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Introduction: The buccal route has been considered an attractive alternative delivery route for injectable formulations. Cell-
penetrating peptides (CPPs) are gaining increased attention for their cellular uptake and tissue permeation effects. This study was
aimed to evaluate the in vitro and ex vivo permeation-enhancing effect of penetratin-conjugated liposomes for salmon calcitonin (sCT)
in TR146 human buccal cells and porcine buccal tissues.
Methods: Penetratin was conjugated to phospholipids through a maleimide-thiol reaction. Liposomes were prepared and sCT was
encapsulated using a thin-film hydration method. Physical properties such as particle size, zeta potential, encapsulation efficiency, and
morphological images via transmission electron microscopy were obtained. Cellular uptake studies were conducted using flow
cytometry (FACS) and confocal laser scanning microscopy (CLSM). A cell permeation study was performed using a Transwell®

assay, and permeation through porcine buccal tissue was evaluated. The amount of sCT permeated was quantified using an ELISA kit
and was optically observed using CLSM.
Results: The particle size of penetratin-conjugated liposomes was approximately 123.0 nm, their zeta potential was +29.6 mV, and
their calcitonin encapsulation efficiency was 18.0%. In the cellular uptake study using FACS and CLSM, stronger fluorescence was
observed in penetratin-conjugated liposomes compared with the solution containing free sCT and control liposomes. Likewise, the
amount of sCT permeated from penetratin-conjugated liposomes was higher than that from the free sCT solution and control liposomes
by 5.8-fold across TR146 cells and 91.5-fold across porcine buccal tissues.
Conclusion: Penetratin-conjugated liposomes are considered a good drug delivery strategy for sCT via the buccal route.
Keywords: buccal drug delivery, peptide delivery, penetratin, liposomes, TR146 cells, porcine buccal tissues

Introduction
Calcitonin is a hormone consisting of 32 amino acids long secreted from the C cells of the mammalian thyroid. This
hormone was discovered by Copp et al, where they found that it lowers blood calcium levels.1 Calcitonin is an
endogenous physiological hormone that inhibits bone resorption and is used as a treatment for diseases related to bone
resorption, such as postmenopausal osteoporosis, to reduce the adherence of osteoclasts and osteoclast formation.2,3

Other types of synthetic or recombinant calcitonin, such as human calcitonin, porcine calcitonin, and salmon calcitonin
(sCT), have been used for medical purposes. Among them, sCT has been the most widely used, as it has a 40–50-fold
higher efficacy than human calcitonin.4–6
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Oral administration is a drug delivery route preferred in clinical practice and is associated with high patient
compliance.7 However, biopharmaceuticals such as sCT have a high molecular weight and hydrophilicity. There are
many difficulties facing drug delivery through the gastrointestinal (GI) tract. Protease action, hydrolysis, and hepatic
first-pass effects occur in the GI tract. To overcome such limitations, intravenous injection is usually used.8 As
biopharmaceuticals are substances with short half-life, they are administered frequently. Hence, patient compliance is
low due to needle phobia, pain caused by intravenous injection, and difficulties in self-administration.7,9,10 Various
mucous membranes, such as the nasal, rectal, vaginal, ocular, pulmonary, and buccal membranes, are considered
alternative drug delivery methods for the delivery of biopharmaceutical substances.10

In contrast to oral administration, alternative drug delivery methods offer a milder environment for the absorption of
biopharmaceuticals. Compared to other non-oral administration routes, the buccal route may lead to high patient
compliance due to its easy administration and lower incidence of irritation.8,9 The buccal route is abundant in blood
vessels, and the administered drug can directly enter the jugular veins via the blood vessels, allowing its absorption into
the systematic circulation. In emergencies, formulations can also be immediately removed,10 repetitive administration is
possible, and the buccal tissues can quickly recover.11

Liposomes are artificial lipid bilayer vesicles made from non-toxic lipids and are biocompatible12 with their
characteristics depending on their lipid composition.13 Liposomes can increase the permeation of incorporated drugs
and simultaneously encapsulate both hydrophilic and hydrophobic drugs.14,15 It is possible to change their vesicle size,
modify their surface properties (to be positively or negatively charged), and decorate them with various ligands such as
antibodies, polymers, and cell-penetrating peptides.13,16,17 Various studies on buccal drug delivery using liposomes are
currently underway. Liposomal buccal mucoadhesive films containing vitamin B6 were prepared to have improved
stability,16 deformable liposomes containing sodium deoxycholate have been prepared to increase the bioavailability of
insulin18 and the bioavailability of silymarin and rifampicin was increased through liposome encapsulation.19,20 Elastic
liposomes containing bile salt increased the permeation of insulin in TR 146 cells and porcine buccal tissues.21,22

Cell-penetrating peptides (CPPs), which are short (less than 30 amino acids long) cationic, amphipathic peptides,
have attracted attention in the past few decades as an effective cellular uptake tool.23,24 CPPs can deliver various cargo
molecules (DNA, siRNAs, peptides, proteins, oligonucleotides, and nanoparticles) in vitro and in vivo with high
efficiency and low toxicity.25,26 By using CPPs, surface modification and covalent and noncovalent bonding of cargo
molecules have been done to deliver biopharmaceuticals.27 CPPs have also been considered a strategic choice to
overcome the limitations of delivering high-molecular-weight and hydrophilic biopharmaceuticals through cell mem-
branes and tissues. Among non-invasive routes, the delivery of biopharmaceuticals via the nasal, pulmonary, transdermal,
and ocular pathways using CPPs has been actively studied. However, the delivery of biopharmaceuticals via the buccal
route has been less studied than other delivery routes. A recent study reported that LMWP-conjugated insulin and
a physical mixture of LMWP with insulin were effectively delivered via the buccal pathway.28 A physical mixture of
Penetratin and sCT was evaluated in the buccal pathway. Penetratin increased the permeation of sCT by acting as an
effective permeation enhancer.29

In this study, we designed penetratin-conjugated liposomes to enhance sCT penetration via the buccal route. The
physical properties of typical liposomes and penetratin-conjugated liposomes were measured, imaging studies were
performed using Alexa 647-sCT-incorporated liposomes via flow cytometry (FACS) and confocal laser scanning
microscopy (CLSM), and the amount of sCT permeated in TR146 cells and buccal tissues were measured using an
sCT ELISA kit.

Materials and Methods
Materials
Salmon calcitonin (sCT) was purchased from Bachem AG (Bubendorf, Switzerland). The peptide
CRQIKIWFQNRRMKWKK (Cys-penetratin) was synthesized and purchased from Peptron Co., Ltd. (Daejeon,
Republic of Korea). The lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl) butyramide]
(MPB-PE) was purchased from Avanti Polar Lipids (Alabaster, AL). L-α-lecithin (97.7% phosphatidylcholine) was
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purchased from Merck Millipore (Billerica, MA, USA). Tween 80® was purchased from Duksan (Ansan, Republic of
Korea). An sCT ELISA kit was purchased from Phoenix Pharmaceuticals (Burlingame, CA, USA). A Ham-F-12 Nutrient
mixture (Ham’s F-12) was purchased from Welgene (Gyeongsan-si, Republic of Korea). A CellTiter 96® Aqueous One
Solution Cell Proliferation Assay kit (MTS) was purchased from Promega (Madison, WI, USA). Alexa Fluor 647 NHS
Ester, SnakeSkinTM dialysis tubing (3.5 K MWCO), fetal bovine serum (FBS), 0.25% trypsin-EDTA, and penicillin/
streptomycin were purchased from Thermo Fisher Scientific (Waltham, MA, USA). All other chemicals and solvents
were of reagent grade.

Preparation of Liposomes
Preparation of Control Liposomes
Control liposomes were prepared using the film hydration method.13 Briefly, L-α-Lecithin and Tween 80® were blended
at a molar ratio of 9:1 and dissolved in chloroform. An organic solution containing lipids was evaporated using a rotary
evaporator. After purging with nitrogen to remove the residual organic solvent, the thin film was dried overnight. The
dried thin film was rehydrated using 40 μg/mL of a sCT PBS solution (pH 7.4) at a final lipid concentration of 10 mg/mL.
Liposomes were extruded using an Avanti Mini-Extruder with a 0.2-μm filter.

Conjugation of Penetratin and MPB-PE
Penetratin-conjugated liposomes were prepared using MPB-PE and Cys-penetratin. For the specific binding of penetratin
and liposomes, Cys-penetratin with Cysteine added to the N-terminus of Penetratin and MPB-PE containing a Maleimide
group were used. MPB-PE was conjugated with Cys-penetratin via a maleimide-thiol reaction.30,31 To produce MPB-PE
liposomes, L-α-Lecithin, Tween 80®, and MPB-PE were mixed at a fixed molar ratio of 89:10:1 (MPB-PE was fixed at
121 μM) and dissolved in chloroform in a round flask. MPB-PE liposomes were prepared according to the method
described in Section 2.2.1. For the thiol-maleimide reaction, Cys-penetratin was added to the MPB-PE liposomes, the pH
was adjusted to 7.4, and then reacted for 12 h at 4 °C. The chemical structure and a schematic diagram of the maleimide-
thiol reaction are shown in Figure 1.

Characterization of Penetratin-Conjugated Liposomes
Size and Zeta Potential of the Liposomes
The size and zeta potential of the liposomal formulations were measured using ZetaPlus (Brookhaven Instruments Corp.,
Holtsville, NY, USA) after a 100-fold dilution with distilled water. The measurements were repeated three times.

Figure 1 Schematic diagram of the chemical structure and the reaction of Cys-penetratin and MPB-PE used to prepare penetratin-conjugated liposomes.
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Encapsulation Efficiency
The encapsulation efficiency of sCT in the liposomes was measured using a Beckman Coulter Optima LE-80K
ultracentrifuge (Beckman Coulter Corp., Pasadena, CA). Liposomes were centrifuged at 100,000 × g and 4 °C for
1 h. The supernatant was collected and analyzed using an ELISA kit. The encapsulation efficiency was calculated using
the following formula:

Encapsulation efficiency %ð Þ ¼
T � C
T
� 100

where T is total initial amount of sCT added and C is the amount of sCT in the supernatant.

Transmission Electron Microscopy
The morphology of the liposomes was determined via TEM (H-7600, HITACHI Ltd., Tokyo, Japan). Liposomes were
negatively stained using 2% phosphotungstic acid and spread on a carbon-coated copper grid. The carbon-coated copper
grid was then dried, and the samples were observed at 10,000× magnification.

TR146 Cell Culture
The TR146 cell line (ECACC 10032305) was purchased from Public Health England (London, UK). TR146 cells were
incubated in Ham’s F-12 medium supplemented with 10% FBS, 2 mM glutamine, penicillin (10,000 units/mL), and
streptomycin (10,000 μg/mL), and incubated at 37 °C in 5% CO2. The medium was replaced every 2–3 days. When the
cultures reached 70–80% confluency, the cells were harvested for subculture using a 0.25% trypsin–EDTA solution.

Cytotoxicity Assay
Cell viability was determined by comparing with control (no treated group) using MTS assay. Briefly, 1.0×104 TR146
cells were seeded in a 96-well plate and incubated for 24 h. After 24 h, the media was removed and 100 μL of a liposome
solution at different concentrations (10, 5, 2.5 and 1.25 mg/mL) were added and the cells were incubated for another
24 h. Then, the samples were removed and 100 μL of fresh culture media and 20 μL of CellTiter 96® solution were added
and incubated with the cells for 2 h. The optical density was then measured at 490 nm using a microplate reader. Cell
viability was calculated using the following formula:

Cell viability %ð Þ ¼
OD490 sampleð Þ � OD490 controlð Þ

OD490 sampleð Þ � OD490 controlð Þ

� 100

where OD490 is the optical density at 490 nm.

In vitro Cellular Uptake Study
Preparation of Liposomes for the Cell Uptake Study
Alexa 647-sCT was synthesized for cellular uptake studies. To prepare this, sCT was dissolved in 0.1 M sodium
bicarbonate buffer. Alexa 647 was dissolved in DMSO and allowed to react for 2 h with the sCT solution at room
temperature. After 2 h, a large quantity of ammonium chloride was added to terminate the reaction, and the resulting
solution was purified via dialysis. The synthesized Alexa 647-sCT was encapsulated into the control liposomes and
penetratin-conjugated liposomes for subsequent imaging studies.

Flow Cytometry
A cellular uptake study was conducted using TR146 cells via flow cytometry. TR146 cells were seeded in a 6-well
culture plate at a density of 5.0×105 cells per well and incubated for 24 h at 37 °C in an atmosphere of 5% CO2.
Liposomes encapsulating Alexa 647-sCTwere incubated for 2 h. After incubation, the cells were washed three times with
DPBS, and 0.25% trypsin-EDTAwas added for 10 min to harvest the cells. After obtaining the cells, they were collected
in FACS buffer and analyzed immediately using FACS.
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Confocal Laser Scanning Microscopy
CLSM was used to visualize the cellular uptake of the liposomes. Approximately 5.0×105 TR146 cells were seeded and
incubated for 24 h at 37 °C in an atmosphere of 5% CO2. Alexa 647-sCT-loaded liposomes were then added to the cells
and were incubated for 24 h. After incubation, the cells were washed three times with DPBS and fixed for 10 min in 4%
formalin. DAPI (4’,6’-diamidino-2-phenylindole) staining was conducted and the cells were immediately observed using
CLSM.

In vitro Cell Permeation Study
To observe the cell permeation efficacy of the liposomes, a cell permeation study using Transwell® inserts was
conducted. TR 146 cells (5×104) were seeded in 12-well Transwell® inserts, and the media was changed every
other day for 28 days. Culturing TR146 cells in Transwell® inserts for 3–4 weeks formed 4 to 7 layers of flattened
cells and showed a constant TEER value.32 Aliquot of liposomes solution (500 μL) containing 40 μg/mL sCT were added
to the apical chamber of the Transwell® insert for cell permeation study. After 0.5, 1, 2, 4, and 8 h, 500 μL sample was
obtained from the basolateral chamber and the same amount of HBSS-HEPES buffer (pH 7.4) was added. The amount of
sCT that permeated the TR146 cell layers was quantified using an sCT ELISA kit.

Pretreatment of Porcine Buccal Tissues
Buccal pretreatment was performed according to the experimental method of Oh et al.33 After sacrificing pigs at
a slaughterhouse, fresh porcine buccal tissues were immediately obtained, and the fatty and connective tissue were
removed. The collected tissues were placed in a PBS solution (pH 7.4) at 60 °C for 1 min to obtain the buccal epithelium.
The prepared epithelial tissues were then used for the in vitro tissue permeation experiments.

Ex vivo Buccal Tissue Permeation Study
The permeation efficacy of the penetratin-conjugated liposomes was determined using porcine buccal tissues. The
amount of sCT permeated was confirmed using a Franz diffusion cell. The area of the donor part was maintained at
2.0 cm2 and the volume of media in the receptor was 12.5 mL. The receptor was filled with PBS (pH 7.4) and was
equilibrated for the next 30 min after mounting the buccal tissues. After 1 mL of each liposome solution was added to the
donor, samples (0.5 mL) were obtained from the receptor after 1, 2, 4, and 8 h. The permeated sCTwas analyzed using an
sCT ELISA kit.

Permeation Parameters
The flux (Js) was calculated using the following formula:

Js ¼
Qr

A � t
ng � cm� 2 � h� 1
� �

where Qr is the amount of sCT permeated (ng), A is the permeation area (cm2), and t is the permeation time of sCT (h).
Further, Kp was calculated using the following formula:

Table 1 Physical Characteristics of the Liposome Formulations

Control Liposomes Penetratin-Conjugated Liposomes

Size (nm) 118.1 ± 12.6 123.0 ± 13.5

Zeta potential (mV) −15.7 ± 3.0 29.6 ± 3.6

Poly dispersity index (PDI) 0.155 ± 0.024 0.151 ± 0.034

Encapsulation efficiency (%) 27.1 ± 0.91 18.0 ± 1.52

Note: Data are expressed as mean ± SD (n = 3).
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Figure 2 TEM images of the control liposomes (A) and the penetratin-conjugated liposomes (B).
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Kp ¼
Js
Cd

cm � h� 1
� �

where Js is the flux (ng·cm−2·h−1) and Cd is the initial concentration in the donor chamber (ng·cm−3). Finally, the
enhancement ratio (ER) was obtained by dividing the Kp value of each formulation with that of the control.

Confocal Laser Scanning Microscopy Imaging Study of Buccal Tissues
CLSM was used to observe the penetration profile of sCT through buccal tissues optically. Approximately 40 μg/mL
Alexa 647-sCT and 1 mL each of the control liposomes encapsulating Alexa 647-sCT and penetratin-conjugated
liposomes were added to the donor chambers of the Franz diffusion cells and were treated for 8 h. After 8 h, the buccal
tissues were separated from the Franz diffusion cells. The isolated tissues were then frozen in OCT compound. After
freezing, the tissues were cut into 12-μm segments using a cryostat microtome and fixed on slides. The Alexa 647-sCT-
permeated tissues were then observed using CLSM.

Statistical Analysis
Statistical analysis was performed using Student’s t-test. Data are presented as means ± standard deviations (SDs). A single,
double, or triple asterisk was used for all the data if the p-values were less than 0.05, 0.01, or 0.001, respectively.

Results
Physical Characterization of Liposome Formulations
Table 1 shows the physical characteristics of the control liposomes and the penetratin-conjugated liposomes. The particle
size of the two liposomes was approximately 120 nm, which was also shown in the TEM images in Figure 2. The zeta
potentials of the control liposomes and penetratin-conjugated liposomes were −15.7 mV and +29.6 mV, respectively. The
encapsulation efficiencies were 27.1% and 18.0% for the control liposomes and the penetratin-conjugated liposomes,
respectively.

Figure 3 Cytotoxicity of various liposome concentrations in TR146 cells after 24 hours of incubation. Error bars represent SD (n = 5). ***p < 0.001 versus control (no
treated group).
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Cytotoxicity Assay
Cytotoxicity was determined by treating TR146 cells with various concentrations of liposomes (Figure 3). The
cytotoxicity of each liposome was compared with control (no treated group). The control liposomes and penetratin-
conjugated liposomes did not show cytotoxicity at concentrations below 2.5 mg/mL. However, as the liposome
concentration increased, cytotoxicity also increased, and both liposomes showed cytotoxicity at concentrations of 10
and 5 mg/mL. Since the liposomes were not cytotoxic at 2.5 mg/mL, this concentration was used in the permeation and
cell uptake studies.

In vitro Cell Uptake Study
The cellular uptake efficiency of the liposomes was investigated using relative mean fluorescence intensity and CLSM.
Compared to the control liposomes, the fluorescence intensity of Alexa 647-sCT was higher in the penetratin-conjugated
liposome-treated group (Figure 4). In the CLSM experiment, the intracellular uptake of Alexa 647-sCTwas also higher in
the cells treated with penetratin-conjugated liposomes (Figure 5).

Figure 4 Fluorescence intensities of Alexa 647-sCTafter two hours of treatment with the control and penetratin-conjugated liposomes as determined using flow cytometry.
Representative fluorescence intensity (A) and relative MFI values of Alexa 647-sCT (B). All data represent the mean ± SD (n = 3). ***p<0.001 vs sCT, ###p<0.001 vs Control
liposomes.
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In vitro TR146 Cell Permeation Study
TEER is a parameter that determines cell layer integrity. In this study, the maximum TEER value of the TR 146 cell layer
cultured for 28 days was 69.07 Ω·cm2. In all the experimental groups, TEER recovery was > 90%. As shown in Table 2,
there was no significant change in TEER values before and after the experiment. In the cell permeation study, the amount
of sCT penetrating the cells from the penetratin-conjugated liposomes was 1.93 times higher compared to the control
liposomes and 5.8 times higher than that of the free sCT solution (Figure 6 and Table 3).

Ex vivo Buccal Tissue Permeation Study
A permeation study was conducted using porcine buccal tissue to investigate the permeation-enhancing effect of
penetratin-conjugated liposomes. Each liposome group was used to treat buccal tissues for 8 h. The permeation profile
at 8 h of the different liposomes is shown in Figure 7. The Js of sCT solution, control liposomes, and penetratin-

Figure 5 Confocal laser scanning microscopy (CLSM) images of the control liposomes containing Alexa 647-sCT and penetratin-conjugated liposomes in TR146 cells.

Table 2 TEER Values of the Formulations Before and After Permeability Experiments Using TR 146 Cell Layers

Formulation TEER Value (Ω·cm2) Recovery (%)

Before After

sCT 61.97 ± 3.81 59.73 ± 3.81 95.40 ± 0.81

Control liposomes 64.96 ± 1.40 61.97 ± 1.40 94.76 ± 1.57

Penetratin-conjugated liposomes 64.59 ± 3.30 61.23 ± 3.66 96.37 ± 0.23

Note: Data are expressed as mean ± SD (n = 3).
Abbreviation: TEER, Transepithelial electrical resistance.

International Journal of Nanomedicine 2022:17 https://doi.org/10.2147/IJN.S335774

DovePress
705

Dovepress Keum et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


conjugated liposomes after 8 h of permeation were 0.173, 6.384, and 15.802 ng·cm−2·h−1, respectively. In the penetratin-
conjugated liposomes, the amount of sCT permeated increased 91.5-fold compared to the free sCT solution group and
2.47-fold compared to the control liposomes (Table 4).

CLSM of Buccal Tissues
CLSM was used to confirm the permeation-enhancing effect of the penetratin-conjugated liposomes in the buccal tissues.
Liposomes containing Alexa 647-sCT were used to treat buccal tissues, which were observed after 8 h. The strongest
fluorescence was observed from the tissues treated with penetratin-conjugated liposomes (Figure 8).

Discussion
CPPs have been widely applied to various cargo molecules in drug delivery systems for several years because of their
ability to penetrate cell membranes. CPPs have also been successfully used to deliver biomacromolecules via alternative
administration routes.34,35 In this study, penetartin-conjugated liposomes encapsulating sCT were prepared, and their
effects in TR146 cells and buccal tissues were evaluated.

A maleimide-thiol reaction was used to prepare the penetratin-conjugated liposomes. The zeta potentials of the
control liposomes and the penetratin-conjugated liposomes were −15.7 mV and +29.6 mV, respectively. This change was

Figure 6 In vitro TR146 cell permeation profiles of sCT, control liposomes, and penetratin-conjugated liposomes.

Table 3 Permeation Parameters Calculated from the TR146 Cell Permeation Study

Formulation Js (ng·cm−2·h−1) Kp (cm·h−1) × 10−3 ER

sCT 11.726 ± 2.527 0.147 ± 0.032 1.0

Control liposomes 35.649 ± 2.906 0.446 ± 0.036*** 3.0

Penetratin-conjugated liposomes 68.416 ± 10.093 0.855 ± 0.126*** ## 5.8

Notes: Data are expressed as mean ± SD (n = 3). ***p<0.001 vs sCT, ##p<0.01 vs Control liposomes.
Abbreviations: Js, Flux; Kp, Permeability coefficient; ER, Enhancement ratio.
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due to the presence of arginine and lysine residues, which are cationic amino acids present in penetratin, suggesting that
penetratin was successfully conjugated to the surface of MPB-PE liposomes.30 The size of the penetratin-conjugated
liposomes was 123.0 nm, with a PDI value of 0.151. The PDI value determines size homogeneity, which suggests that the
prepared liposomes have good homogeneity. In lipid-based carriers such as liposomes, PDI values lower than 0.3 indicate
homogeneous vesicle distribution.36,37

Figure 2 shows the cytotoxicity of the penetratin-conjugated liposomes at various lipid concentrations. Both
liposomes showed no cytotoxicity at concentrations below 2.5 mg/mL but showed cytotoxicity above 5.0 mg/mL.
Similar cytotoxicity results observed for the two liposomes indicated that the binding of penetratin did not affect
liposome cytotoxicity.

Compared to the control liposomes, the fluorescence intensity of Alexa 647-sCT was higher in the penetratin-
conjugated liposome-treated tissue. The increased fluorescence intensity of Alexa 647-sCT in the tissues treated with
penetratin-conjugated liposomes was due to penetratin binding onto the liposome surface. The arginine residues in
penetratin bind to negatively charged components on the cell membrane.38,39 Specifically, the guanidinium moieties
of arginine bind to the sulfate and carboxylate moieties in GAGs and the phosphates of the phospholipid head group
of the membrane lipids while the hydrophobic residue tryptophan is known as an important amino acid for

Figure 7 Ex vivo buccal tissue permeation profiles of sCT, control liposomes, and penetratin-conjugated liposomes.

Table 4 Permeation Parameters Calculated from the Buccal Tissue Permeation Study

Formulation Js (ng·cm−2·h−1) Kp (cm·h−1) × 10−3 ER

sCT 0.173 ± 0.018 0.004 ± 0.000 1.0

Control liposomes 6.384 ± 0.718 0.160 ± 0.018*** 37.0

Penetratin-conjugated liposomes 15.802 ± 1.263 0.395 ± 0.032*** ### 91.5

Notes: Data are expressed as mean ± SD (n = 3). ***p<0.001 vs sCT, ###p<0.001 vs Control liposomes.
Abbreviations: Js, Flux; Kp, Permeability coefficient; ER, Enhancement ratio.
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internalization into cells.38,40,41 In addition, tryptophan is also known to induce lipid bilayers to form negative
curvatures.42

The TEER value indicates the integrity of the cell layers and tight junctions.43 The recovery of the TEER values
before and after the liposome formulation experiment was more than 90% without any significant decrease. Penetratin
did not affect the TEER value of TR 146 cell layers. Similarly, treatment with penetratin-conjugated liposomes did not
affect the TEER value, suggesting that it does not change the integrity of the cell layers and the tight junctions.21,43 The
amount of sCT that penetrated the TR 146 cell layer was higher in the penetratin-conjugated liposomes than in the
control liposomes, which indicates that penetratin conjugated to the liposomes enhanced cell permeation. Penetratin acted
as a permeation enhancer in the Buccal pathway and effectively enhanced the permeation of sCT when physically mixed
with sCT.29 Penetratin-conjugated liposomes also increased the amount of sCT permeation. This means that penetratin
acts as an effective permeation enhancer in the physical mixture and conjugating to the liposome. The FACS and CLSM
results supported that penetratin-conjugated liposomes enhanced permeation through transcellular routes. Likewise,
penetratin-conjugated liposomes also had increased cell permeability compared to control liposomes in the porcine
tissue permeation study (Figures 6 and 7). Results of the permeation experiments in TR 146 cells and porcine buccal
tissues showed that penetratin-conjugated liposomes could enhance the permeation of sCT in cell layers and tissues.
CLSM results revealed that penetratin-conjugated liposomes showed an increase in fluorescence intensity compared to
control liposomes.

Conclusions
We designed penetratin-conjugated liposomes to deliver sCT through the buccal tissues. Flow cytometry and CLSM
studies showed that penetratin-conjugated liposomes had an improved cellular sCT uptake effect. In addition, penetratin-

Figure 8 Confocal laser scanning microscopy (CLSM) images of the control liposomes containing Alexa 647-sCT and the penetratin-conjugated liposomes after permeation
through the buccal tissue at 8 h.
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conjugated liposomes showed enhanced permeation effect in vitro and ex vivo experiment model. Although further
in vivo studies are needed to demonstrate the permeation mechanism of penetratin-conjugated liposomes, these studies
fully demonstrate the potential of penetratin-conjugated liposomes as a platform for buccal delivery of peptide drugs.
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