-C3N5/Zn2+ and K+-doped g-C3N4 Decrease bandgap [86,87]

g-C3N4/UCNPs Conversion of NIR into ultraviolet and visible light [164,165]
g-C3N4 QDs Microwave induction [85]

BP/Bi2O3 Cherenkov radiation of X-ray [167]

MEH-PPV Chemiluminescence [171]
(p-Phenylene vinylene) derivative Bioluminescence [172]

Abbreviations: MEH-PPV, poly(2-methoxy-5-[(2-ethylhexyl)oxy]-p-phenylene vinylene); GQDs, graphene quantum dots; NIR, near-infrared; QDs, quantum dots.
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a bioluminescent resonance energy transfer between lumi-
nol and organic photovoltaics. The oligomer (p-phenylene 
vinylene) derivative was activated by bioluminescence, 
which killed approximately 80% of cancer cells, and the 
inhibition rate of the tumor tissue was as high as 50%.172

Targeting
The theoretical basis of nanomedicine is enhanced perme-
ability and retention effect,173 that is, macromolecules 
larger than 40 kDa selectively leak from tumor blood 
vessels and accumulate in tumor tissues, but not in normal 
tissues. However, recent studies have found that only 0.7% 
(median) of the nanoparticle injection dose reaches the 
tumor,174 which requires biological strategies to solve 
nanodrug–delivery challenge. One way to overcome 
tumor–delivery barrier is to pair nanodrugs with the 
tumor to regulate the malignant tumor microenvironment 
and achieve effective accumulation of nanodrugs.

First, tumor cells targeting ligands mainly include anti-
bodies or peptides,14,175 hyaluronic acid (HA),158,176 and 
folic acid (FA).25,177–179 Ding et al14 produced 
a compound of photosensitizer P50 modified with HER2 
antibody, demonstrating the potential of HER2-SCPNs to 
target SKBR-3 tumors. Feng et al175 covalently coupled 
surface carboxyl-modified P51 with antibody (anti- 
EpCAM), which can detect MCF-7 tumor cells and loca-
lize them on the cell membrane, to accomplish targeted 
imaging of distinct regions of tumor cells. Furthermore, 
Xu et al180 modified semiconducting polymer with cyclic 
arginine glycine aspartate peptide, which can selectively 
kill αvβ3 integrin-overexpressing MDA-MB-231 cells. 
Second, SCPs can induce subcellular organelle-mediated 
cell death under light, such as lysosome and mitochondria. 
Triphenylphosphine bromide (TPP),72 TAPP181 and Met153 

have been used as mitochondrial targeting agents for 
SCPs. In addition to the two abovementioned types of 
organelles, there are the cell membrane and nucleus, and 
the detailed content can be referred to other reviews.1 

Lastly, in addition to biological strategies, magnetic target-
ing agent Fe3O4

182,183 can also be used to increase PS 
intracellular concentration to avoid systemic toxicity.

Biosafety and Toxicity Evaluations of SCPs
The biological safety assessment of SCPs includes in vitro 
cellular uptake, localization, toxicity, in vivo biodistribu-
tion, degradation, excretion, material solubility, biodegra-
dation, and biocompatibility. Metal-free SCPs essentially 
avoid the toxic and side effects of heavy metal ions and 

small molecules on organisms. The main problem of linear 
SCPs and high crystallinity COFs is poor hydrophilicity, 
which has been mentioned in the previous section and will 
not be repeated here.

GQDs have smaller particle size, which cannot accu-
mulate in the main organs and are quickly removed by the 
kidney, showing low cytotoxicity in vitro. Recently, some 
studies have evaluated the photodynamic cytotoxicity of 
GQDs in vitro and in vivo.22 To further improve the 
solubility of GQDs, Li and Yi combined GQDs with 
PEG to improve its solubility and blood circulation.184

Block g-C3N4 has high stability, which makes it diffi-
cult to dissolve and biodegrade. To meet the requirements 
of practical clinical application, it needs to be modified. 
The most common method is preparation of ultra-thin g- 
C3N4 nanosheets or PEG modification.185 Xie analyzed the 
viability of HeLa cells after incubation for 48 h by MTT 
and found that ultra-thin g-C3N4 nanoplates had excellent 
biocompatibility. When the g-C3N4 nanoplate concentra-
tion is as high as 600 μg mL−1, there was no significant 
loss of cell viability.186

The BP stability is poor when compared to other SCPs. In 
vivo, BP is biodegradable and creates nontoxic and biocom-
patible intermediates, such as phosphate and phosphite, that 
are suitable for biomedical applications.187 The cytotoxicity 
of BP on L-929 fibroblasts was evaluated by Han et al188 in 
terms of dosage and duration. The findings revealed that BP 
cytotoxicity was proportional to concentration and exposure 
duration and influenced by decreasing enzyme activity and 
membrane damage mediated by oxidative stress. There was 
no apparent cytotoxicity when the BP concentration was less 
than 4 g mL−1. When BP comes into touch with oxygen, 
light, or water, interstitial oxygen will be incorporated, result-
ing in massive structural deformation.189 As a result, it 
is necessary to modify its surface to prevent rapid degrada-
tion. For example, graphene, h-BN,187 PEG,190 Al2O3,191 

titanium sulfonate ligand (TiL4),192 aryl diazonium salt193 

and other surface coating methods can significantly increase 
stability and minimize degradation.

Conclusions
This review describes the research progress of the application 
of metal-free organic conjugated polymer for PDT. SCPs as 
PSs have good optical properties, such as high photostability 
and easy surface functionalization. Progress has been 
achieved in the application of SCPs in phototherapy, and 
some issues have been discussed, such as hypoxia, low 
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permeability, targeting, biocompatibility, and safety. 
However, there are still some important issues to be solved.

1. The research of 2D and 3D SCPs for PDT, such as 
covalent triazine framework and HOF, is still in the 
early stage. Inspired by linear polymers, 
D-A structures of 2D and 3D SCPs can be designed. 
Optimization of material synthesis, high yield, sur-
face functionalization, size, morphology, defects, 
heterojunction, and multifunctional composites 
could help improve ROS generation efficiency. 
Furthermore, modification of metal ions leads to 
pollution; thus, the concentration should be con-
trolled in a clear range.

2. SCPs are large, and molecular weight is not single, so 
we need to further explore QDs and self-assembly of 
oligomers; balance surface functionalization, polymer 
size, and concentration; and prolong the action time of 
drugs in vivo. The operating parameters of in vitro and 
in vivo studies, such as irradiation intensity, irradia-
tion time and drug dose, and injection mode, need to 
be normalized to facilitate control studies.

3. The combination of PDT with gene therapy, radio-
therapy, photothermal therapy, chemotherapy, and 
sonodynamic therapy needs further exploration. 
PDT can also achieve accurate diagnosis and real- 
time evaluation of therapeutic efficiency through 
imaging. However, there is an obvious contradiction 
between the efficiency of multifunctional compo-
sites and PDT, for example, the absorption effi-
ciency of light, binding mode (nonspecific binding, 
covalent binding and indirect covalent binding 
through biomolecular bridge), and load rate of 
drugs on SCPs. Therefore, we need to establish 
standards to balance various factors.

4. Most studies did not consider the potential effects of 
drugs on stem, red blood, and immune cells. 
Moreover, we need to consider the differences 
between mouse models and large mammalian and 
human tumors. Human tumors are rarely exposed 
like xenograft mouse models. Presently, the biosafety 
research on SCPs is still in the early stage. There are 
no toxicity studies on systemic biodistribution, toler-
ance threshold, degradation, and clearance rate to 
determine the long-term effects of potential toxicity 
on animals. Therefore, it is urgent to conduct more 
comprehensive physical and chemical properties 
(residual harmful solvents in the synthesis process), 

nanoscience, and biosafety toxicity assessment of 
SCPs.

In conclusion, in view of the development of SCPs and 
new emerging technologies in the future for PDT improve-
ment, it is believed that PDT will be recognized as an 
effective therapy in clinical cancer.
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