
OR I G I N A L R E S E A R C H

Epigenetic Activation of lncRNA MIR155HG
Mediated by Promoter Hypomethylation and SP1
is Correlated with Immune Infiltration in Glioma
Xuechao Wu 1,2,*, Quan Wan1,*, Jing Wang1,*, Peng Hou3, Qijian Zhang1, Qing Wang1,2, Xiaojie Lu1,4

1Department of Neurosurgery, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, 214002, People’s Republic of China;
2Department of Neurosurgery, The Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214002, People’s Republic of China; 3Department of
Neurosurgery, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, People’s Republic of China; 4Department of Neurosurgery, The
Affiliated Hospital of Jiangnan University, Wuxi, 214000, People’s Republic of China

*These authors contributed equally to this work

Correspondence: Xiaojie Lu; Qing Wang, Department of Neurosurgery, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, 68
Zhongshan Road, Wuxi, 214002, People’s Republic of China, Email luxiaojiewuxi@163.com; wxeyns@163.com

Purpose: The lncRNA MIR155 host gene (MIR155HG) plays a role in the progression of several malignant cancers. However, the
specific mechanisms of MIR155HG in glioma progression have not been clearly established. The purpose of this study was to
investigate the function of MIR155HG in glioma at the transcriptome level and relationship with immune infiltration.
Patients and Methods: Totally, 697 RNA-seq and 594 DNA methylation data were retrieved from The Cancer Genome Atlas
(TCGA) dataset while 325 RNA-seq data were retrieved from the Chinese Glioma Genome Atlas (CGGA) dataset. The DNA
methylation levels of MIR155HG CpG islands were assessed through bisulfite amplicon sequencing (BSAS). The regulatory
mechanism of SP1 on MIR155HG was examined by chromatin immunoprecipitation (ChIP) and luciferase reporter assays. R language
was used as the main tool for statistical analysis and graphical work.
Results: MIR155HG was predominantly expressed in the isocitrate dehydrogenase (IDH) wild-type as well as mesenchymal subtype
gliomas. Promoter methylation levels of MIR155HG in glioblastoma (GBM) were remarkably decreased compared with those in
lower-grade glioma (LGG). In addition, there were negative correlations between promoter methylation levels and MIR155HG
expressions but positive correlations with patients’ overall survival. In vitro studies further revealed that MIR155HG expression
was regulated by DNA promoter methylation and transcription factor (SP1) binding to the promoter. Moreover, there was a close
association between MIR155HG expression and immune as well as stromal cell infiltrations, inflammatory activities, and immune
checkpoints. Clinically, univariate and multivariate Cox analyses revealed that MIR155HG is an independent prognostic marker for
glioma patients.
Conclusion: Our results established that MIR155HG is a potential biomarker for prognosis and an immunotherapeutic target in
glioma.
Keywords: MIR155HG, DNA methylation, SP1, immune infiltration, glioma

Introduction
In adults, glioma is a very prevalent brain tumor of which glioblastoma (GBM) is the most aggressive, malignant
subtype.1 Improvements in conventional treatment options, including surgical resection, followed by radiotherapy as well
as chemotherapy have not improved the median survival time for glioma patients, which is still < 2 years.2 Given the
poor outcome after standard treatment, it’s urgent to develop new therapeutic approaches. Malignant solid tumor tissues
are composed of tumor cells as well as tumor-associated nontumor cells, including normal epithelial, stromal, vascular,
and immune cells.3 The tumor microenvironment (TME) has a key role in glioma progression.4,5 For instance, stromal
cells within the TME may promote glioma expansion and invasion by elaborating numerous compounds that stimulate
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angiogenesis, neoplastic cell growth, and modify the extracellular matrix (ECM).6 Meanwhile, tumor-associated macro-
phages (TAMs) could promote angiogenesis, maintain the glioma stem-like cell phenotypes, and secrete VEGF, PDGF,
IL-6, TGFβ1, MMP2 and MMP9 to regulate ECM degradation, resulting in glioma progression.7,8 Thus, the TME-
targeted therapies are promising novel approaches for glioma.

Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts whose nucleotide length exceeds 200.
LncRNAs have critical, complex roles in cancer development as well as progression, including glioma.9,10 LncRNA
MIR155HG is located at chromosome 21q21 and has a length of 1.5kb, which is also considered as the primary
microRNA of miR-155. Previously, we have reported that MIR155HG is a prognostic factor for GBM and is involved
in promoting the progression of glioma via miR-155/PCDHs/β-catenin pathway.11 Recently, two other studies further
confirmed that MIR155HG contributes to GBM growth and progression by sponging miR-185 to increase ANXA2
expression, and promotes temozolomide resistance by binding to PTBP1.12,13 Additionally, MIR155HG was involved in
a lncRNA signature related to ferroptosis, tumor progression, and microenvironment for stratifying the prognosis of
glioma patients with adequate predictive performance.14 Moreover, MIR155HG was identified as a m6A-related prog-
nostic lncRNA for patients with primary glioblastoma by constructing the m6A-lncRNA co-expression networks.15

Another research demonstrated that the MIR155HG/has-miR-129-5p/C1S axis is a potential marker and therapeutic
target for glioblastoma.16 MIR155HG also has a vital role in facilitating the malignancy of laryngeal squamous cell
carcinoma (LSCC),17 pancreatic cancer (PC),18 clear cell renal cell carcinoma (ccRCC)19 and non-small cell lung cancer
(NSCLC).20 LncRNA expression is epigenetically regulated.21 Of all epigenetic modifications, DNA methylation induces
heritable alterations in gene expression, but does not affect DNA sequences. It is well known that promoter hypermethy-
lation has an association with transcriptional repression, while hypomethylation has an association with transcriptional
activation.22 Currently, whether and how MIR155HG is regulated by DNA methylation in glioma remains unclear.

In addition, lncRNAs exert crucial functions in the immune and inflammatory responses.23,24 For instance, in
dendritic cells and macrophages, lncRNA-Cox2 activates the toll-like receptor (TLR) signaling pathway to increase
IL-23 and IL-6 secretion after microbial infection.25 Although the immunoregulatory role of miR-155 has been most
extensively studied in many tumors, especially in hematologic tumors,26,27 the research on the immunoregulation of
MIR155HG is still in its infancy. Recently, a bioinformatic data analysis demonstrated that MIR155HG is correlated with
immune checkpoints and infiltrations in various cancers, including glioma.28 Nevertheless, the underlying function and
mechanism of MIR155HG in tumor immunology still require further studies.

In the present study, we combined experimental detection with bioinformatic analysis to further explore the
MIR155HG expression and clinicopathologic characteristics and its correlation with immune infiltration in glioma.
The results would give us a better understanding of MIR155HG and provide a molecular basis for anti-MIR155HG
treatment in glioma immunotherapy.

Materials and Methods
Study Participants and Samples
We obtained 697 RNA-seq and 685 DNA methylation data, as well as related phenotypic data from The Cancer Genome
Atlas (TCGA, (http://cancergenome.nih.gov/), and an additional dataset of 325 RNA-seq data from the Chinese Glioma
Genome Atlas (CGGA, http://www.cgga.org.cn/).

In addition, 10 tissue samples, including 5 lower grade glioma (LGG) samples as well as 5 GBM samples were
obtained from the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University. This study was approved by
Ethics Committee of the Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University and informed consent
was obtained from all the patients. This study was conducted in accordance with the Declaration of Helsinki.

Cell Lines
Human glioblastoma cell lines (U87, U251) and the human embryonic kidney (HEK) cell line (293T) were obtained from
the Cell Bank of the Chinese Academy of Sciences (Shanghai, China). The cell lines were routinely cultured in
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Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, penicillin (100µg/mL), streptomycin
(100µg/mL) at 37°C in a 5% CO2 humidified air incubator.

Extraction of RNA and Quantitative RT-PCR (qRT-PCR)
The TRIzol reagent (Invitrogen) was used for total RNA extraction from cultured cells. qRT-PCR analyses were
conducted using the SYBR Green Premix Ex Taq (Takara, Tokyo, Japan) in an ABI 7500 real-time PCR system
(Applied Biosystems, Foster City, CA, USA). MIR155HG primer sequences were: forward 5’-
CCACCCAATGGAGATGGCTC-3’, reverse 5’-AGTTGGAGGCAAAAACCCCT-3’. Target gene expression was nor-
malized by GAPDH mRNA expressions.

Extraction of DNA and Bisulfite Amplicon Sequencing (BSAS)
DNA from glioma samples were extracted using a QIAamp DNA Mini Kit (Qiagen, Inc., Valencia, CA, USA) and
subjected to bisulfite amplicon sequencing (BSAS) after DNA bisulfite conversion using the EZ DNA Methylation-Gold
Kit (Zymo Research Corp., Irvine, CA, USA) for analysis of MIR155HG promoter methylation. Primer sequences for
MIR155HG were: CpG island 1, forward 5’- GTAAGGAGAGAGTAGAGATATTTTTG −3’; reverse 5’-
CCCTCCTACCTATTCTTAAAACCTAC −3’, and CpG island 2, forward 5’-AATTAAGGAGAYGTTTTTGGTA-3’;
reverse 5’- TAAAAACAATCTCTTTTTCCACCC-5’. Then, the methylation data and average methylation level at all
sites were analyzed by MethylKIT software.

Plasmid Construction and Luciferase Reporter Assay
To construct SP1 overexpression vector, the amplified coding region of the human SP1 gene was subcloned into a
pcDNA3.1 vector. The MIR155HG proximal promoter region sequences containing the CpG islands (+400 bp to −400
bp) were amplified and inserted into a pGL3-basic luciferase vector (Promega), named pGL3-MIR155HG-WT.
Generation of the mutated version (pGL3-MIR155HG-Mut) was achieved by mutating the putative binding sites of
SP1. For in vitro DNA methylation, pGL3-MIR155HG-WT was treated with the CpG methylase M.SssI (NEB, Ipswich,
MA). Then, 48 h post-transfection, the Dual Luciferase Reporter Assay System (Promega, Madison, WI) was used to
assess luciferase activities.

Chromatin Immunoprecipitation (ChIP)
ChIP assays were conducted with the Millipore Magna ChIP kit (Millipore, USA) as instructed by the manufacturer. The
antibodies against SP1 and IgG were bought from Cell Signaling Technology (CST, USA). Primer sequences used in this
assay were: region 1 (−490 to +105), forward 5’-GGTCTCCAGCTGATTCGGTC-3’, reverse 5’-
CCAGGAGCGTCTCCTTGGTT-3’; region 2 (+109 to +480): forward 5’-TGCAGGTACGCCGACTTCAG-3’, reverse
5’-TTCTCTGGCCACTCCAACAG −3’.

Statistical Analysis
R language was used for statistical analyses and to generate figures with several publicly available packages, including
survival, pheatmap, ggplot2, circlize, corrgrams, pROC, and corrplot. Comparisons of differences between groups were
done by two-tailed Student’s t-tests. Kaplan-Meier curves were used to calculate overall survival differences. The
statistical significance threshold was set at p < 0.05.

Results
MIR155HG Expression Was Elevated in IDH Wild-Type Glioma
The IDH mutation status is a clinically important molecular marker for glioma progression. In glioma, especially GBM,
MIR155HG is highly upregulated.11 In this study, we found that MIR155HG expressions were significantly increased in
IDH wild-type glioma than that in IDH mutated glioma in both datasets (Figure 1A and C). Additionally, IDH wild-type
glioma showed remarkably elevated MIR155HG expressions than IDH mutated glioma across different grades
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Figure 1 MIR155HG expression according to IDH status in TCGA and CGGA datasets. (A and C) MIR155HG was highly upregulated in IDH wild-type glioma of all grades.
(B and D) MIR155HG was significantly increased in IDH wild-type glioma across different grades. (E and F) MIR155HG could serve as a biomarker to predict IDH wild-type
glioma. **p < 0.01; ***p < 0.001; ****p < 0.0001.
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(Figure 1B and D). Then, we constructed receiver operating characteristic (ROC) curves to assess the diagnostic values
of MIR155HG for the IDH wild type glioma. Interestingly, the respective areas under the curve (AUCs) were 89.8% and
89.3% for TCGA as well as CGGA datasets (Figure 1E and F). These findings suggested that MIR155HG is specifically
highly expressed in IDH wild-type glioma.

MIR155HG Expressions Correlated with Mesenchymal Subtype
Next, we evaluated MIR155HG distributions in 4 TCGA-defined molecular subtypes. MIR155HG was apparently
elevated in the mesenchymal subtype relative to other subtypes, except for the classical subtype in TCGA dataset
(Figure 2A and B). To further confirm this, we performed ROC curves for MIR155HG expressions in the mesenchymal
subtype. The respective AUCs were 85.9% and 84.6% for TCGA and CGGA datasets (Figure 2C and D). Therefore,
these results indicated that MIR155HG was mainly enriched in the mesenchymal subtype.

MIR155HG Expression Was Associated with Promoter DNA Methylation
To discover the genetic determinant of MIR155HG endogenous expression, we investigated the association between
MIR155HG expression levels and its DNA methylation. Integration of TCGA glioma datasets identified that 594 patients
had both MIR155HG expression and DNA methylation data. Particularly, six CpG sites (cg19769982, cg17265380,
cg17297071, cg23433889,cg12749863 and cg14315558) were localized in the MIR155HG promoter region.

Figure 2 MIR155HG expression in different molecular subtypes in TCGA and CGGA datasets. (A and B) MIR155HG was highly enriched in mesenchymal subtype glioma.
(C and D) MIR155HG could serve as a biomarker to predict mesenchymal subtype glioma. **p < 0.01; ****p < 0.0001.
Abbreviations: ns, not significant; AUC, area under the curve.
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Interestingly, DNA methylation beta values at all the six sites were significantly higher in LGG than in GBM (Figure 3A)
and were remarkably elevated in the low MIR155HG expression group, relative to the high MIR155HG expression group
(Figure 3B). In addition, there was a negative association between promoter DNA methylation beta values and
MIR155HG expressions in all gliomas as well as in GBM (Figure 3C and D). Meanwhile, patients with elevated
methylation levels exhibited markedly better overall survival when compared to the low methylation level group
(Figure 3E). In summary, these results suggested that MIR155HG expression is regulated by promoter DNA methylation.
Therefore, this epigenetic modification may be a prognostic biomarker for glioma.

DNA Methylation Profiles of CpG Islands in MIR155HG Promoter Region
Next, we evaluated DNA sequences of the MIR155HG promoter region and identified two CpG islands via the
MethPrimer 2.0 (http://www.urogene.org/methprimer2/) (Figure 4A). CpG island 1 spans −399 to −290, and CpG island
2 covers −82 to +396 when compared to the MIR155HG transcription start site (TSS). And then, we performed bisulfite
amplicon sequencing (BSAS) to detect the DNA methylation levels around the CpG island region in glioma samples. The
results revealed that LGG tissues exhibited a denser methylation pattern at both CpG islands in MIR155HG promoter
region compared with GBM tissues (Figure 4B and C), consistent with the analysis of the TCGA data. Then for further
verification of the effect of DNA methylation on MIR155HG expression, U87, as well as U251 cells, were treated with a
DNA methyltransferase inhibitor (5-Aza-dC) at 0, 2.5, 5, and 10 μM, and the MIR155HG expression levels were
subsequently examined by qPCR. After DNA methylation inhibition, MIR155HG expression levels were markedly
elevated in both cell lines in a dose-dependent manner (Figure 4D).

Transcriptional Activity of MIR155HG Promoter is Regulated by SP1 and DNA
Methylation
Subsequently, we performed bioinformatic analysis using the JASPAR database (http://jaspar.genereg.net/) for the
prediction of transcription factor binding sites in the MIR155HG promoter region. We identified two transcription factor
SP1 putative binding sites located at site 1(+60 to +69), and site 2(+136 to +145) (Supplementary Figure S1). SP1, a
DNA-binding protein, specifically binds the promoter’s GC-rich sequences. This binding capacity has a close association
with CpG dinucleotide methylation. Thus, we performed qPCR assay and found that overexpression of SP1 significantly
increased MIR155HG expression levels in U87 as well as U251 glioma cell lines (Figure 4E). Moreover, dual luciferase
reporter assay was used to confirm SP1 binding to MIR155HG promoter. As shown in Figure 4F, SP1 overexpression
dramatically induced the wild-type MIR155HG promoter activation, while having no effect on the mutated promoter
activity. Furthermore, ChIP assay revealed that SP1 could bind to the MIR155HG promoter at site 2 (+136 to +145),
whereas no binding was observed at site 1 (+60 to +69) (Figure 4G).

To investigate whether DNA methylation affects the MIR155HG promoter activity, the wild-type MIR155HG
promoter luciferase reporter vector, containing 2 CpG islands, was methylated using CpG methyltransferase M.SssI.
Luciferase reporter analysis revealed that M.SssI significantly repressed the MIR155HG promoter reporter gene activity
compared with no methylase (Figure 4H). In addition, luciferase assay following cotransfection of methylated/unmethy-
lated MIR155HG promoter constructs and SP1 expression plasmids revealed that SP1-induced activation of MIR155HG
promoter was significantly abolished by M.SssI (Figure 4H). Collectively, these data indicated that SP1 transcriptionally
upregulated MIR155HG expression levels by binding its proximal promoter region after DNA hypomethylation.

MIR155HG Was Closely Related to Immune Function in Glioma
GO enrichment analysis was performed to identify the biological features of MIR155HG. First, genes strongly correlated
with MIR155HG expression were selected (Pearson |R|>0.5) from the TCGA as well as CGGA datasets. Biofunctions for
these genes were evaluated by GO analysis on DAVID Bioinformatics Resources (https://david.ncifcrf.gov/). In biolo-
gical processes analysis, genes that had a positive association with MIR155HG expressions were enriched in inflamma-
tory and immune responses (Supplementary Figure S2A and B). Regarding cell components, the enrichment of these
positive genes was mainly in the extracellular regions (Supplementary Figure S2C and D), indicating a vital role of these
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Figure 3 Promoter DNA methylation was correlated with MIR155HG expression and glioma patients’ prognosis. (A) Comparison of DNA methylation beta values at six
CpG sites (cg19769982, cg17265380, cg17297071, cg23433889, cg12749863 and cg14315558) between LGG and GBM groups. (B) Comparison of DNA methylation beta
values at six CpG sites between low and high MIR155HG expression groups. (C and D) Correlation between MIR155HG expression and the promoter DNA methylation
beta values in all gliomas and GBM. (E) Association between the promoter DNA methylation beta values of MIR155HG and overall survival time for glioma patients. ****p <
0.0001.
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Figure 4 DNAmethylation and SP1were involved in the activation ofMIR155HG. (A) Schematic representation of theCpG islands and bisulfite sequencing primers. (B andC) Bisulfite
amplicon sequencing (BSAS)was performed to examinemethylation status of CpG island 1 and 2 at the promoter region ofMIR155HG in LGG andGBM. (D) MIR155HGexpression in
U87 and U251 cell lines were upregulated in a dose-dependent manner after 5-Aza-dC treatment. (E) Overexpression of SP1 activated the expression of MIR155HG in U87 and U251
cell lines. (F) The luciferase reporter plasmids carrying MIR155HG promoter pGL3-WTor pGL3-Mut with the SP1 plasmid or vectorwere co-transfected into HEK293T cells. Relative
luciferase activity in HEK293T cells were determined. (G) ChIP assay was performed to confirm the putative binding regions for SP1 in MIR155HG promoter region. (H) Luciferase
reporter assay revealed that M.SssI-induced methylation could abolish the MIR155HG promoter activity activated by SP1. **p < 0.01; ***p < 0.001; ****p < 0.0001.

https://doi.org/10.2147/OTT.S349078

DovePress

OncoTargets and Therapy 2022:15226

Wu et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


genes in the TME of glioma. Moreover, molecular function analysis revealed gene enrichment in protein binding
(Supplementary Figure S2E and F). In summary, these results suggested that MIR155HG might participate in the
regulation of the glioma immune environment.

MIR155HG Was Associated with Inflammatory Activities in Glioma
To specifically evaluate the function of MIR155HG in the glioma inflammatory response, we analyzed its relationship
with seven well-established metagenes using the method described previously.29 Figure 5A and B show that MIR155HG
expression levels were positively correlated with the majority of the clusters in the TCGA and CGGA datasets apart from
IgG, which represented B cell activities. Furthermore, corrgrams were generated by R language based on Pearson R
values between MIR155HG expression and the 7 metagenes (Figure 5C and D). There was a positive association
between MIR155HG and HCK, MHC-I, LCK, MHC-II, Interferon, and STAT1, as well as negative associations with
IgG, in accordance with the above findings. These findings confirm the important immune functions of MIR155HG in
glioma.

MIR155HG Expressions Were Correlated with Glioma Immune Infiltrations
Immune as well as stromal cells are crucial constituents of the TME. Considering the results of GO analysis, we further
analyzed the correlation between MIR155HG and infiltrated cells in glioma. First, we performed the ESTIMATE
algorithm method as reported by Yoshihara to investigate the association between MIR155HG expression levels and
ESTIMATE scores. As shown in Figure 6A and B, there were significant positive correlations between MIR155HG
expressions and immune, stromal, as well as ESTIMATE scores in glioma in both datasets, indicating that it predomi-
nantly influences immune as well as stromal cell infiltrations. Furthermore, we employed the CIBERSORT algorithm to
evaluate the proportions of 22 subpopulations of infiltrating immune cells in glioma and then investigated the association
between MIR155HG and particular cell populations in the glioma TME. A comparative summary of immune cell
proportions in various MIR155HG expression groups is shown in Supplementary Figure S3. Several kinds of immune
cells were enriched in different groups. Notably, we established that M0 and M2 macrophage populations were
significantly higher in the high MIR155HG expression group, while plasma cells and monocytes were significantly
enriched in the low MIR155HG expression group. Furthermore, MIR155HG expression levels were significantly
positively correlated with 9 cell types and negatively correlated with 7 cell types (Figure 6C). Interestingly,
MIR155HG expression showed a strong correlation with M2 macrophages as well as neutrophils which were considered
to be immunosuppressive cells.30 In summary, MIR155HG played a precise role in immune as well as stromal cell
infiltrations in glioma.

MIR155HG Was Associated with Immune Checkpoints
Immune checkpoint-targeting agents have been extensively evaluated in preclinical as well as clinical trials for various
solid tumors, including glioma. Thus, the available immune checkpoint blocking agents, such as TIM-3, PD-1, B7-H3,
PD-L1, CTLA4, and PD-L2, were enrolled in the analysis. Surprisingly, MIR155HG showed strong positive correlations
with all these molecules in glioma in both datasets (Figure 7A and B). In GBM, MIR155HG exhibited a steady
correlation with the above immune checkpoints, except for PD-1 and CTLA4 in TCGA dataset (Supplementary
Figure S4A and B). These findings indicate the potential regulatory effects of MIR155HG on immune checkpoints in
glioma.

MIR155HG Was Correlated with Immunosuppressive Properties
Accumulating evidence has demonstrated that increased tumor associated macrophage (TAM) infiltrations predict poor
prognostic outcomes for GBM patients and correlate with upregulated glioma progression and tumor grade.31,32

Therefore, targeting TAMs is a potential therapeutic approach for intractable glioma. Herein, we further analyzed the
correlation between MIR155HG and the surface markers of macrophages. Expressions of MIR155HG were markedly
associated with CD14, CD163, CD68, CD11b, and CD204 in glioma in TCGA dataset (Figure 7C). Moreover, we
observed that MIR155HG was closely related to several key factors that mediate M2 macrophage differentiation,33
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including CSF-1, IL-6, CCL2, IL-10, STAT3, and TGFβ (Figure 7D). Similar results were shown in CGGA dataset
(Supplementary Figure S4C and D). Next, correlation analysis was performed to evaluate the association between
MIR155HG expression levels and critical factors involved in the recruitment of TAMs, tumor-associated neutrophils,
myeloid-derived suppressor cells, and the immunosuppressive factors that are secreted by these cells. Interestingly,
MIR155HG expressions were strongly positively correlated with the majority of the factors involved in immunosup-
pressive cell recruitment33 as well as immunosuppressive factors33,34 (Figure 7E and F). In glioma, MIR155HG is a
mesenchymal transition-associated lncRNA.11 Consistently, in this study, the correlations between common EMT

Figure 5 The relationship between MIR155HG and inflammatory activities in TCGA and CGGA datasets. (A and B) Heatmaps displaying the clinicopathological parameters,
MIR155HG expression, and seven inflammatory metagenes. (C and D) Corrgrams were established based on the relationship between MIR155HG expression and seven
inflammatory metagenes.
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Figure 6 MIR155HG expression was tightly associated with ESTIMATE algorithm scores and infiltrated cells in glioma. (A and B) MIR155HG expression was positively
correlated with immune score, stromal score and ESTIMATE score in glioma patients in TCGA and CGGA datasets. (C) MIR155HG expression was significantly correlated
with infiltrated cells in the tumor microenvironment estimated by CIBERSORT in TCGA dataset. *p < 0.05; ***p < 0.001; ****p < 0.0001.
Abbreviation: ns, not significant.
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Figure 7 MIR155HG expression was correlated with immune checkpoints and immunosuppressive properties. (A and B) Correlation between MIR155HG and immune
checkpoints in glioma in TCGA and CGGA datasets. (C) Correlation between MIR155HG and the surface markers of macrophages in TCGA dataset. (D) Correlation
between MIR155HG and several key factors that drive M2 phenotype macrophages differentiation in TCGA dataset. (E) Correlation between MIR155HG and immuno-
suppressive cell recruitment factors in TCGA dataset. (F) Correlation between MIR155HG and immunosuppressive factors secreted by tumor-associated macrophages
(TAMs), myeloid-derived suppressor cells (MDSCs), and tumor-associated neutrophils in TCGA dataset. *p < 0.05; ***p < 0.001; ****p < 0.0001.
Abbreviation: ns, not significant.
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biomarkers and MIR155HG were significant (Supplementary Figure S5A and B). Therefore, in glioma, MIR155HG has a
potential immunotherapeutic value.

Overexpression of MIR155HG Predicted Worse Survival in Glioma
Considering that MIR155HG expression was abnormal in glioma and correlated with the histological grade as well as
molecular subtypes, we explored the prognostic significance of MIR155HG in glioma. Figure 8A and B show that glioma
patients with high MIR155HG expression levels exhibited significantly short overall survival times than those with low
MIR155HG expressions. Moreover, univariate analysis showed that MIR155HG expression, diagnostic age, and WHO
grades had a significant association with overall survival outcomes (Figure 8C). In multivariate analysis, after adjustment
of the above factors, MIR155HG expression was still a significant prognostic factor (Figure 8D). Similar results were
obtained in CGGA dataset (Supplementary Figure S6A and B). In summary, MIR155HG was an independent prognostic
factor for glioma patients.

Figure 8 MIR155HG predicted worse survival in glioma. (A and B) Kaplan-Meier survival analyses showed that high MIR155HG expression predicted poor prognosis for
glioma patients based on the TCGA and CGGA datasets. (C and D) Univariate and multivariate Cox regression analyses revealed that MIR155HG was an independent
prognostic biomarker for glioma patients in TCGA dataset.

OncoTargets and Therapy 2022:15 https://doi.org/10.2147/OTT.S349078

DovePress
231

Dovepress Wu et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=349078.docx
https://www.dovepress.com/get_supplementary_file.php?f=349078.docx
https://www.dovepress.com/get_supplementary_file.php?f=349078.docx
https://www.dovepress.com/get_supplementary_file.php?f=349078.docx
https://www.dovepress.com
https://www.dovepress.com


Discussion
Gliomas are prevalent and lethal brain tumor types in adults. Despite the advances in the combination of surgery,
chemotherapy, and radiotherapy, improvements in patient survival are very limited.35 Therefore, exploring new ther-
apeutic approaches to prolong the survival of glioma patients is urgently needed. Immunotherapy is a potential option for
glioma.36 In particular, immune checkpoint blockade (eg, CTLA4, PD-1)37,38 and chimeric antigen receptor T-cell
immunotherapy (CAR-T)39 have exhibited potential benefits in the treatment of glioma. Nevertheless, current immu-
notherapies for glioma are difficult to be widely applied because of the low immunogenic response rate, therapeutic
resistance, as well as autoimmune-like side effects. It is thus of great importance to develop an effective immunother-
apeutic option for glioma by targeting novel molecular markers as well as molecules that have crucial roles in
immunosuppression.

Previously, we found that MIR155HG is elevated in GBM and predicted a worse overall survival for GBM patients.11

Herein, we further identified that MIR155HG expression levels are elevated in IDH wild-type and mesenchymal subtype
gliomas, indicating that MIR155HG was associated with more malignant biological processes. In addition, MIR155HG
may serve as an indicator of IDH wild-type as well as mesenchymal subtype, and an independent prognostic factor for
glioma. DNA methylation, which is the main epigenetic modification, plays various roles in the initiation and progression
of different tumors.40,41 Aberrantly methylated promoters are potential markers for glioma diagnosis as well as
prognosis.42,43 We took advantage of TCGA RNA-seq and DNA methylation data and demonstrated that the promoter
region of MIR155HG was aberrantly hypomethylated in GBM than in LGG. The promoter methylation levels were
inversely correlated with MIR155HG expression and had a predictive value for glioma patients, which was consistent
with the results found for mRNA levels. In vitro experiments further confirmed that GBM tissues had markedly low
methylation levels of the MIR155HG promoter region when compared to LGG tissues, and MIR155HG expression was
remarkably dose-dependently upregulated after 5-Aza-dC treatment in glioma cell lines, which indicated that MIR155HG
promoter region hypomethylation may be highly associated with the elevated MIR155HG expression levels in glioma.

DNA demethylation is involved in the transcriptional reactivation of viral genes in cancer.44 Abnormal DNA
methylation may also lead to abnormal lncRNA expression in tumor progression. DNA demethylation enhances the
accessibility of promoter regions to transcription factors. In this study, specific SP1 binding sites were found to be
localized in the CpG island region of MIR155HG promoter. SP1 is ubiquitously expressed and activates target gene
transcription by binding GC-rich promoter elements, which are often interrupted by DNA methylation. We found that
overexpression of SP1 enhanced the expression of MIR155HG and the transcriptional activity of MIR155HG promoter in
glioma cells. However, M.SssI-induced hypermethylation of the MIR155HG promoter region abrogated this activation,
indicating that SP1-associated transcriptional activation of MIR155HG promoter was suppressed by DNA methylation.
MIR155HG promoter hypomethylation may result in increased SP1 binding and subsequent transactivation. This
partially explained why the expression of MIR155HG in GBM with low MIR155HG promoter methylation was
markedly higher than that in LGG with high methylation.

Immune checkpoint blockade, the most promising approach to achieve encouraging antitumor effects, has shown
great progress for the treatment of various advanced solid malignancies.45,46 Immune checkpoint blockade takes
advantage of tumor immune cell infiltration to reactivate an anti-tumor immune response that is effective. We evaluated
the association between MIR155HG and immune checkpoints, such as TIM-3, PD-1, B7-H3, PD-L1, CTLA4, and PD-
L2, and found that MIR155HG had a high concordance with these checkpoint members, consistent with previous
findings.28 These findings implied the potential regulatory effects of MIR155HG on immune checkpoints and provided
potential strategies for glioma treatment.

The TME is comprised of a diverse mixture of nontumor cells, including immune cells, stromal cells, and vascular
endothelial cells, as well as ECM. The TME usually suppresses efficient lymphocytic initiation, prevents their infiltration,
and inhibits effector cell infiltration, leading to tumor progression, drug resistance, immune evasion, and immune
suppression.47 The composition of TME has also been shown to influence outcomes of immune checkpoint blockade
therapy. Herein, we found that MIR155HG plays a role in immune and inflammatory response as well as in the TME of
glioma. Furthermore, there was a significant correlation between MIR155HG expression and infiltrating stromal and
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immune cells, such as plasma cells, monocytes, macrophages, and neutrophils. In addition, MIR155HG was prominently
correlated with a series of immunosuppressive factors in glioma, implying a vital function of MIR155HG in tumor
immune regulation. Besides, MIR155HG expression levels were positively related to marker genes of macrophages and
key factors that promote macrophage differentiation towards the M2 phenotype, suggesting that MIR155HG has a
regulatory function in TAMs polarization. Moreover, MIR155HG expression levels were notably positively associated
with chemokines or cytokines involved in immunosuppressive cell recruitment, including tumor-associated neutrophils,
TAMs, and myeloid-derived suppressor cells, as well as immunosuppressive factors secreted by these cells. The EMT has
a vital role in tumor immunosuppression as well as immune evasion.48 The interaction between EMT genes and the TME
may facilitate tumor progression. Additionally, EMT is associated with the activation of different immune checkpoint
molecules, such as PD-1, PD-L2, TIM-3, PD-L1, B7-H3, and CTLA4.49 EMT scores may also provide a novel biomarker
for the prediction of clinical responses to immune checkpoint blockade.50 Previously, we have found that MIR155HG
promoted the progression and EMT of glioma.11 Additionally, Cui et al showed that MIR155HG promoted laryngeal
squamous cell carcinoma EMT through miR-155-5p/SOX10 axis regulation.17 In the present study, we further confirmed
that MIR155HG-related genes are mainly enriched in the extracellular region and MIR155HG was significantly
associated with EMT markers. Accordingly, we speculated that MIR155HG is involved in immunosuppressive micro-
environment regulation and facilitates tumor immune evasion in glioma by regulating M2 polarization, recruiting
immunosuppressive cells, increasing the secretion of immunosuppressive factors, and promoting EMT.

Mechanistically, MIR155HG may modulate the tumor immunity through Wnt/β-catenin signaling pathway activation.
Previously, we showed that MIR155HG activated β-catenin expression via miR-155/PCDHs axis in glioma. Recently, He
et al found that MIR155HG enhances temozolomide resistance through Wnt/β-catenin pathway activation by binding
PTBP1 in glioma. These findings highlight the important role of Wnt/β-catenin signaling pathway in the downstream
regulation of MIR155HG. Aberrant Wnt/β-catenin pathway activation is implicated in various cancer types and is a key
regulator of the TME.51 Noteworthily, Wnt/β-catenin signaling as well as its interactions with immune cells have both
negative and positive effects on anticancer immunosurveillance. It is involved in leucocyte maintenance and renewal
while promoting immune tolerance, immune evasion and limits the antitumor immune response.52 Furthermore, Wnt/β-
catenin signaling also plays a crucial role in EMT, thus, it enhances cancer stem cell maintenance. Based on these
findings, we postulate that MIR155HG modulates tumor-immune interactions via the Wnt/β-catenin signaling pathway.
These findings should be verified by further molecular biology or cell experiments.

Conclusion
In conclusion, we established a novel role of MIR155HG in the promotion of malignant phenotypes which enhance
glioma immune evasion. Therefore, MIR155HG is a potential novel immunotherapeutic target for glioma.
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