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Introduction: Radiotherapy is a conventional treatment for gastrointestinal tumors. However, its therapeutic effect might not be
satisfactory because of factors such as radio-resistance of tumor cells and dose reduction applied to avoid damage to normal tissues.
We developed a novel combination therapy involving the use of isoniazid (INH) and core-shell magnetic nanospheres (NPs) to
enhance the efficacy of radiotherapy.

Methods: Magnetic core-shell NPs were synthesized. The shell manganese dioxide (MnO,) reacted with intracellular glutathione to
produce Mn?", which decomposed hydrogen peroxide (H,0,) to hydroxyl radicals (-OH) in the presence of INH to produce sufficient
amount of reactive oxygen species. In addition to this chemodynamic therapy, MnO, catalyzed H,O, to O,, which alleviated hypoxia
in tumors and thus enhanced the effect of radiotherapy. In addition, iron oxide (Fe;04) and reduced Mn** were potential candidates for
T,-T, dual-mode magnetic resonance imaging (MRI) with remarkable magnetic targeting ability.

Results: NPs exhibited efficient tumor targeting performance under the magnetic field and improved T,/T, dual-mode MRI, which
elevated oxygen levels without toxicity to the mice to achieve remarkable therapeutic outcomes, reaching a tumor inhibition rate of
93.2%. Moreover, chemodynamic therapy mediated by INH and NPs enhanced the therapeutic effect of radiotherapy both in vivo and
in vitro.

Conclusion: The results demonstrated that the combination of INH and NPs could be a novel strategy for radiosensitization with
clinical potential.

Keywords: chemodynamic therapy, Fenton-like, isoniazid, radiotherapy, magnetic resonance imaging

Introduction
Radiotherapy (RT), an effective treatment for solid tumors, is applied in more than half of clinical cancer cases.' > X-ray
from RT can directly ionize the DNA molecules inside tumor cells,* and the reaction of DNA with oxygen causes DNA
double-strand breaks.® Similarly, X-ray indirectly deposits energy inside tumor cells, and the hydrated electrons produced
by ionized water molecules react with oxygen to form reactive oxygen species (ROS), which react with biological
macromolecules, leading to cell apoptosis.®” Thus, oxygen is a key factor in the course of RT. However, the inherent
hypoxia of the tumor microenvironment (TME) significantly inhibits the effect of RT, leading to RT resistance.* '® In
addition, glutathione (GSH) in the TME can eliminate free radicals, such as hydroxyl radicals (-OH), produced by RT and
repair the DNA double-strand breaks caused by RT, thus adversely affecting the treatment.'' Therefore, methods to
improve the sensitivity of RT are necessary.

Compared to traditional chemotherapeutic drugs, nanomaterials can reduce the reaction with the physiological
environment and prolong circulation time in vivo, thus aiding in tumor treatment.”'*"'> Since the photoelectric effect
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beneficial to RT is proportional to (Z/E)® of the material, nanomaterials with a high atomic number can have a significant
sensitization effect on RT.'® Jia et al designed AugNCs with a precise atomic structure to sensitize highly effective RT by
producing high amounts of ROS at a relatively low and safe radiation dose.'”'® In addition, some nanomaterials can
improve the TME (such as hypoxia, GSH, hydrogen peroxide [H,0,]) to decrease RT resistance.'® Accordingly, Zhu et al
designed a tumor cell membrane-coated manganese dioxide (MnO,) nanozyme biomimetic system, which could react
with tumors endogenously to produce abundant oxygen and enhance the effect of RT.>° However, studies on RT
sensitization by increasing oxygen levels are limited by the difficulty in oxygen delivery and limited oxygen carrying
content, which diminish the sensitization effect.*'** Thus, the combination of RT and chemodynamic therapy, which
does not require oxygen but can react with excess H,O, in TME to produce -OH for synergistic therapy, is a promising
treatment approach.”f3 0

RT induces cell apoptosis through direct or indirect damage. Indirect damage is caused by ionizing radiation, producing
ROS intracellularly. However, tumor cells might eliminate ROS. To improve the effect of RT, both the ROS amount
produced and ROS protection should be considered. Isoniazid (INH), a clinical anti-tuberculosis drug, can interact with
Mn?* to produce highly toxic -OH, which affects cancer treatment.>' Cheng et al developed INH-supported WSSe/MnO,
nanocomposites with mitochondrial targeting, which could induce -OH generation via INH-induced tumor ablation in
combination with photothermal therapy.®* Based on Cheng et al’s findings and accounting for the dependance of the degree
of RT sensitization on the sensitivity of tumor cells to radiation and the amount of ROS in tumor cells, we designed Fe;O,
@MnO, nanospheres (NPs) in combination with INH to achieve a synergy between RT and chemodynamic therapy
(Scheme 1). A magnetic field (MF) was used to guide the enrichment of Fe;04@MnO, nanoparticles at the tumor site.
Under the acidic TME, the MnO, shell layer on the surface can consume GSH, which prevents removal of the ROS
produced by RT and destroys the redox tumor environment, and can react with INH to generate highly toxic -OH, which
improves the curative effect of RT. In addition, owing to the presence of Mn*", Fe;04@MnO, can be used as a contrast
agent for enhanced T,-weighted magnetic resonance imaging (MRI).>* After the consumption of MnO,, the exposed core
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Scheme | Strategy of combination therapy via isoniazid and core-shell magnetic nanosphere to enhance radiotherapy.
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Fe;04 can react with endogenous H,O, to generate -OH, which can further kill tumor cells. Moreover, MnO, can
decompose H,O, to O, to alleviate hypoxia. Simultaneously, Fe;O, can be used as a contrast agent for T,-weighted
MRI. Both Fe and Mn are essential trace elements in the human body, and INH is a medicine, thus ensuring the
biocompatibility of the combined system of Fe;O04@MnO, and INH. Therefore, Fes04@MnO,, as a contrast agent
significantly improves the ability of T,- and T,-weighted MRI, and its combination with INH destroys the redox tumor
environment and increases the ROS level in tumors to maximize the damage to cancer cells by ROS.

Materials and Methods
Synthesis and Characterization of Fe;O,@Mn0O,

Based on the successful synthesis of Fe;0,@MnO, nanoparticles (NPs) by our research group in previous articles,** we
will briefly introduce it here. Synthesis of Fe;04@MnO, is roughly divided into two steps.

Synthesis of Fe3O4 NPs

First came the synthesis of Fe;0,4 by hydrothermal method. FeCl;-6H,0 (1.35g, Smm) was dissolved in ethylene glycol
(40mL), and NaAc (3.6g) was added while stirring (30 minutes) until a transparent solution was formed. It was sealed in
a stainless-steel autoclave containing teflon (50 mL capacity), heated at 200°C for 7h, and washed respectively several
times with ethanol and distilled water after cooling to room temperature.

Synthesis of Fe304,@MnO, Nanoparticles

And then the synthesis of core-shell Fe;04@MnO, nanoparticles through a homogeneous precipitation method. The
Fe;04 (0.5 g) nanoparticles were added to 5% PEG (100 mL) for 30 min by ultrasonic agitation to form magnetic fluid.
KMnOy, (0.1975 g) and (CH3COO),Mn-4H,0 (0.46 g) were also dissolved in 5% PEG (100 mL) at room temperature.
Finally, the above two solutions were mixed and reacted at 60°C for 4 h, and the resulting solution was washed several
times with anhydrous ethanol.

Physical Characterization of NPs

The morphology of NPs NPs was observed by transmission electron microscopy (TEM; Tecnai G2 F20 S-Twin, FEI,
USA) at 100 keV acceleration voltage. The phase structures were acquired by means of X-ray diffraction (XRD; Bruker
D8 Advance, Germany) with Cu Ka radiation (A = 0.15406 nm). The surface chemical elements and elements orbits
were analyzed by XPS (ESCA-Lab250XI, Thermo Fisher Ltd., USA). The zeta potential and zeta diameter of NPs
before and after 6 Gy irradiation were was determined using dynamic light scattering (Nano-Zen 3600, Malvern
Instruments, UK).

Cell Culture

AGS cells were purchased from the Chinese Academy of Sciences, Shanghai, China. AGS cells were cultured in RPMI-
1640 (HyClone, USA) containing 10% fetal bovine serum. Cells were maintained in a humidified incubator at 37 °C in
an atmosphere of 5% CO..

Animal Models

6-week-old female nude BALB/c mice (purchased from Vital River Company, Beijing, China) were subcutaneously
injected with 100 uL AGS cell suspension (1x107 cells/mL) on the right hip to establish tumor model. All procedures
have been approved by protocols of the Institutional Animal Care and Use Committee (IACUC) of the Animal
Experiment Center of Wuhan University (Approve No. AF146). In additional, All the in vivo experiments on mice
according to the guideline for ethical review of animal welfare (GB/T 35892-2018) and guideline for euthanasia (GB/T
39760-2021) approved by standards approved by China.

In vivo HE Staining Sections

5 tumor-bearing mice were euthanized and their tumors and main organs were sliced and embedded in paraffin. Next,
these tissue sections was stained using hematoxylin solution for 3—5 min and next treated with hematoxylin differentia-
tion solution following by Treat the section with Hematoxylin Scott Tap Bluing, rinse with tap water.
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In vivo Antitumor Study

When the tumor size approached 200mm?, 30 mice were randomly divided into 6 groups (n=5) to receive various
treatments: (1) PBS; (2) RT (6 Gy); (3) NPs (100 pL, 100 pg/mL) under MF; (4) NPs (100 pg/mL) under MF + INH (20
pg/mL); (5) NPs (100 pg/mL) + INH (20 pg/mL) 6 h before RT (6 Gy); (6) NPs (100 pg/mL) under MF + INH (20 pg/
mL) 6 h before RT (6 Gy). A square magnet of 5000 Gauss was used for providing external magnetic field. Tumor length
and width were measured with calipers every 2 days to obtain changes in tumor volume and to record changes in body

weight.

Results and Discussion

First, we synthesized core-shell Fe;04@MnO, NPs. The NPs were uniform with an average diameter of 234 nm under
transmission electron microscopy (Figure 1A). Fe;O4 was covered with small particles of MnO, (Figure S1). X-ray
diffraction exhibited both Fe;O, (PDF#89-4319) and MnO, (PDF#81-2261; Figure 1B). The X-ray photoelectron
spectroscopy spectrum of NPs further confirmed Fe and Mn in NPs (Figure 1C). Figure 1D and E show high-
resolution spectra of Mn 2p and Fe orbits, respectively. Mn 2p was located at 642 and 654 eV, consistent with the
characteristic peaks of Mn*". The Fe spectrum indicated the valences of Fe*" and Fe*" in NPs. Moreover, the zeta
potential and diameter of NPs demonstrated no difference before and after irradiation (Figure S2), reflecting remarkable
radiation ionizing stability.

Next, we assessed the ability of NPs to deplete the GSH in cells. Figure 2A shows the results. The amount of GSH
consumption increased with time, and the consumption reached over 80% of the total amount of GSH at 210 s,
indicating remarkable GSH depletion ability of NPs in vitro. Methylene blue (MB) is a typical indicator of ‘OH
generation since this blue dye can be degraded by -OH. INH can react with Mn>" to produce -OH; therefore, MnCl,
was used as a source of Mn*" to verify this process. Figure 2B shows the absorbance change at 665 nm under various
treatments. INH+Mn?" might have induced MB degradation, but no apparent change in the MB concentration was
observed in the presence of INH or MnCl, alone. Moreover, MB degradation was impaired after adding 10 mM GSH,
owing to the scavenging effect.”® Considering that NPs can be reduced by intracellular GSH to obtain Mn*", the
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Figure | Structure and property characterizations. (A) TEM image, (B) XRD analysis. *Represents peaks of Fe30, and - represents peaks of MnO,. (C) XPS spectra of
Fe304@MnO, NPs. (D) Mn 2p and (E) Fe 2p of Fe304,@MnO, NPs.
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Figure 2 Fenton-like reaction assessment. (A) GSH consumption in existence with 100 pug/mL of NPs. (B) Percentage of MB concentration after various treatments. (C) MB
degradation under various treatments. ***P < 0.005; Student’s t-test.

reaction among INH, NPs, and GSH was investigated. Only in the presence of INH+NPs+GSH did the MB
concentration decrease. However, the trend similarly decreased when the GSH concentration became 10 mM.
Nevertheless, MB degradation caused by INH+Mn*" reached 22.9%, which was 4.2 times greater than that caused
by Mn?". Similarly, in a previous study, the intracellular concentration of GSH ranged from 0.1 to 10 mM when INH
+NPs exhibited outstanding -OH generation ability.>> Figure 2C shows the ultraviolet—visible light absorption curves
of MB under various treatments. Absorbance intensity decreased with MB+INH+NPs+0.1 Mm GSH compared to MB
alone. In addition, the absorbance intensity decreased when the GSH concentration increased. INH, NPs, or INH+NPs
exhibited no apparent degradation ability to MB.

Based on the mechanism effect, we evaluated the antitumor efficacy of this treatment strategy in vitro. Since
biocompatibility should be assessed, cell viability was checked after incubation with NPs under concentrations ranging
from 0 to 500 pg/mL (Figure S3). The cell viability was over 70% even at a concentration of 200 pg/mL. The
hematolysis analysis also indicated satisfactory biocompatibility of NPs as a hematolysis rate lower than 3% at
a concentration of 200 pg/mL (Figure S4).

RT induces cell apoptosis via DNA double-strand breaks. Therefore, it is compulsory to assess the extent of DNA
double-strand breaks after various treatments. Cells pretreated with NPs+INH prior to RT exhibited remarkable DNA
damage compared to RT alone (Figure 3A). Next, cell viability after various treatments were measured using Cell
Counting Kit-8. Cells treated with NPs+INH exhibited suppression of cell viability owing to Fenton-like reactions
(Figure 3B). However, the group treated with NPs+INH+RT showed a cell death rate of 38.9%, enhancing the effect of
RT with the most effective cell killing ability. Moreover, 2°, 7’-dichlorodihydrofluorescein was utilized to detect ROS
(Figure 3C). The group treated with RT or NPs showed limited green fluorescence intensity compared to the group
treated with NPs+INH. Among all the groups, cells treated with NPs+INH+RT generated the largest amount of ROS,
consistent with the result of flow cytometry (Figure 3D). Colony formation assay, the gold standard method to evaluate
radiosensitization, was conducted to assess the ability of this strategy to enhance the efficacy of RT. The curve
represented the NPs+INH-+RT group separate from the control group’s curve with the most apparent distinction when
irradiated with 6 and 8 Gy (Figure 3E). In addition, the sensitization enhancement ratio of the NPs+INH strategy was
calculated to be 1.89. The wounding assay was conducted to infer the migration ability (Figure 3F). Subsequently, after
24 h, cells in the control group recovered rapidly. When the group treated with RT, NPs, and INH+NPs demonstrated
limited cell migration ability, cells in groups treated with INH+NPs+RT exhibited most apparent inhibition of cell
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Figure 3 Antitumor efficacy in vitro. (A) y-H,AX staining of cells; (B) Cell viability tested using CCK 8 kit. (C) DCFH-DA staining of cells. (D) Fluorescence intensity
detection using flow cytometry. (E) Colony formation assay. (F) Wounding assay. (RT: 6Gy; NPs: 100 pg/mL; INH: 20 pg/mL). **P < 0.005; Student’s t-test.

migration, leaving a huge gap between two cell communities. INH+NPs could dramatically enhance the efficacy of RT
in vitro.

To further confirm the cell apoptosis induced by INH+NPs+RT, flow cytometry analysis was conducted. No cell
apoptosis was observed in the control or NPs group (Figure S5), indicating no severe cytotoxicity of NPs to cells,
whereas cell death occurred under the treatment of NPs+INH. Among all groups, cells treated with NPs+INH+RT
showed most severe apoptosis (42.9%). Fe;04, MnO,, and INH induces cell apoptosis via the caspase mediated pathway,
which involves caspase 3,%® caspase 8,%” and caspase 9.*® Cell apoptosis in the NPs+INH+RT group was mediated by
caspases 3, 8, and 9 through upregulated expression (Figure S6). Moreover, Z-VAD-FMK, a caspase inhibitor was also
applied to confirm the apoptosis pathway (Figure S7). Cell viability exceeded 95% in the NPs+INH+RT group after
adding Z-VAD-FMK and was 22.5% when treated with NPs+INH+RT alone, which indicated that cell apoptosis was
suppressed by the caspase inhibitor.

Next, NPs were injected intravenously to evaluate the deposition ability of converting H,O, to oxygen in vivo.
Pimonidazole staining was used for hypoxia detection (Figure 4). The control group showed strong green fluorescence
intensity, indicating severe hypoxia in the tumor region. After injecting NPs, the intensity of fluorescence decreased.
Moreover, under the treatment of MF directing NPs, hypoxia in the tumor region was alleviated to a large extent.
Moreover, the result of hypoxia-inducible factor 1-alpha staining confirmed that under MF, NPs could efficiently alleviate
hypoxia at the tumor site (Figure S8). Thus, NPs under MF could reduce hypoxia in tumors.
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Figure 4 Pimonidazole staining of tumor slices 24 h post intravenous injection of PBS or NPs (100 L, 100 pug/mL; Scale bar: 100 pm).
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Further, we investigated the feasibility of this Fenton-like chemodynamic therapy strategy for radiosensitization on
Aicardi-Goutiéres syndrome tumor-bearing mice. When the tumor volume reached approximately 200 mm?, mice were
subjected to the following treatment (five mice/group): (1) PBS; (2) RT (6 Gy); (3) NPs (100 pL, 100 pg/mL) under MF; (4)
NPs (100 pg/mL) under MF + INH (20 pg/mL); (5) NPs (100 pg/mL) + INH (20 pg/mL) 6 h before RT (6 Gy); (6) NPs (100
pg/mL) under MF + INH (20 pg/mL) 6 h before RT (6 Gy). Subsequently, the body weight, tumor volume, and tumor weight
were monitored (Figure S9, Figure SA and B). The body weight did not change in any of the groups. The NPs+INH+RT
treatment suppressed tumor growth apparently while the NPs+INH+RT(MF) group demonstrated most significant antitumor
efficacy. The MF targeting ability was also confirmed. Mice receiving NPs (MF)+INH treatment exhibited slight tumor
inhibition induced by chemodynamic therapy. Tumor growth was rapid in the RT and NPs treatment groups. Tumor weight
showed significant tumor suppression in the NPs (MF)+INH+RT group compared to the NPs+INH(MF) or NPs+INH+RT
group. Hematoxylin and eosin staining showed a slightly lower degree of cell apoptosis in NPs+INH(MF) and NPs+INH+RT
groups than in the NPs+INH+RT(MF) group, whereas no tumor cell death occurred in the RT or NPs treatment group
(Figure 5D). The architecture was significantly damaged in tumor slices treated with NPs+INH+RT(MF). To detect the
amount of ROS produced, dihydroethidium was utilized for fluorescence staining of tumor slices. Consistent with the result
in vitro, the group treated with NPs+INH(MF) showed an increased expression of ROS due to the chemodynamic therapy.
NPs+INH+RT(MF) significantly elevated the ROS level in all groups. Moreover, hematoxylin and eosin staining of the main
organs showed no lesions (Figure 5C), indicating good biocompatibility of the treatment strategy.

MRI was conducted to verify the T,-/T,-weighed contrast effect of NPs. NPs revealed a longitudinal relaxation rate
of 5.44 in the presence of GSH (Figure S10). No accumulation in the tumor region was observed without MF.
Conversely, the tumor region was brightened in the group guided by MF. The transverse relaxation rate of NPs was
calculated to be 114.6. In accordance with the in vivo result of T, scanning, the tumor region was darker under MF. It
can be concluded that NPs exhibit a superior tumor targeting ability under MF and can act as a contrast agent for T,-/T5-
weighed MRI.

Conclusion

We introduced a novel strategy using chemodynamic therapy induced by INH and NPs to enhance RT, which demon-
strated effective tumor suppression. In the presence of GSH, INH, and NPs, H,O, converted to -OH, which facilitated the
chemodynamic therapy. Moreover, NPs under MF could target the tumor region. NPs catalyzed H,O, to O,, which
alleviated hypoxia in tumors, and NPs exhibited significant T;-/T,- weighed imaging contrast ability both in vitro and
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and ROS staining of tumors of mice received different treatment (Scale bar: 100 um). ***P < 0.005; Student’s t-test.

in vivo. This therapeutic method of combining chemodynamic therapy with RT offers a novel strategy for tumor
treatment.
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