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Objective: This study aims to illustrate the potential of sequential experimentation for statistically scientific based optimization of
Tazarotene (TAZA) cubosomes.

Methods: Hot melt emulsification method was used for cubosomes preparation. A preliminary (3.2) mixed factorial design (MFD)
was conducted to choose suitable types of stabilizer and surfactant that maximize entrapment efficiency (EE) and minimize particle
size (PS). These chosen stabilizer and surfactant were to be used in the statistical design proposed for optimization of TAZA
cubosomes (I-optimal mixture design) (IOMD). Glyceryl monooleate (GMO), stabilizer and surfactant amounts were the three mixture
components (MixCs) studied in that design. Responses (EE, PS and drug percent released after 24 hours (Q24h)) were statistically
analyzed. Numerical optimization using desirability function based on different responses’ importance was used to find an IOMD-
optimized formulation (IOMD-OF) with the predetermined characters. Then, a novel statistical methodology of design space
expansion was adopted to enhance Q24h. Suitable models to express EE, PS and Q24h were elucidated over the expanded mixture
design (EMD) space. Validity of derived models was verified via prediction intervals and percent deviations of actual values from
predicted ones for all the EMD design points. EMD was then navigated to find EMD-OF.

Results: Analysis of MFD showed that Pluronic-F68 and polyvinyl alcohol were the best stabilizer and surfactant to be used. First
stage optimization after IOMD analysis led to a formulation with unsatisfactory Q24h of 58.8%. After design space expansion
adoption, re-analysis and re-optimization, a satisfactory EMD-OF having EE of 82.1%, PS of 273.0 nm and Q24h of 68.8% was found.
Conclusion: Statistical sequential experimentation with the novel design space expansion approach proved to be a successful
paradigm for enhancing TAZA cubosomes optimization. Thus, this paradigm is expected to have promising future applications in
various pharmaceutical formulations optimization.

Keywords: statistically scientific based optimization, topical drug delivery, Box-Cox transformation, contour plots, Piepel’s trace
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Introduction

In order to treat a topical disease, drugs can be administered systemically or topically. Nowadays topical application of drugs is
preferred over systemic administration. Systemic administration of the drug may expose it to first pass metabolism or being
deactivated by stomach pH. Moreover, all body organs are subjected to the systemically administered drug which may result in
undesired side effects. Although topical conventional dosage forms have been used for decades, they have drawbacks such as
frequent dosing and skin irritation or damage.' To avoid several side effects of conventional topical dosage forms application,
topical nano-carrier drug delivery systems have been developed. These nano-carriers can be classified into polymeric, lipid, and
metallic nano-carriers according to their composition. Of these nano-carriers, lipid-based type is the most common in
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pharmaceutical research.” These lipid-based nano-carriers can be subdivided into three different classes: vesicular carriers such as
liposomes,3 niosomes,4 proniosomes,5 cerosomes,’ nano-particulate carriers””® and emulsion based carriers.” !

Cubosomes are cubic shaped liquid crystal dispersions composed of lipid layers, separating non-intersecting water
channels. They are considered a promising type of nano-vesicles. Besides being a non-toxic, biocompatible and
inexpensive drug delivery system, cubosomes’ special structure enables the incorporation of both hydrophilic and
lipophilic drugs. Also, cubosomes have a bioadhesive nature. They can form a thin layer on skin and mucosal surfaces.
This allows convenient delivery and deposition of topical drugs with fair temporary protection from irritation.'*"* So,
cubosomes can be considered as one of the nano-drug delivery systems of choice for topical drug delivery. Cubosomes
can be prepared from lipids such as phytantriol and glyceryl monooleate in the presence of steric stabilizers such as
poloxamers, casein and lecithin.'* Surfactants such as PVA, Tweens'> and Brijs'® can also be added along with the
aforementioned stabilizers. They have the advantage of being stable at room temperature.'?

Tazarotene (TAZA) is a third-generation synthetic retinoid (vitamin A derivative) with a selective retinoic acid
receptors (mainly RAR-B and RAR-y) activity.'” It is used for topical treatment of several skin conditions such as acne,
psoriasis and photo-aging. TAZA is present in market as 0.1% gel® (Acnitaz®™), 0.1% cream'® (Tazarotene™) and 0.1%
foam'® (Fabior™). It was reported that long-term treatment with TAZA in conventional dosage forms caused several side
effects.'® Market formulations were reported to have skin irritation side effects such as pruritus, redness and peeling.?
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Therefore, it was necessary to develop skin targeting formulations that can increase TAZA deposition into skin and
reduce those annoying side effects. These formulations included liposomes,' cerosomes,® proniosomal gel,?*

10.11.23 spanlastic nano-vesicles,”* nanoparticles,” niosomal gel and nano-sponges.”® TAZA was also

microemulsions,
formulated as in situ gels which were reported to be non-irritant to the skin.?’

The use of statistical experimental designs, statistical modeling and optimization of responses based on derived
models saves more time and effort than the traditional one-at-a-time experimentation.”® Also, the use of statistical
designs enhances the experimental input-output quality. Statistical designs have been recently widely used in pharma-
ceutical research for formulation development and optimization. These designs vary from the parent factorial designs
either full?*>° or fractional,®' to response surface designs (RSD) such as Box-Behnken designs’* and central composite
designs'® to mixture designs®> and even combined mixture designs.>*

Our study aims to move a step forward in the field of the use of statistics in pharmaceutical formulations development and
optimization. In this study, statistically scientific based optimization is to be implemented. This is to be done through a statistical
sequential experimentation strategy together with the novel approach of design space expansion for formulation optimization.
Optimization of TAZA cubosomes for topical application will be performed as a practical example. To our knowledge, this is the
first work to use design space expansion as a statistical tool for pharmaceutical formulation optimization.

Theory

In many recent pharmaceutical formulation studies, researchers adopted a certain statistical design. This design —
whatever its type — is used for choosing which trials (design points) (DPs) will be done, then elucidation of a suitable
polynomial model for representing each response. Simultaneous numerical optimization was then used to search for an
optimized formulation based on the derived models. Though this traditional sequence is satisfactory to some extent, yet
questions arise. How should the studied variables or components be chosen? What can we do if the optimization results
were not satisfying enough? Shall we build a new design from scratch? Or what can we do? In this study, statistically
scientific based optimization will be implemented through statistical sequential experimentation aided by design space
expansion. This is to answer the previous questions and map how the best possible results can be reached while
minimizing the amount of experimentation performed.

The proposed statistically scientific based optimization scheme in this study starts with a preliminary design for
selecting suitable formulation parameters. This design should be a simple design of relatively few runs to screen
suspected variables. Factorial designs whether full or fractional and their descendants such as Plackett-Burman or
Taguchi designs fit very well for this job.?®

After the selection of certain factors (independent variables) (IVs) and subsequent levels or ranges to be studied, the main
statistical design for optimizing these IVs (whether they are process variables (PVs) or mixture components (MixCs) or both)
should be implemented. It’s preferable not to consume all the experimentation trials of the research in this design. Only about 70—
80% of experimentation trials are used to build this experimental design. In case of studying PVs where changing the level of one
factor does not affect the others, a response surface design (RSD) may be used. This may be a Box-Behnken design, a central
composite design, an optimal design, etc. While if the studied factors are MixCs, a mixture design (MixD) should be used.
Although really important, MixDs are not as popular as RSDs. MixDs should be used when the studied IVs are proportions of
a blend, where changes in one of the components can affect the relative amounts of others. Types of MixDs include simplex
lattice design, simplex-centroid design, and various types of optimal designs.***> In different types of simplex designs, there is
a specified pattern for DPs (mixtures of specific composition to be formulated) selection. However, in optimal designs there is
more flexibility in DPs selection. This DPs selection is dictated by a desire of achieving a certain property (optimality criterion).
An algorithm is used to build the design in a manner that highly achieves this optimality criterion. There are different types of
optimal designs according to the optimality criterion.?® D-optimal designs are best for screening designs as they produce a design
that best estimates factors’ effects. A-optimal designs minimize the average variance of the polynomial coefficients. G-optimal
designs minimize the maximum value of prediction variance in the design region. Integrated variance optimal designs (I-optimal
designs) minimize the average prediction variance across the experimentation region. These optimal designs may be mandatory
in some cases. These obligatory cases include unequal component ranges or multi-component constraints. In others, they are
privileged for the ability of selecting a certain optimality criterion according to the study aims. Where it’s required to study MixCs
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and PVs simultaneously, Combined mixture designs®* can be used, although their application in pharmaceutical research is still
rare.

After implementation of the main optimization statistical design and elucidation of suitable models for navigation of
design space, process or formulation optimization is performed either numerically or graphically. Now, some questions must
be asked. Was the optimized formulation in the center of the design, or was it marginal? Has the optimized formulation
achieved my predetermined constraints to a satisfactory degree or do I need to enhance certain response(s)? If the optimized
formulation is marginal (that is, you can reach better results by choosing different levels or ranges or you need to improve
a certain response in the optimized formulation), here comes the use of the saved 20-30% of the experimentation trials.

Instead of performing a new design from scratch to choose different levels of PVs or ranges of MixCs, a novel
statistical approach can be adopted, which is expansion of the design space. The saved 20-30% of the experimentation
trials is now used to change the levels of some factors or ranges of MixCs. This change is dictated by the direction which
is believed to be towards a sweeter optimization spot or towards the increase or decrease of a certain response. This
change leads to an expansion of design space without the need of building a new design. The new DPs performed in this
extra space may be added in the same block as the initial DPs or may be added in a new block. This can be decided case
by case by judging whether any of the constant factors have been changed for the new DPs.*

Experimental details

Materials

Tazarotene was kindly supplied by ENALTEC Labs, Navi Mumbai, India. Glyceryl monooleate (GMO), Pluronic® F127 (PL-
F127), Pluronic F108 (PL-F108), Pluronic F68 (PL-F68), Brij® 53, and Polyvinyl alcohol (PVA; Mwt. 13,000-23,000, 87-89%
hydrolyzed) were purchased from Sigma Aldrich®, Darmstadt, Germany. Methanol, Sodium chloride, Disodium hydrogen
phosphate, Potassium dihydrogen phosphate and Sodium lauryl sulphate were purchased from Adwic, El-Nasr Pharmaceutical
Chemicals Co., Cairo, Egypt. All other chemicals and solvents were of analytical grade. Water used was deionized, distilled water.

Statistical Design

In this study mixed factorial design (MFD) (3.2) was chosen as the preliminary design. This design was chosen to select
a stabilizer and a surfactant for formulation of TAZA loaded cubosomal dispersions. Three levels of stabilizer (PL-F68,
PL-F108 and PL-F127) and two levels of surfactant (PVA and Brij 35) were incorporated into the study. Fixed amounts
of GMO, TAZA and water were used. The prepared formulations were investigated for their entrapment efficiency
percentage (EE) and particle size (PS).

On the basis of results obtained from the preliminary study, a statistical design was needed to search for the best proportion
with which the components should be mixed to optimize a cubosomal formulation with desired characteristics. Hence an
[-optimal mixture design (IOMD) was chosen as it can be the mixture design of choice when prediction across the experimental
space is the main aim of the study. It was decided to use only 10 experimentation trials in this design to leave the possibility for
design space expansion if needed. The components studied in the IOMD coded in different methods together with the responses
studied and their constraints are shown in Table 1. Figure 1 shows the IOMD space with its 10 DPs (C1-C10). The detailed
composition of the 10 cubosomal formulations (C1-C10) prepared accordingly is shown in Table 2.

Expansion of design space in a certain required direction was finally adopted. Four extra trials were performed which
represent the DPs at the two new vertices, the center of the new edge and the overall centroid of the expanded mixture
design (EMD) space (see Figure 1). As the experimental space was expanded in a certain direction, only some of the
limits of the ranges of original space of the IOMD changed. The limits that changed to obtain the new EMD space are
shown in italics in Table 1. The detailed compositions of the extra four DPs (C11-C14) are shown in Table 2.

Preparation of TAZA Cubosomes

TAZA cubosomes (TAZA-Cs) were prepared by melt dispersion emulsification method.'> Accurately weighed amounts
of GMO, stabilizer and 10 mg TAZA were melted on a hot plate magnetic stirrer (Model MSH-20D, Wise Stir, Daihan
Scientific Co. Ltd, Korea) at 70°C. Accurate amount of surfactant was dissolved in a certain amount of water and the
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Table |1 Mixture Components Studied in the |-Optimal Mixture Design with Their Constraints Expressed in Different Values

Mixture Components Actual Values (mg) Real values (Proportions) L-Pseudo Values
Upper Lower Upper Lower Upper Lower
Limit Limit Limit Limit Limit Limit

A: Glyceryl monooleate 420 (510) 300 0.568 (0.689) | 0.405 | 0

B: Pluronic F68 240 (330) 120 0.324 (0.446) | 0.162 | 0

C: Polyvinyl alcohol 320 200 (110) 0.432 0.720 (0.149) | | 0

Measured Responses (Yx) Targeted Constraints

Y |I: Entrapment Efficiency (%) (EE) Maximize

Y2: Particle Size (nm) (PS) Minimize

Y3: Drug percent released after 24h (%) Maximize

(Q24)

Y4: Absolute Zeta Potential (AZP) Maximize

Notes: Altered limits for the expanded mixture design are shown in parentheses. Studied responses and their targeted constraints are also shown.

A: GMO

510
Cc11

IOMD-OF

c12 C1

C7, C8

EDS-OF

C13 C10

330 C4 C9 320
B: PL-F68 C: PVA

Figure | l-optimal mixture design (IOMD) space - defined by the constraints 300sA<420, 120=B<240 and 200=C=<320 - and its DPs (C1-CI I) together with extra added
DPs (C11-C14) to give the expanded mixture design (EMD) space defined by the constraints 300A<510, 120=B<330 and | 10<C<320. Where; A = Glyceryl monooleate
amount (mg), B = Pluronic F68 amount (mg), and C = Polyvinyl alcohol amount (mg). Design points (DPs): O single trial, ® replicated trial, ¢ selected optimized formulation
from IOMD (IOMD-OF), A selected optimized formulation from EMD (EMD-OF).
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Table 2 Composition and Characterization of Cubosomes Prepared According to Different Design Points of I-Optimal Mixture
Design (C1-C10) and Extra Points Added in Expanded Design Space (CI1-Cl4)

Std A: GMO* B: PL-F68* C: PVA* EE ** PS*¥ Q24h** PDI** ZpH*k

Cl 420 120 200 885 + 0.1 207.9%11.5 588+ 1.0 0.36 + 0.05 —40.1+0.3
Cc2 360 180 200 820+ 14 256.8 +5.3 57.0 £ 27 0.42 + 0.05 -33.5¢15
C3 360 180 200 80.2 1.1 2409 +12.9 556+ 12 0.40 + 0.04 —-38.1+0.4
C4 300 240 200 853+ 08 3172 £ 51.7 62.5 + 0.9 0.47 + 0.0l -33.5%1.7
C5 340 160 240 795+ 14 245.1 + 6.1 609 +7.2 0.50 + 0.04 -36.9+1.7
Cé 340 160 240 8l.1 +04 251527 60.8 + 4.1 0.38 + 0.03 -31.9+0.6
Cc7 360 120 260 872+ 0.6 203.6 + 15.7 563 +29 0.29 + 0.02 -35.5+1.3
Ccs8 360 120 260 89.6 + 0.4 2029 + 125 54.1 + 69 0.30 + 0.03 —50.7+0.6
c9 300 180 260 86.3 £ 2.0 258.8 + 41.0 56.7 + 2.8 0.43 £ 0.05 —41.410.2
Clo 300 120 320 873+ 1.0 2048 £ 1.9 51.9+28 0.41 £ 0.01 —35.14+4.5
Cll 510 120 110 83.7 £ 2.6 209.7 + 12.5 425 %26 0.43 £ 0.05 —-36.5%0.9
Cl2 405 225 110 81.7 + 09 2368 + 1.7 58.1 £ 6.2 0.47 £ 0.02 —46.5+1.8
Ci3 300 330 110 82.1 = 1.1 2730 11.2 688 + 6.6 0.47 £ 0.04 —36.840.6
Cl4 370 190 180 76.6 + 04 2299 + 4.4 61.0 +6.9 0.50 + 0.0l -37.3+05

Notes: *Studied mixture components amounts: A: Glyceryl monooleate (GMO) (mg); B: Pluronic acid F68 (PL-F68) (mg); C: Polyvinyl alcohol (PVA) (mg). **Measured
Responses. Data are duplicate measurements of each trial (mean +SD).
Abbreviations: EE, Entrapment efficiency; PS, Particle size; PDI, Polydispersity index; Q24h, drug percent released after 24 hours; ZP, zeta potential.

aqueous solution was heated to the same temperature and added dropwise to the molten lipid mixture under continuous
stirring at 950 rpm. TAZA-Cs were formed as milk-like dispersions. All formulations were left to cool gradually at room
temperature. Then they were homogenized by intermittent probe sonication for 10 minutes (5 s on and 5 s off).>” TAZA-

Cs were kept at room temperature for further investigations.

Characterization of Prepared Cubosomes

EE and Drug Loading (DL)

Entrapment efficiency of TAZA-Cs was determined by separating the un-entrapped free drug. One mL of each
formulation was centrifuged for 1 hour at 4°C and 22,000 rpm in an ultra-cooling centrifuge (Model 3—30KS, Sigma
Laborzentrifugen GmbH, Osterode am Harz, Germany). The supernatant containing free TAZA was diluted with
methanol and spectrophotometrically measured (UV-1601 PC shimadzu, Kyoto, Japan) at A,.c= 351.5 nm. EE was
calculated using the following formula:*®

TAZATotal - TAZASupematant>
E = x 100 1
( TAZATotaI ( )
Drug loading for TAZA-Cs was calculated using the following equation:***°
DL — Amount of TAZA eﬁtrapped « 100 @)
Cubosomes weight
Where cubosomes weight is the weight of the lipid mixture of the formulation.
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PS and Polydispersity Index (PDI)
In order to determine PS and PDI of the formulations, TAZA-Cs were appropriately diluted with water and measured by Malvern
zetasizer (Model ZEN3600, Malvern Instrument Ltd, Worcestershire, England). The measurements were carried out at 25°C.*!

ZP

Determination of ZP depends on measuring the mobility of charged moieties in an electric field.*' Malvern zetasizer was
used to measure ZP at a potential of £ 150 mV via a laser Doppler anemometer.** TAZA-Cs were diluted and measured
for ZP at 25°C.

Q24h

The in-vitro TAZA release from TAZA-Cs was conducted in a horizontal shaking water bath (GFL, Gesellschaft
Laboratories, Berlin, Germany). One mL of each formulation was placed in a dialysis bag (12,000-14,000 molecular
weight cut off). The release medium was 50 mL hydro-alcoholic solution (PBS of pH = 7.4: methanol in ratio 1:1)
containing 0.05% sodium lauryl sulphate at 37°C + 0.5 under agitation speed of 50 rpm.?! The solubility of TAZA in
water is very low (practically insoluble in water)* as it is a highly lipophilic drug (Log P= 5.96)."" Hydroethanolic
solution was used as a release medium to achieve the sink conditions.”’** Samples of 3 mL were withdrawn at time
intervals 0.5, 1, 1.5, 2, 3, 4, 6, 8 and 24 hours. The withdrawn aliquots were replaced by 3 mL of the dissolution medium
each time. The amounts of TAZA released (ng/mL) were spectrophotometrically measured at A,,x = 351.5 nm. For all
formulations, Q, was calculated according to the following formula:*®

(Cn X Vr + er‘lgll Ci X Vs)
Qn =

Initial drug amount x 100 ®)

Where, Q, represents the cumulative percent of TAZA released, C, is the receptor medium current concentration at

n—1
h sample, V; is the receptor medium volume, Vj is the volume of each sample removed for analysis, and Y C;

i=1

denotes the summed total of the previously measured concentrations. Q24h was determined for each formulation.

nt

Testing the Validity of the Elucidated Polynomial Models

In order to test the validity of the proposed statistical models for the whole EMD, 95% two-sided prediction intervals
(95% PIs) for the predicted values of the investigated responses were calculated. It is an objective and statistically
suitable method for model validity testing. The prediction interval (PI) is the range within which a single future response
for a specified combination of PVs/MixCs is supposed to lie. All prepared 14 combinations (C1-C14) were inspected to
find whether the actual values for their measured responses fall within the 95% PIs or not. Also percent deviation of
actual responses measured from predicted ones were calculated according to the following equation:*®

Yo — 100 x Yupredicted — Y,,actual

4
Yupredicted @

Development of Optimized Formulation

Optimization of TAZA-Cs was performed using the multi-response numerical optimization technique.*> Desirability
function based on the individual desirability (d,,) of each response (Y,,) was used as the basis of optimization in many
studies.””>% In this research an extra feature of this function was used which is different levels of importance for
responses to be optimized. A certain response (Q24h) was chosen to have higher importance than other responses as the
release of the optimized formulation was the most important criterion. Q24h was to be given an importance value of 3
and the other responses a value of one. Design expert software (V.12, Stat-Ease Inc., MN, USA) (DX) software offers
this by changing the importance given to each response from one to five based on the following formula:

D= (d"ds"...dy")%5 (5)
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where D is the desirability of the formulation ranging from zero to one, d,, is the individual desirability of each response
ranging from zero to one, m is the number of responses to be optimized, r; is the importance given to each response
ranging from one to five.

At first IOMD was navigated and an optimized formulation within this space (IOMD-OF) was found. After design
space expansion for enhancing the properties of IOMD-OF, another optimization process was performed to find the
optimized formulation of the whole expanded mixture design (EMD-OF).

Investigation of Morphological Characters of EMD-OF

The morphological characters of the EMD-OF were investigated by transmission electron microscope (TEM) (Jeol, Jem-
2100, Tokyo, Japan). EMD-OF was diluted with water then a drop of the diluted dispersion was placed on a copper grid
coated with carbon, negatively stained with 1% phosphotungstic acid (w/v) and left to dry in air for 5 minutes. The
stained sample was then placed into TEM for imaging. TEM was operated at 80 kv at room temperature and the
morphological characters EMD-OF were inspected at proper magniﬁcations.%

Statistical Analyses

Design expert software™ (V.12, Stat-Ease Inc., Minneapolis, MN, USA) was used for analysis of the MFD and
construction of the IOMD and its subsequent analysis and finding IOMD-OF. It was used for navigation of the expanded
design space as well as finding EMD-OF.

Results and Discussion

Preliminary Parameters Selection

Upon exploring the different factors and interactions affecting different responses PL-F68 and PVA were respectively
selected from the stabilizers and surfactants studied in the MFD as this would result in the maximized EE and
minimized PS.

IOMD Results and Analysis

Composition and characterization of formulations prepared according to the IOMD (C1-C10) are listed in Table 2.
Release profiles of TAZA from these trials and from TAZA suspension are shown in Figure 2. The chosen ranges for
MixCs studied (stabilizer and surfactant) led to a wide range of characterization results. EE ranged from 79.5% + 1.4 to
89.6% =+ 0.4, PS ranged from 202.9 nm £ 12.5 to 317.2 nm =+ 51.7, Q24h ranged from 51.9% + 2.8 to 62.5% =+ 0.9, PDI
ranged from 0.29 nm £ 0.02 to 0.50 £ 0.04 and ZP ranged from —31.9 mV + 0.6 to —50.7mV = 0.6. All the formulations
had a PDI of 0.5 or less indicating narrow size distribution.*” As for ZP which gives an indication about the physical
stability of the system, all the formulations carried negative charges. This is mainly due to the presence of ionized
carboxylic groups of GMO on their surfaces. It can also be due to the ionized water molecules surrounding the
cubosomes.*® ZP of all prepared formulations was more negative than —30 mv. It was reported that an absolute ZP
value more than 30 mV is sufficient for good repulsion and physical stability.**>° So, all the prepared Cs are considered
to have an acceptable stability against aggregations. Thus, optimization was based on selecting a formulation that
maximizes EE and Q24h and minimizes PS.

Optimization Based on IOMD

The measured values of the three responses; EE, PS and Q24h were individually analyzed. Reduced polynomial models
based on maximizing prediction R* were derived. EE, PS and Q24h were modeled with suitable prediction R of 0.8501,
0.9432 and 0.9028 respectively. Contour plots for the EE, PS and Q24h over the IOMD space are shown in Figure 3A-C.
Numerical optimization - giving higher importance of 3 to Q24h - based on these models was performed. This
optimization resulted in a formulation having the components of the previously performed trial C1. This formulation
(C1 = IOMD-OF) resulted in EE of 88.7%, PS of 206.5 nm and Q24h of 58.8% and desirability of 0.753. IOMD-OF is
shown in Figure 3D having the highest possible desirability.
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Figure 2 Release profiles of TAZA from trials (C| — C14) compared with TAZA release from suspension.
International Journal of Nanomedicine 2022:17 https: 1077

Dove:


https://www.dovepress.com
https://www.dovepress.com

Hegazy et al Dovepress

Design Space Expansion

This IOMD-OF had unsatisfactory Q24h, and here comes the importance of not using all experimentation trials to be done in the
main design. Expansion of design space was done in an attempt to increase Q24h. The direction of design expansion was dictated
by the two vertices, one at which maximum Q24h was found and the other showing maximum desirability in the IOMD (see
arrows in Figure 3C and D). These directions dictate an increment in the upper limits of A: GMO and B: PL-F68 and a reduction
in lower limit of C: PVA. These limits changes are shown in parentheses in Table 1. Expanded design space is shown in Figure 1
in which the DPs of the IOMD (C1-C10) and the extra added points (C11-C14) are clarified. The whole EMD with its 14 DPs
(C1-C14) was navigated to model each response individually. Composition and characterization of the extra added points (C11—
C14) are listed in Table 2. Release profiles of TAZA from these trials and from TAZA suspension are shown in Figure 2.
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Figure 3 Contour plots showing the changes in (A) Entrapment efficiency, (B) Particle size, (C) Drug percent released after 24h (Q24h) and (D) desirability over the |-optimal mixture
design space. Arrows represent regions of maximum: (C) Q24h and (D) desirability, # represents the selected optimized formulation based on this design (IOMD-OF).
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EMD Results and Analysis

EE was adequately modeled using reduced three-factor interaction model with prediction R* of 0.7342. PS and Q24h
responses could not be directly modeled. Box-Cox transformations were recommended by DX for these responses.

Box-Cox transformation was introduced by George Box and David Cox in 1964 to transform the studied data into
normal shape.”® Design expert software has the ability to suggest and conduct those transformations for some responses
when ordinary modeling is not adequate enough.'~* This transformation minimizes the natural log (In) of the residual sum
of squares by selecting a certain value for power transformation (A) to which all results of a response are raised. The
required transformations for the responses of PS and Q24h are shown in Figure 4. PS and Q24h were recommended to be
raised to the power of —1.62 and 2.24 respectively. These recommended transformations were applied leading to adequate
modeling of PS and Q24h with prediction R? of 0.9225 and 0.8145 respectively. Final model terms for each response and
their coefficient estimates appearing in the final equations derived from EMD analysis in addition to their p-values are
illustrated in Table 3. This table shows final models’ evaluations too. From this table it is clear that all measured responses
were significantly affected by the studied mixture components. Alpha was set at 0.05, and coefficients with p value <0.05
(shown in bold) are considered to significantly affect the respective response. As for model evaluation, all the derived
models showed relatively small relative mean square error (RMSE) and coefficient of variation percent (CV%). Model
adequacy was also verified by the high values of different calculated regression coefficients (R?); R?, Adjusted R? and
Prediction R?. Prediction R? is the most relevant regression coefficient in optimization studies. Prediction R? determines the
ability of the derived model to predict the responses’ values for a new formula within the design space even if its mixture
combination has not been investigated in the design. Prediction R? values for the three studied responses were 0.7342,
0.9225 and 0.8145 for EE, PS and Q24h respectively. These values were high enough and were in good accordance with the
Adjusted R? values of 0.7873, 0.9255 and 0.8410 respectively.

Testing the Validity of the Developed Polynomial Models

In order to check the validity of results obtained from the EMD, the actual results of the three investigated responses for
each of the 14 TAZA-Cs were compared with the predicted values developed by the software. Comparison took place via
percentage deviation calculation. Maximum % deviation for EE, PS and Q24h were 3.8%, 7.3% and 6.3% respectively.

A Box-Cox Plot for Power Transforms of PS B Box-Cox Plot for Power Transforms of Q24h
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Figure 4 Box-Cox plot for data transformation showing In residual sum of squares (In residual SS) without transformation and after recommended transformation for the
responses: (A) Particle size, (B) Drug percent released after 24h.
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Table 3 Coefficient Estimates for Different Model Terms — Appearing in the Final Equations from the Expanded Mixture Design — for
Each Response and Their Significance, Together with Models’ Types and Evaluation

Terms EE** PS ™62 Q24h> %4

Coefficient p-value Coefficient p-value Coefficient p-value
A* 834 0.0146 0.00017 < 0.0001 4591.5 < 0.0001
B* 82.2 0.0146 0.0001 | < 0.0001 13,080.2 < 0.0001
C* 87.1 0.0146 0.00018 < 0.0001 6880.6 < 0.0001
AC 1.7 0.1160 11,383.8 0.0026
BC —0.00021 < 0.0001
ABC —202.0 0.0002
Model type Reduced special cubic Reduced quadratic Reduced quadratic

Model evaluation

RMSE 1.76 8.04E-06 781.29
C.V. % 2.1 5.52 8.8l
R? 0.8528 0.9427 0.8777
Adjusted R? 0.7873 0.9255 0.841
Prediction R? 0.7342 0.9225 0.8145

Notes: *Studied mixture components amounts: A: Glyceryl monooleate (GMO) (mg); B: Pluronic acid F68 (PL-F68) (mg); C: Polyvinyl alcohol (PVA) (mg). **Measured
Responses. p-values < 0.05 indicating significant coefficients are shown in bold.

Abbreviations: EE, entrapment efficiency; PS, particle size; Q24h, drug percent released after 24 hours; ZP, zeta potential; RMSE, relative mean square error; CV%,
coefficient of variation percent.

All the results of the three responses for all formulations were found to fall within 95% PI. This ensures the validity and
reliability of the derived models over the EMD space.

Effect of MixCs Used on the Studied Responses

For illustrating the effects of the studied MixCs on each of the studied responses, contour plots and Piepel’s trace plots were
used. In contour plots, the response under study is shown as lines of equal value. These lines show the variation of this
response all over the design space. In Piepel’s trace plots, the reference blend of values (1/3, 1/3, 1/3) for the three MixCs is the
main point in the plot. A line is drawn for each MixC. The X axis for each line represents the deviation of this MixC from the
reference blend in L-pseudo values. As each MixC has L-pseudo values ranging from 0 to 1, its deviation from reference blend
ranges from —1/3 to 2/3. Tracing each MixC is moving with this MixC from its base (L-pseudo value = 0 and deviation =—1/3)
passing through reference blend (L-pseudo value = 1/3 and deviation = 0) till we reach its peak (L-pseudo value = 1 and
deviation = 2/3). Upon tracing the increment in each MixC, the values of the two other MixCs decrease simultaneously but
keeping their ratio the same as in their reference blend (1:1). The response under study is shown on the Y axis.

EE and DL

EE is a valuable parameter in the assessment of nano-drug delivery systems. It shows the capability of the
prepared nano-system to carry the drug. EE represents the portion of drug incorporated into the nano-carrier from
the initial amount used. For accurate EE determination, the unentrapped drug needs to be separated from the
nano-carrier containing the entrapped drug.’® The higher the EE the more drug delivered into the skin. This can
be beneficial in the treatment of some topical diseases such as psoriasis which need high levels of drug into the
skin.>* Also, high EE means less irritation to the skin surface that may occur when there is a direct contact with
the drug.>
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Figure 5 Contour plots and Piepel’s trace plots showing the changes in Entrapment efficiency (A and B), Particle size (C and D), Drug percent released after 24h (E and F)

over the expanded mixture design space.
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From Figure SA and B illustrating Y, (EE), it can be seen that for all the studied components, the reference blend showed
nearly the least entrapment efficiency, with increasing the EE upon decreasing or increasing any of the studied MixCs. Before the
reference blend, increasing GMO leads to an increase in the hydrophobicity of cubosomes and accordingly production of smaller
PS. This may result in decreasing EE with increasing GMO before reference blend. As for reduction in EE with increasing of
PVA and PL-F68 before the reference blend, this may be due to increasing solubility of TAZA in the aqueous phase. After the
reference blend point, the increase of any component led to increasing EE. Increasing EE with increasing GMO amount can be
attributed to the lipophilic nature of TAZA so it tends to be more entrapped when GMO increases as it became strongly attracted
to the hydrophobic domain of the dispersion. Increasing EE with increasing either PL-F68 or PVA may be attributed to forming
a coat around the formed cubosomes to stabilize them. This coat might contribute to the increased EE by retaining more drug with
higher amounts of PL-F68 or PVA.***” DL for all the studied formulations ranged from 1 to 1.2%.

PS
PS is a crucial parameter to be investigated for nano-carriers, as it has an influence on EE, drug release profiles, stability,
mucoadhesion and cellular uptake of nano-systems.>®>°

The response of PS is illustrated in Figure 5C and D. As for GMO, the higher the amount of GMO used the lower the
PS. This may be due to increasing the hydrophobic domain of the cubosomal dispersion and therefore the surface free
energy decreased leading to smaller PS.° This is in contrary with Younes et al. and El-Deeb et al. Results of both studies
stated that increasing GMO led to increase in PS of Sertaconazole and Brimonidine tartrate cubosomes respectively. The
findings of these studies could be because of the increased dispersion viscosity which might have hindered formation of
smaller cubosomes.'>'® PS showed a parabolic increase with increasing amount of PL-F68. This may be attributed to the
intercalation of the increased amounts of PL-F68 in between the cubosomal bilayers. These findings are in agreement
with the results reported by El-Deeb et al. It was found that high PL-F68 amounts in respect to GMO amounts caused
a significant increase in particle size of Brimonidine tartrate cubosomes. This was justified that the triblock copolymer
molecules of the poloxamer were accumulated into the bilayer causing its expansion and PS enlargement.'> PS showed
a parabolic increase with increasing amount of PVA with maximum PS at reference blend then PS decreases with further
increment in the amount of PVA. The increase in PS before reaching the reference blend may be attributed to PVA
adsorption on cubosomal surface. Also, it can be due to the elevation of aqueous phase viscosity that may hinder the
dispersion and subdivision of droplets.’® The reduction of PS with increasing PVA after reference blend may be
explained on the basis that the PVA as a surfactant can minimize particles coalescence leading to smaller cubosomes.
This explanation was also adopted by Esposito et al. They reported that increasing the PVA concentration led to PS
reduction of topical cubosomes due to minimizing particles coalescence.’’

Q24h

The in vitro drug release studies reflect the quality of nano-carriers. It can also predict the nano-carrier in vivo behaviour
and performance.®*®* It was reported that nano-carriers intended for topical delivery may be embedded into the stratum
corneum and drugs are supposed to be released and diffuse through the remaining deep skin layers.** This shows how
much the evaluation and determination of drug percent released is crucial. Accordingly, Q24h was selected to be the most
important response incorporated into the design.

The response of Q24h is illustrated in Figure SE and F. Generally, the increase of GMO or PVA amounts
resulted in a decrease in Q24h. On the contrary the increase in PL-F68 led to an increase in Q24h. Because TAZA
is a highly lipophilic drug (log P=5.96), it prefers to be retained into the lipophilic cubosomes rather than
diffusing into aqueous release media. GMO was reported to cause release retardation for lipophilic drugs.®> So,
increasing GMO led to a logic decrease in Q24h due to the elevation of hydrophobic portion of cubosomal
dispersion. These findings were similar to those reported by Elgindy et al. as amounts of progesterone released
after 24 hours from progesterone-loaded cubosomes decreased with increasing GMO amount.*® Similar results
were mentioned by Sherif et al. where the percentage released of alpha lipoic acid from cubosomes decreased by
increasing GMO amounts.®® The increase in Q24h with increasing PL-F68 may be due to increasing TAZA
solubility in the release media with increasing PL-F68 proportion. This may help the drug diffusion through the
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medium and increase Q24h. This finding is contrary to Morsi et al., who found that elevated poloxamer-407
concentration led to decrease in percentage silver sulfadiazine released from the cubosomes. The explanation for
this is that at low poloxamer concentrations, the polymer molecules adhere to the cubosomal surface and fewer
are incorporated into its internal structure. This led to formation of cubosomes with double diamond (cD) patterns.
But, at higher poloxamer concentrations, it participates in the internal cubic matrix leading to a primitive (cP)
structure which is characterized by more restricted drug release than ¢D patterns.®” PVA, as previously mentioned,
can make a coat surrounding the cubosomes. This may result in increasing the distance through which the drug
diffuses. Therefore, at higher PVA amounts, fewer drug amounts are released. This is in agreement with the
results found by Aboud et al. where the increase in PVA concentration decreased Sildenafil release rates from the
prepared cubosomes.’®

Optimization Based on EMD

Numerical optimization - giving higher importance of 3 to Q24h - based on the models derived for EMD was performed.
This optimization resulted in a formulation having the components of the previously performed DP C13. This formula-
tion (C13 = EMD-OF) resulted in EE of 82.1£1.1%, PS of 273.0+£11.2 nm and Q24h of 68.8+6.6% and desirability of
0.650. EMD-OF is shown in Figure 1.

Investigation of Morphological Characters of EMD-OF
Morphological examination of stained EMD-OF using TEM - Figure 6 - showed the irregular angular cubic shapes of the
prepared optimized formulation. PS was also in harmony with those measured by zetasizer.

Figure 6 Transmission electron microscope morphological examination for stained expanded mixture design optimized formulation showing its cubic shape.
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Conclusion

Statistical sequential experimentation was adopted successfully in this research for optimizing Tazarotene cubosomes.
This was done through three successive steps. First step: A preliminary mixed factorial design for stabilizer and
surfactant choice. Second step: Construction of the main experimental design (I-optimal mixture design) (IOMD) in
which amounts of chosen stabilizer and chosen surfactant were simultaneously changed with amount of lipid used.
Optimization of a formulation with predetermined characters of different levels of importance was then performed over
the IOMD. As this optimization did not result in a formulation with satisfying in-vitro release, we moved to the third
step. Third step: Novel design space expansion was implemented. This design space expansion allows changing ranges of
components to be used. Navigating the new expanded mixture design space led to finding a new optimized formulation
with satisfying properties. Thus this sequence of work enabled re-optimization without re-building a new design from
scratch. So, this epitome is expected to have promising future applications in various pharmaceutical formulations
optimization.
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