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Purpose: The role of RNA N6-methyladenosine (m6A) modification in the progression of multiple tumours and the tumour
microenvironment (TME) has been progressively demonstrated and promises a new direction for tumour therapy. However, there
have been no reports on systematic analyses of RNA m6A modification in TME in non-small cell lung cancer (NSCLC).
Patients and Methods: In this study, we used unsupervised cluster analysis to identify three m6A modification patterns of
28 m6A regulators and three m6A gene signature subgroups of commonly differentially expressed genes (co-DEGs) in the
three m6A modification patterns. Quantifying these subtypes using the ssGSEA and ESTIMATE algorithms to characterise the tumour
immune microenvironment (TIME) in NSCLC. Based on the principal component analysis (PCA), we used co-DEGs to
construct m6A scores to analyse the characteristics of m6A modifications in individual patients and assessed the practical clinical
utility of m6A scores using a nomogram for survival prediction.
Results: A total of 28 m6A regulators in 1210 NSCLC samples were mainly enriched in RNA modification and metabolic biological
processes. The three following m6A modification patterns were identified based on the role of the 28 m6A regulators in TME: immune
inflammation, immune evasion and immune desert. The m6A scores calculated based on co-DEGs in these modification patterns were
significantly positively correlated with immune infiltration and significantly negatively correlated with tumour mutational burden
(TMB). Survival was significantly better in the high-m6A-score group than in the low-m6A-score group, and the m6A score could be
used as an independent favourable prognostic factor. In addition, assessment of both immune checkpoint inhibitors (ICIs) and
immunophenoscore (IPS) revealed a better immunotherapeutic effect in the high-m6A-score group.
Conclusion: The modification characteristics of 28 m6A regulators in the TIME of NSCLC were analysed from a comprehensive to
an individual basis, which may facilitate the development of more effective clinical immunotherapeutic strategies.
Keywords: immunophenotype, immunotherapy, m6A modification, non-small cell lung cancer, tumour microenvironment

Introduction
RNA modification is an important part of epigenetics and plays an important role in regulating cellular processes in addition to
gene and protein modification.1 To date, approximately 160 modifications have been identified in messenger RNAs (mRNAs),
long non-coding RNAs (lncRNAs) and microRNAs (miRNAs),2 including N1-methyladenosine (m1A), N7-methyladenosine
(m7A), 5-methylcytosine (m5A) and N6-methyladenosine (m6A).3,4 Identified for the first time in the 1970s,5 m6A is the
predominant and most abundant form of internal modification in mRNAs and lncRNAs in many eukaryotes, which accounts for
80% of RNA methylation modifications.6,7 It has been demonstrated that methylation modifications in the 5ʹUTR region of
mRNA play an important role in mRNA splicing, editing, stability, degradation and polyadenylation in most eukaryotes,8
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whereas methylation modifications in the 3ʹUTR region contribute to mRNA translocation outside the nucleus, translation
initiation and maintenance of mRNA structural stability with polyA-binding proteins.9,10 M6A methylation modifications have
been reported to be reversible,11 involving a combination of methylation transferases (writers), demethylases (erasers) and
methylated reading proteins (readers). The m6A writers include YMETTL3, METTL14, METTL5, RBM15, RBM15B, VIRMA,
WTAP, ZC3H13, CBLL1 and ZCCHC4. Their primary role is to form a complex that catalyses them6Amodification of adenosine
on mRNA. The m6A erasers, including FTO and ALKHB5, mainly serve to demethylate bases that have
undergone m6A modification. The primary role of the m6A readers, including YTHDF1, YTHDF2, YTHDF3, YTHDC1,
YTHDC2, HNRNPA2B1, HNRNPC, FMR1, EIF3A, IGF2BP1, IGF2BP2, IGF2BP3, ELAVL1, G3BP1, G3BP2 and PRRC2A,
is to enhance the translation and reduce the abundance of target RNAs.12,13 Increasing evidence suggests that m6Amodifications
are involved in important biological processes and are dynamically regulated in several physiological and pathological processes,
such as malignancy progression,14,15 abnormal immune regulation16–18 and cardiovascular diseases.19,20 Therefore,
a comprehensive understanding of the expression perturbations and genetic variation of potential m6A regulators in the context
of cancer heterogeneity may facilitate the identification of therapeutic targets based on RNA methylation.

Lung cancer is one of the five most common cancers in the world and has the highest mortality rate of all cancers,
with more than 2 million new cases and more than 1.76 million deaths worldwide each year.21 NSCLC and small cell
lung cancer are two subtypes of lung cancer, and NSCLC accounts for approximately 85% of new cases each year.22

Surgical resection remains the primary treatment for early-stage NSCLC. Screening with low-dose spiral computed
tomography (CT) has revealed significant results in the early diagnosis of lung cancer;23 however, the 5-year survival
rates remain suboptimal owing to high rates of recurrence and metastasis. In addition to traditional surgical therapy,
radiotherapy, chemotherapy, mutation gene-targeting therapy and immunotherapy by targeting ICIs such as cytotoxic
T lymphocyte-associated antigen-4 (CTLA-4), programmed death receptor-1 (PD-1) and programmed death receptor-1
ligand (PD-L1) have greatly improved the long-term survival of patients with NSCLC and have achieved promising
results in patients with advanced metastases.24–26 Immunotherapy relies on the immune function of the body to kill
tumour cells by activating the immune system. The TME is a complex integrated system mainly composed of tumour
cells, stromal cells, inflammatory cells, vascular system and extracellular matrix components, which can be divided into
TIME dominated by immune cells and non-TIME dominated by fibroblasts. Studies have demonstrated that a suppressive

Graphical Abstract

https://doi.org/10.2147/JIR.S356841

DovePress

Journal of Inflammation Research 2022:151970

Fan et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


microenvironment or a lack of antigen stimulation/co-stimulation of immune cells, especially T cells, may contribute to
tumour growth and immune escape within TME.27–29 In addition, according to the composition of different TIME, it can
be divided into “immune inflammation”, “immune evasion” and “immune desert”.30–32 Therefore, assessing immune
infiltration based on the characteristics of TME is key to predicting responses to existing ICIs and developing new
immunotherapeutic strategies.

Several studies have demonstrated a strong correlation between TME and m6A modifications, especially in immune
cell infiltration.33,34 ALKBH5 modulates the therapeutic response of anti-PD-1 by regulating lactate and inhibiting the
accumulation of immune cells in TIME, thereby reducing the outcome of immunotherapy in melanoma, colorectal cancer
and potentially other cancers.35 FTO enhances protein expression by regulating the m6A modification of JUNB and
CEBPB genes, thereby promoting tumour glycolysis and inhibiting T cell effects.36 Similarly, the role
of m6A modifications in TME has been successively reported in lung cancer. In NSCLC, circNDUFB2 is involved in
the degradation of IGF2BPs, activation of anti-tumour immunity and cellular immune responses by regulating protein
ubiquitination and degradation.37 NSCLC tissues with high expression of YTHDF1 and YTHDF2 had significantly higher
lymphocyte subpopulations in the stroma, and patients had a better prognosis.38 In addition, Li et al developed
an m6A scoring scheme, which positively correlated with PD-L1 expression and reflected the role of TME in the
prognosis of patients with lung adenocarcinoma.39

However, a few studies have reported on the role of m6A modifications in the TME of NSCLC. In this study, we
comprehensively assessed m6A modification patterns in NSCLC and correlated the characteristics of immune cell
infiltration in TME. Using an unsupervised clustering approach, we identified three different m6A modification patterns
and defined m6A modification pattern-associated co-DEGs. We found that different m6A modification patterns were
accompanied by different immune cell infiltration characteristics. In addition, we constructed an m6A scoring scheme to
quantify each m6A modification and predict the prognosis of patients with NSCLC based on this scheme.

Materials and Methods
Acquisition and Collation of Open Datasets
We obtained a total of 1244 NSCLC samples with gene transcription and clinical information from The Cancer Genome
Atlas (TCGA) (tumour = 1037; normal = 108) (https://portal.gdc.cancer.gov/) and Gene Expression Omnibus (GEO)
(tumour = 197; GSE37745) (https://www.ncbi.nlm.nih.gov/geo/) databases. The fragments per kilobase of transcript
per million mapped reads (FPKM) format of RNA-sequencing data in TCGA database was converted to the transcripts
per kilobase million (TPM) format using the “limma” package, and data in the GSE37745 dataset of the GEO microarray
sequencing platform (Affymetrix HG-U133 plus 2.0) were normalised using the “affy” and “simpleaffy” packages.
Subsequently, the “SVA” R package was used to eliminate batch effects and merge them into a gene expression matrix
(TCGA-GEO, tumour = 1210) based on TCGA and GEO datasets. Furthermore, clinical data from TCGA and GEO with
missing follow-up time and survival time less than 30 days were removed to exclude interventions for non-tumorigenic
factors (clinical TGCA-GEO = 1196). Genomic mutation data from TCGA including somatic mutations and copy
number variations (CNVs) were downloaded from the UCSC Xena database (https://xena.ucsc.edu/). The “Rcircos”
package was used to visualise the CNVs of 28 m6A regulators on human chromosomes. The “maftools” package was
used to calculate the tumour mutational burden (TMB) in NSCLC samples, including non-synonymous mutations such as
frameshift, inflame, missense, nonsense and splice site mutations. Survival analysis was performed using both Cox and
Kaplan–Meier (KM) methods, and a P-value < 0.05 was considered significant (Log rank test). Finally, the “igraph”
R package was used to visualise 28 machine-modulated prognostic interaction networks.

Unsupervised Clustering for 28 m6A Regulators
Unsupervised cluster analysis was performed based on the expression of 28 m6A regulators using the “ConsenseClusterPlus”
package to obtain different m6A modification patterns and categorise them into different modification subtypes. Clustering
algorithms—a subset of unsupervised pattern recognition or machine-learning algorithms—identify patterns in a dataset. In
genomic studies, this is often described as identifying “clusters” of genes with similar expression patterns. Briefly,
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unsupervised pattern recognition (clustering) explicitly identifies the underlying patterns inherent in a dataset.40,41 In addition,
the number of clusters and their stability were determined using the consensus clustering algorithm. The conditions for cluster
screening were as follows: 1) strong association of intra-typical samples and weak association of inter-typical samples and 2)
the sample amount of each topology should not be too small.

Oncological Characteristics of Three m6A Modification Patterns
The Hallmarker consensus pathway gene set downloaded from MSigDB (http://www.gsea-msigdb.org/gsea/login.jsp)
was subjected to gene set variation analysis (GSVA). GSVA is a non-parametric, unsupervised algorithm that evaluates
the enrichment of different metabolic pathways between samples by converting the expression matrix of genes between
samples into the expression matrix of gene sets between samples.42 GSVAwas performed using the “GSVA” package to
assess the enrichment of relevant pathways in three m6A modification patterns.

Stromal cells are thought to play an important role in tumour growth, disease progression and drug resistance.43

Estimation of stromal and immune cells in malignant tumour tissues using expression data (ESTIMATE) was performed
using transcriptional profiles of cancer samples to evaluate the number of tumour cells, infiltrating immune cell and
stromal cells, and the “estimateScore” function was used to calculate the tumour purity, immune cell score and stromal
cell score of all samples. In addition, the expression levels of PD-L1 (CD274) in three modification patterns were
calculated to determine the effects of immunotherapy.

Single-sample gene set enrichment analysis (ssGSEA) was used to assess the gene sets of immune cells and
functions in three m6A modification patterns using the “GSVA” package. The rank value of each gene was calculated
from each immune cell or functional expression profile, and the bio-similarity of infiltrating immune cells was
estimated using multidimensional scaling and the Gaussian fitting model. A P-value < 0.05 was considered statistically
significant.

Identification of Differentially Expressed Genes (DEGs) Among
Three m6A Modification Patterns
To identify DEGs associated with m6A modifications in three m6A modification patterns, we assessed the DEGs of NSCLC
samples in different patterns using the “limma” R package. A P-value < 0.001 was considered screening condition for DEGs.
Venn diagrams were drawn using the “VennDiagram” R package to visualise commonly differentially expressed genes (co-
DEGs) in three m6A modification patterns. Metascape (http://metascape.org/gp/index.html) was used to visualise the clusters
of these co-DEGs with similar functions, reveal intra- and inter-cluster correlations and annotate gene ontology (GO).44 The
co-DEGs were subjected to unsupervised clustering analysis to obtain different transcriptional phenotypes, and the “limma”
package was used to analyse the differential expression of 28 m6A regulators in these phenotypes. Finally, survival differences
between these phenotypes were compared using KM analysis (Log rank test, P-value < 0.05).

Construction of the m6A Scoring Program
In order to analysis the m6A modification characteristics of individual NSCLC patients, we constructed an m6A scoring
program to assess the characteristics of m6A modification in individual patients. Univariate Cox prognostic analysis was
performed on the co-DEGs of three m6A modification patterns to identify genes with significant prognostic impact for
further analysis. Subsequently, we performed PCA and extracted principal components 1 and 2 as signature scores. PCA
offered the advantage of focussing the score on the set with the largest number of well-correlated (or anticorrelated)
genes while down-weighting contributions from genes that did not correlate with other members of the set.45 Eventually,
we adopted a formula similar to that reported in previous studies to define the m6A score:46–48

m6A score ¼ ∑ PC1i þ PC2ið Þ

In the formula, i is the expression of co-DEGs in three m6A modification patterns.
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Prognostic Analysis Based on m6A Scoring
To explore the correlation between m6A scoring and prognosis of patients with NSCLC, we used the “survminer”
package to classify m6A scores into the high- (n = 217) and low-score (n = 940) groups and plot KM survival curves
(Log rank test, P-value < 0.05). Clinical parameters (age, sex and stage) and m6A scoring were included in univariate and
multivariate Cox analyses, and a P-value < 0.05 satisfied the condition of independent prognosis. In addition, the “rms”
R package was used to build a nomogram scoring system. This system develops scoring criteria based on the magnitude
of the regression coefficients of all independent variables and gives each independent variable a score for each value
considered. A total score can be calculated for each patient, and subsequently, the probability of occurrence of outcomes
for each patient is calculated using a conversion function between the scores and the probability of occurrence of
outcomes.49 Finally, calibration curves were plotted to assess the accuracy of the model in predicting 1-, 3- and 5-year
survival rates. If the r model prediction curve coincided with the reference line, the predicted value was considered equal
to the actual value; if the model prediction curve was above the reference line, the predicted value was greater than the
actual value; if the model prediction curve was below the reference line, the predicted value was lower than the actual
value.

Statistical Analysis
Statistical analyses were performed using the R software, version 4.1.1. For quantitative data in the article data analysis,
statistical significance of normally distributed variables was estimated using the Student’s t-test, and non-normally
distributed variables were analysed using the Wilcoxon rank-sum test. The Log rank test was used to compare data
between two groups, and the Kruskal–Wallis test was performed to compare data between more than two groups. The
“survival” package was used to categorise samples into groups, and the “survminer” package was used for KM survival
analysis and Cox proportional risk model construction. A P-value < 0.05 was considered statistically significant, and the
Benjamini–Hochberg method was used to control the false discovery rate (FDR) while testing multiple hypotheses.

Results
Landscape of Genetic Variation of m6A Regulators in NSCLC
We searched the PubMed online website to screen for regulatory genes of m6A RNA methylation and eventually found
28 m6A regulators that have been demonstrated to be closely associated with cancer (Table 1). These regulators included 10
“writers” (CBLL1, METTL14, METTL3, METTL5, RBM15, RBM15B, VIRMA, WTAP, ZCCHC4 and ZC3H13), 17 “readers”
(EIF3A, G3BP1, ELAVL1, FMR1, HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3, LRPPRC, PRRC2A, YTHDC1,
YTHDC2, YTHDF1, YTHDF2 and YTHDF3) and 2 “erasers” (ALKBH5 and FTO). These m6A regulators play a critical role in
the biological cell cycle, recognising, removing and adding m6A modification sites and affecting important biological
processes such as RNA splicing, RNA translation and RNA degradation (Figure 1A). Metascape analysis of the
28 m6A regulators revealed that they performed an essential function in the modification and metabolism of RNA
(Figure 1A; Supplementary Figure 1A). Furthermore, we analysed the incidence of somatic mutations and CNVs of the
28 m6A regulators in NSCLC. Of the 1052 samples, 275 (26.14%) had genetic alterations in m6A regulators, mainly in the
form of frameshift deletion, nonsense and missense mutations. Among these genes, ZC3H13 had the highest mutation
frequency, whereas METTL3, METTL5 and VIRMA did not harbour any mutations (Figure 1B). In addition, CNVs were
prevalent in the 28 m6A regulators. Regulatory genes predominantly had amplified copy numbers, with the copy number
amplification being most frequent in IGF2BP2, whereas YTHDF2, ELAVL1, ZC3H13, METTL14, RBM15, YTHDC2,
METTL16 and RBM15B had copy number deletions (Figure 1C). The “Rcircos” package was used to mark the location of
CNVs in the 28 m6A regulators on chromosomes (Figure 1D). Furthermore, a comparison of the expression of the
28 m6A regulatory genes in NSCLC and normal tissues indicated that CBLL1, METTL3, RBM15, VIRMA, EIF3A,
ELAVL1, HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3, LRPPRC, PRRC2A, RBMX, YTHDF1 and YTHDF2
were significantly upregulated and METTL14, METTL16, ZC3H13, ELAVL1 and FTO were significantly downregulated in
NSCLC (Figure 1E). This finding was similar to the CNV results, implying that genetic variation may affect the expression
of m6A regulators in patients with NSCLC. Based on the expression of these 28 m6A regulatory genes, NSCLC samples could
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be distinguished from normal samples in TCGA dataset using PCA (Figure 1F). It was found that the 28 m6A regulatory genes
were predominantly positively co-expressed in NSCLC, with the strongest positive correlation observed between YTHDF3
and VIRMA, followed by YTHDC2 and RBM15, and the strongest negative correlation observed betweenWTAP and RBM15B,
FTO and RBM15, and IGF2BP2 and ZCCHC4 (Supplementary Figure 1B). These results revealed that the genomic and
transcriptomic landscapes of m6A regulators were significantly different and associated between NSCLC and normal samples.
Therefore, changes in the expression of m6A regulators and genetic variation play a crucial role in regulating the development
and progression of NSCLC.

Identification of m6A Methylation Modification Patterns Mediated by 28 the
Regulators
A majority of the 28 m6A regulators were identified as prognostic risk factors based on Cox survival analysis, and Cox and
KM survival analyses revealed that G3BP1, HNRNPC, IGF2BP1, METTL3, METTL5 and VIRMA were significantly
associated with prognosis (Table 2). Furthermore, the interaction network of m6A regulatory genes described
a comprehensive landscape of gene interactions, gene connectivity and their prognostic significance in NSCLC
(Figure 2A). A significant correlation was observed not only among m6A regulators of the same functional class but also
among regulators of different classes. In addition, we found a significantly negative prognostic correlation between IGF2BP2
and ZCCHC4, which is consistent with the result in Supplementary Figure 1B; however, other regulatory genes exhibited
a significantly positive correlation with each other. We speculated that such interactions may play a key role in the formation
of different m6A modification patterns and may be associated with the pathogenesis and progression of cancer.

Table 1 The Descriptions of 28 m6A Regulators

ID Description Category

METTL3 Methyltransferase like 3 Writer
METTL14 Methyltransferase like 14 Writer

METTL5 Methyltransferase like 5 Writer

WTAP WT1 associated protein Writer
VIRMA Vir like m6A methyltransferase associated Writer

RBM15 RNA binding motif protein 15 Writer

RBM15B RNA binding motif protein 15B Writer
ZC3H13 Zinc finger CCCH-type containing 13 Writer

CBLL1 Cbl proto-oncogene like 1 Writer
ZCCHC4 Zinc finger CCHC-type containing 4 Writer

FTO FTO alpha-ketoglutarate dependent dioxygenase Eraser

ALKBH5 AlkB homolog 5, RNA demethylase Eraser
YTHDF1 YTH N6-methyladenosine RNA binding protein 1 Reader

YTHDF2 YTH N6-methyladenosine RNA binding protein 2 Reader

YTHDF3 YTH N6-methyladenosine RNA binding protein 3 Reader
YTHDC1 YTH domain containing 1 Reader

YTHDC2 YTH domain containing 2 Reader

HNRNPA2B1 Heterogeneous nuclear ribonucleoprotein A2/B1 Reader
HNRNPC Heterogeneous nuclear ribonucleoprotein C Reader

FMR1 FMRP translational regulator 1 Reader

EIF3A Eukaryotic translation initiation factor 3 subunit A Reader
IGF2BP1 Insulin like growth factor 2 mRNA binding protein 1 Reader

IGF2BP2 Insulin like growth factor 2 mRNA binding protein 2 Reader

IGF2BP3 Insulin like growth factor 2 mRNA binding protein 3 Reader
ELAVL1 ELAV like RNA binding protein 1 Reader

G3BP1 G3BP stress granule assembly factor 1 Reader

G3BP2 G3BP stress granule assembly factor 2 Reader
PRRC2A Proline rich coiled-coil 2A Reader
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Figure 1 Gene alteration characteristics of 28 m6A regulators in NSCLC. (A) Metascape enrichment networks visualize functionally similar clusters and reveal intra- and
inter-cluster correlations. Each color corresponds to a function. (B) Gene alterations in the m6A regulator were present in 263 (25%) of 1052 NSCLC patients. The genes
on the left are the 28 regulators, the numbers on the right indicate the frequency of mutations in each regulator, the type of mutation is shown below, and each column in
the middle represents each patient. (C) CNV mutation frequencies for 28 m6A regulators in NSCLC. Red represents deletion frequencies and blue represents amplification
frequencies. (D) Position of 28 m6A regulators of CNV alteration on chromosomes. (E) Differential expression of 28 m6A regulators between normal and NSCLC samples
in the TCGA database. (F) PCA of 28 m6A regulators in TCGA dataset can distinguish tumour and normal samples. **p value < 0.01; ***p value < 0.001.
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Furthermore, we used consensus clustering analysis to stratify samples with qualitatively different m6A modification
patterns based on the expression of the 28 m6A regulators. Three different modification patterns were eventually
identified using unsupervised clustering for m6ACluster-A (n = 354), m6ACluster-B (n = 581) and m6ACluster-C (n =
275) (Figure 2B and C; Supplementary Figure 2A). The heatmap of the distribution of clinicopathological factors and the
three modification patterns of the 28 m6A regulators indicated that m6ACluster-B samples exhibited low expression in
NSCLC, whereas m6ACluster-A and m6ACluster-C exhibited high expression. Of these genes, IGF2BP2 and IGF2BP3
were significantly upregulated in the m6ACluster-A and m6ACluster-C modification patterns and downregulated in
the m6ACluster-B modification pattern. Moreover, unlike other regulatory genes, IGF2BP1 was downregulated
in m6ACluster-A (Figure 2D). PCA revealed significant differences among the transcriptomes of different modification
patterns (Figure 2E). In addition, survival analysis suggested that m6ACluster-B had the best prognosis,
whereas m6ACluster-A and m6ACluster-C were associated with the worst prognosis (Figure 2F). This finding implied
that the pattern of highly expressed m6A regulators in NSCLC may be associated with a poor prognosis.

Characterisation of the m6A Modification Patterns Based on Distinct Immune
Landscapes
To explore the biological behaviour of the three m6A modification patterns, we performed GSVA on the Hallmarker pathway
gene sets. The results revealed that the m6ACluster-B modification pattern was significantly enriched in immune activation

Table 2 Cox and KM Survival Analysis of 28 m6A Regulators in NSCLC

Method Cox Survival Analysis KM Survival Analysis

ID HR HR.95L HR.95H P-value Mean P-value

ALKBH5 1.0429 0.8702 1.2500 0.6491 6.2562 0.0365

CBLL1 1.0088 0.8567 1.1879 0.9162 7.2562 0.0222
EIF3A 1.1009 0.9573 1.2660 0.1775 8.2562 0.0301

ELAVL1 1.0702 0.8944 1.2806 0.4587 9.2562 0.0672

FMR1 0.8835 0.7582 1.0297 0.1128 10.2562 0.0030
FTO 0.9897 0.8421 1.1632 0.8999 11.2562 0.0612

G3BP1 1.2968 1.0945 1.5364 0.0027* 12.2562 0.0000*

G3BP2 1.0393 0.9024 1.1971 0.5928 13.2562 0.0370
HNRNPA2B1 1.1469 0.9506 1.3837 0.1525 14.2562 0.0167

HNRNPC 1.2755 1.0344 1.5728 0.0228* 15.2562 0.0011*

IGF2BP1 1.0955 1.0373 1.1569 0.0011* 16.2562 0.0004*
IGF2BP2 1.0396 0.9889 1.0928 0.1276 17.2562 0.0066

IGF2BP3 1.0415 0.9858 1.1004 0.1472 18.2562 0.0134

METTL14 1.0083 0.8262 1.2306 0.9350 19.2562 0.1193
METTL3 0.8374 0.7248 0.9674 0.0160* 20.2562 0.0025*

METTL5 1.2560 1.0711 1.4728 0.0050* 21.2562 0.0001*

PRRC2A 1.1115 0.9763 1.2654 0.1103 22.2562 0.0897
RBM15 1.2124 0.9952 1.4771 0.0558 23.2562 0.0099

RBM15B 1.1103 0.9228 1.3359 0.2677 24.2562 0.1289

VIRMA 1.2220 1.0352 1.4426 0.0178 25.2562 0.0021
WTAP 1.1297 0.9545 1.3371 0.1562 26.2562 0.0151

YTHDC1 0.9376 0.7730 1.1372 0.5127 27.2562 0.0570

YTHDC2 0.9470 0.8018 1.1186 0.5216 28.2562 0.2000
YTHDF1 0.9522 0.7990 1.1346 0.5836 29.2562 0.0914

YTHDF2 0.9672 0.7879 1.1873 0.7500 30.2562 0.1277
YTHDF3 1.1238 0.9698 1.3023 0.1207 31.2562 0.0156

ZC3H13 0.9753 0.8390 1.1337 0.7446 32.2562 0.0595

ZCCHC4 0.9980 0.8279 1.2031 0.9836 33.2562 0.2385

Note: *Both Cox and KM analysis have survival significance.
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pathways such as interferon α/γ response, IL2/IL6 signalling and allograft rejection and stromal signalling pathways such as
epithelial–mesenchymal transition (EMT), transforming growth factor beta (TGF-β) and angiogenesis. The m6ACluster-C
modification pattern was mainly enriched in oncogenic pathways such as the P53 pathway, PI3K–AKT–MTOR signalling and
MYC targeting and in genetic stability processes such as DNA repair. Furthermore, we found that some pathways enriched
in m6ACluster-C not only play a role in tumour progression but are also involved in cellular stromal activities, such as
hedgehog signalling and the WNT β-linked protein signalling pathway. Interestingly, the m6ACluster-A modification pattern
was enriched in oncogenic pathways, stromal signalling and immune activation, which also became the focus of our study. In
addition, heatmap ESTIMATE scoring exhibited that immune cell and stromal scores of NSCLC samples were higher in
the m6ACluster-B modification pattern, whereas tumour purity scores were the highest in the m6ACluster-C modification

Figure 2 Unsupervised clustering for 28 m6A regulators. (A) Interaction network between 28 m6A regulators in NSCLC. The circle in red represents the m6A “eraser”
regulators, orange represents the “reader” regulators, and gray represents the “writer” regulators; the purple represents the risk factors, and the green represents the
favorable factors. Larger circles indicate a more significant prognostic correlation for Cox risk analysis. The pink line between moderators represents a significant positive
correlation, while blue represents a significant negative correlation. (B and C) Results of unsupervised clustering analysis. (D) Heathmap of expression of 28 m6A regulators
in NSCLC clinical information samples and three m6A modification patterns. (E) Significant differences among the transcriptomes of the different modification patterns in the
transcriptome profiles analysis of the three m6A modification patterns by using PCA. (F) KM survival differential analysis of three m6A modification patterns (p value < 0.05).
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pattern (Figure 3A). Subsequently, we constructed a heatmap of immune cell infiltration and immune function enrichment
using ssGSEA to compare the immune status of patients with NSCLC in the three m6A modification patterns. We observed
that anti-tumour immune cells and immune functions were upregulated and most abundant in the m6ACluster-B modification
pattern, whereas they were downregulated in the m6ACluster-C modification pattern. As demonstrated in Figure 3A,
the m6ACluster-A modification pattern was present in a larger number of samples with upregulated immune cells and
immune functions (Supplementary Figure 3A). Further quantitative analysis revealed that the three m6Amodification patterns
were significantly different in these immune gene sets, and the degree of immune infiltration was higher in the m6ACluster-C
modification pattern (Figure 3B). However, the m6ACluster-A modification pattern did not offer a significant survival
advantage compared with the m6ACluster-C modification pattern. Studies have demonstrated that the immune-exclusive
tumour phenotype is characterised by a large number of immune cells that are retained in the stroma surrounding the nest of
tumour cells without penetrating their substance.32 We speculated that the enriched stromal component of the m6ACluster-A
modification pattern inhibited effective antitumour immune responses. Quantification of ESTIMATE scores in the
three m6A modification patterns revealed that m6ACluster-B had the highest immune cell and stromal scores, and the scores
of m6ACluster-C were lower than those of m6ACluster-A, while the opposite phenomenon was observed in tumour purity
(Figure 3C–E). This finding implied that the m6ACluster-A and m6ACluster-C modification patterns contained more non-
tumour components. Stromal activation in the tumour microenvironment is thought to be responsible for T cell suppression.
Stromal activation in TME is considered responsible for T cell suppression. Studies have demonstrated that a suppressive
microenvironment or a lack of antigen stimulation/co-stimulation of immune cells, especially T cells, may contribute to
tumour growth and immune escape within TME.27–29 Furthermore, the enrichment levels of mesenchymal signalling path-
ways such as EMT, angiogenesis, TGF-β andNotch pathways in the threemodification patterns were evaluated, and the results
revealed that the stromal component was more abundant in the m6ACluster-A modification pattern than in the m6ACluster-C
modification pattern, whereas T cell co-stimulation, T cell co-inhibition and the number of T helper and CD8+ T cells were
decreased in both modification patterns (Figure 3B and F). Therefore, this finding suggested that m6ACluster-A was
characterised by an immunosuppressive state that inhibited the antitumour effects of immune cells through stromal activation.
Currently, PD-L1 is a landmark discovery in lung cancer immunotherapy, and its expression level in patients is an important
assessment indicator to predict the response to anti-PD-1/L1 therapy.50,51 Evaluation of PD-L1 expression levels in the three
modification patterns revealed that the expression levels were the highest in m6ACluster-A, indicating a better immunother-
apeutic effect (Figure 3G). Based on these findings, we identified three m6A modification patterns with distinct immune
infiltration profiles. m6ACluster-B is considered an immune-inflamed phenotype characterized by immune activation and
massive immune cell infiltration; m6ACluster-A is considered an immune-excluded phenotype characterized by stromal
activation and weakened immune cell infiltration; andm6ACluster-C is considered an immune-desert phenotype characterized
by immunosuppression.

Pearson correlation analysis was used to analyze the relationship between the 28 m6A regulators and these immune cells
and functions. We found a predominantly significant negative correlation between the regulators and immune cells and
functions. The regulators METTL5, HNRNPC, IGF2BP1 and VIRMA (KIAA1429), which were associated with poor
prognosis and exhibited a significantly negative correlation with immune cells and functions, were the main focus of this
study (Supplementary Figure 3B). As demonstrated in Supplementary Figure 1B, a significantly positive correlation was
observed among these four regulators, and protein interaction analysis by using STRING website (https://cn.string-db.org/)
revealed a strong correlation between VIRMA and HNRNPC (interaction score > 0.70) (Supplementary Figure 3C). In
addition, ESTIMATE evaluation suggested that the immune scores in the high-expression group of VIRMA and HNRNPC
were significantly lower than those in the low-expression group (Supplementary Figure 3D and E). Therefore, we hypothe-
sised that VIRMA and HNRNPC synergistically mediated methylation modifications and inhibited intra-tumour immune cell
infiltration in NSCLC.

DEGs Associated with the m6A Modification Patterns
Based on the three m6A modification patterns classified by the consistent clustering algorithm for the expression of the
28 m6A regulators described above, we gained a preliminary understanding of the characteristics of m6A regulators in
NSCLC, however, the potential genetic alterations and expression perturbations of these patterns in NSCLC remain
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Figure 3 TME characteristics in the three m6A modification patterns. (A) GSVA enrichment analysis and ESTIMATE scoring heatmap of three m6A modification patterns in
the Hallmark pathway gene set. The Orange colour in GSVA enrichment analysis represents high expression of the sample and the black colour represents low expression of
the sample. (B) Comparison of immune cells and immune function in three m6A modification patterns by the ssGSEA method. The ESTIMATE algorithm was used to score
(C) immune cells, (D) stromal cells and (E) tumour purity in three m6A-modified patterns samples. (F) Differential analysis of three m6A modification patterns in the stromal
signaling pathways. (G) Differential expression analysis of PD-L1 in three m6A modification patterns. **p value < 0.01; ***p value < 0.001.
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unclear. For further investigation of the oncogenic characteristics of the three m6A modification patterns, we analysed the
potential changes in m6A-related transcript expression in NSCLC. Using the empirical Bayesian approach,52 1850 DEGs
were found to be commonly expressed among the three m6A modification patterns (Figure 4A). Enrichment analysis of
these co-DEGs using Metascape revealed that these genes were mainly enriched in biological functions such as cell
cycle, DNA and RNA modification and tumourigenesis. (Figure 4D and E). This finding provided further evidence that
these co-DEGs possessed the characteristics of m6A regulators (Figure 1A) and can be considered as m6A gene
signatures. Subsequently, these genes were subjected to unsupervised clustering analysis to obtain three transcriptional
phenotypes, and the patient samples were divided into three m6A gene signature subgroups (geneCluster-A, geneCluster-
B and geneCluster-C) based on the three phenotypes (Figure 4B and C; Supplementary Figure 2B). The heatmap of the
three m6A gene signature subgroups revealed that patient samples were most enriched in immune cells and functions in
geneCluster-B and least enriched in immune cells and functions in geneCluster-C. (Figure 4F). In addition, differential
expression analysis of the 28 m6A regulators in the three m6A gene signature subgroups demonstrated that geneCluster-B
exhibited significantly low expression, whereas geneCluster-C exhibited significantly high expression (Figure 4G). This
finding is consistent with the results of the expression analysis of m6A methylation modification patterns (Figure 2D). In
addition, survival analysis revealed that the prognosis of geneCluster-B was better than that of geneCluster-A and
geneCluster-C (Figure 4H), which further supported our previous conclusion that high expression of m6A regulators
in m6A modification patterns is associated with a poorer prognosis.

Construction of the m6A Scoring Program and Assessment of Its Clinical Relevance
Analyses mentioned above provided an overview of the characteristics of the 28 m6A regulators in NSCLC; however, the
role of m6A methylation modification patterns in individual patients with NSCLC remains unknown. Therefore, we
adopted an m6A scoring scheme based on the co-DEGs of the three m6A modification patterns to
quantify m6A modifications in individual NSCLC patients. The framework of constructing the m6A scoring scheme is
demonstrated in the alluvial diagram in Figure 5A. The three m6A modification patterns and m6A gene signature
subgroups had the highest m6A scores in m6ACluster-B and geneCluster-B, whereas m6ACluster-C and geneCluster-C
had the lowest scores (Figure 5B and C). This finding suggested that the high-m6A-score group may be associated with
immune activation, whereas the low-m6A-score group may be associated with immunosuppression. Spearman correlation
analysis revealed that the m6A score had a significantly positive correlation with T cell activation, immune checkpoint
and stromal pathways and a significantly negative correlation with genetic stability and oncogenic pathways (Figure 5D).
In addition, a significantly positive correlation was observed between immune cell scores and m6A scores (r = 0.620;
P-value < 0.001) (Figure 5E), and the number of immune cells was significantly higher and immune functions were
significantly enhanced in the high-score group (cut-off = 15.72) compared with the low-score group (P-value < 0.05)
(Figure 5F).

Studies have demonstrated an association between somatic mutations in tumour genomes and immunotherapeutic
responses, suggesting that tumours with somatic mutations produce new tumour antigens that subsequently stimulate an
effective immune response.53,54 Therefore, we evaluated the somatic mutation burden in NSCLC samples, and the results
revealed that the m6A score had a significantly negative correlation with TMB (R = −0.35, P < 0.05), and geneCluster-C
had the highest TMB, whereas geneCluster-B had the lowest TMB (Figure 5G). This finding implied that the high-TMB
group in the three m6A gene signature subgroups was associated with immunosuppression or immune evasion, whereas
the low-TMB group was associated with immune activation. Furthermore, TMB was significantly higher in the low-
m6A-score group than in the high-m6A-score group (Figure 5H). Subsequently, the analysis of significantly mutated
genes (SMG) in the high- and low-m6A-score subgroups revealed that mutations were found in 77.14% of the samples
(135/175) in the high- m6A-score subgroups, with the highest mutation frequency observed in TP53 (26%), followed by
MUC16 (25%) and CSMD3 (24%) (Figure 5I). In addition, mutations were found in 96.72% of the samples (738/763) in
the low-m6A-score subgroups, with the highest mutation frequency observed in TP53 (64%), followed by TTN (61%),
CSMD3 (39%) and RYR2 (36%) (Figure 5J).

Eventually, we assessed the significance of m6A scores in terms of prognosis. KM survival analysis revealed that the
high-m6A-score group had significantly better survival than that of the low-score group (P-value < 0.001, Figure 5K). To

https://doi.org/10.2147/JIR.S356841

DovePress

Journal of Inflammation Research 2022:151980

Fan et al Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=356841.pdf
https://www.dovepress.com
https://www.dovepress.com


further assess the actual clinical effectiveness, we combined m6A scores with clinical variables for univariate and
multivariate Cox analyses. The results of univariate Cox analysis indicated that age (HR = 1.012, P-value < 0.016) and
tumour stage (HR = 1.404, P-value < 0.001) were prognosis-related risk factors, and the m6A score (HR = 0.989, P-value
< 0.001) was a survival-related favourable factor (Figure 6A). In addition, multivariate Cox analysis revealed that age
(HR = 1.014, P-value < 0.006) and tumour stage (HR = 1.406, P-value < 0.001) might serve as independent prognostic
risk factors, and the m6A score (HR = 0.991, P-value < 0.002) could be used as an independent prognosis-related
favourable factor (Figure 6B). In order to predict the survival rate of patients with NSCLC, we constructed a nomogram
survival prediction scheme (Figure 6C). Each clinical factor in the nomogram corresponded to a score, and all scores

Figure 4 Identification of co-DEGs in three m6A modification patterns. (A) Venn diagram showing the co-DEGs in the three m6A modification patterns. (B and C) Results
of unsupervised clustering analysis of co-DEGs. (D) Metascape enrichment networks visualize functionally similar clusters and reveal intra- and inter-cluster correlations in
co-DEGs. Each color corresponds to a function. (E) The X-axis represents the number of genes enriched, the darker the band the more significant the functional
enrichment. (F) Heatmap of three m6A gene signature subgroups enriched in ESTIMATE score, immune cells and function. (G) Expression of 28 regulators in
three m6A gene signature subgroups. (H) KM survival differential analysis of three m6A gene signature subgroups (p value<0.05). *p value < 0.05; **p value < 0.01; ***p
value < 0.001.
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Figure 5 Construction of m6A scoring program and analysis of their clinical characteristics. (A) Alluvial diagram displaying the relationship among three m6A modification
patterns, three m6A gene signature subgroups, m6A score and survival status. Differences of m6A scores among the three m6A modification patterns (B) and
three m6A gene signature subgroups (C) (Kruskal–Wallis test, p value<0.05). (D) Correlation analysis of m6A score with immunity, gene repair, mesenchymal signaling
and oncogenic pathways. Orange represents positive correlation, purple represents negative correlation. (E) Spearman correlation analysis between m6A score and immune
score (p value<0.05). (F) Differential analysis between two groups with high and low m6A scores in immune cells and immune function. (G) Correlation analysis of TMB
and m6A score. (H) Differential analysis of TMB between high and low m6A score groups. Mutation statistics of NSCLC samples in m6A score high (I) and low score groups
(J). The upper barplot showed TML, the right bar plot showed the mutation frequency of each gene in separate m6A score groups. (K) Kaplan-Meier curve showing survival
differences between high and low m6A score groups (Log rank test, p value< 0.05). *p value < 0.05; **p value < 0.01; ***p value < 0.001.
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Figure 6 Assessment of m6A score survival prediction benefit and effectiveness of immunotherapy. Univariate (A) and multivariate Cox (B) analysis of m6A score in
combination with clinical parameters (age, gender and stage). (C) Construction of nomogram scoring system to predict patient survival at 1-, 3- and 5- years. Each clinical
factor in the nomogram system corresponds to a score, and all scores are summed to obtain a total point, which can predict the survival rate of patients at 1-, 3- and 5-
years. The red point represents the stage of the clinical factor corresponding to the example sample, and the red italicized numbers represent the total score and 1-, 3-, and
5-year survival rates corresponding to this sample. (D) Plotting 1-, 3- and 5-year predicted calibration curves in the nomogram system. Expression levels of PD-L1 (E) and
CTLA-4 (F) in m6A high and low score groups (p value<0.05). (G) The difference of IPS between high and low m6A score groups with CTLA4 (-)/PD1 (-). (H) The difference
of IPS between high and low m6A score groups with CTLA4 (-)/PD1 (+). (I) The difference of IPS between high and low m6A score groups with CTLA4 (+)/PD1 (-). (J) The
difference of IPS between high and low m6A score groups with CTLA4 (+)/PD1 (+).
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were added to obtain a total score, which predicted the survival rate of patients at 1, 3 and 5 years. In addition, we plotted
calibration curves for the predicted 1-, 3- and 5-year survival rates, and the results revealed that the survival prediction
curve of the model coincided with the reference curve, implying that the model exhibited high accuracy in survival
prediction (Figure 6D). These results allow us to comprehensively understand the impact of high and low m6A scores on
genomic alterations and reveal potentially complex interactions between individual somatic mutations
and m6A modifications.

Assessment of m6A Scoring for Immunotherapeutic Efficacy in NSCLC
PD-L1, a landmark discovery in tumour immunotherapy, is one of the most established markers for assessing immu-
notherapeutic efficacy, and CTLA-4/PD-1 inhibitors are currently the representative ICIs.50,51 In addition, the newly
identified predictor IPS is widely used and strongly recommended for the assessment of immune response. IPS is
a favourable factor to predict the efficacy of anti-CTLA-4 and anti-PD-1 regimens, which can quantify the determinants
of tumour immunogenicity and reveal the characteristics of the tumour immune landscape.55 We found that the
expression of PD-L1 (P-value = 0.72) (Figure 6E) and CTLA-4 (P-value < 0.05) (Figure 6F) was higher in the high-
m6A-score group than in the low-m6A-score group. In addition, IPS was higher in the high-m6A-score group for
individual anti-PD-1/CTLA-4 therapy and combination therapy in the Cancer Immunome Atlas website (TCIA) (https://
tcia.at/home) (Figure 6G–J). Therefore, these results consistently demonstrate that immunotherapeutic efficacy is better
in the high-m6A-score group than in the low-m6A-score group.

Discussion
m6A methylation is the most prevalent form of mRNA modification and plays a critical role in the regulation of gene
expression at the post-transcriptional level.7,56 Several studies have reported on the involvement of m6A methylation
modifications in various biological functions, including cell cycle, inflammation, oncology and immunity.57,58 Moreover,
abnormal m6A gene alterations leading to different characteristics of TME play an important role in tumour progression.
Although epigenetic regulation of each m6A regulator in the TME of NSCLC has been progressively described,37,39

studies on the overall TME of NSCLC mediated by intact m6A regulators have not been reported. Therefore, the present
study provides an overview of the interaction between m6A RNA methylation and the TME of NSCLC in terms
of m6A modification and guides more precise clinical therapeutic strategies.

TME plays an important role in immunotherapeutic efficacy.59 Hegde et al classified three immune phenotypes according
to the different characteristics of TIME, namely “immune infiltrative”, “immune rejection” and “immune desert”.31

Immunoinflammatory tumours are characterised by the presence of tumour-infiltrating lymphocytes, high density of IFNγ-
producing CD8+ T cells, tumour cells expressing PD-L1, possible genomic instability and the presence of a pre-existing anti-
tumour immune response. In TME, tumour cells express PD-L1 and are sensitive to ICIs.31,60 This phenotype is consistent
with the pattern of m6A Cluster-B modification in the present study. Immune rejection of tumours is characterised by high
expression of EMT/TGF-β signalling and T cell suppression.61 TGFβ1 can induce extracellular mesenchymal gene expres-
sion, resulting in a reactive stroma and dense extracellular mesenchyme forming a barrier that prevents infiltration of immune
cells within the tumour, leading to a repulsed infiltrative phenotype with peritumoral or mesenchymal T-cell localisation.62

PD-L1 is highly expressed in mesenchymal pro-fibroblastic tumours; however, immune-exclusion tumours tend to respond
poorly to ICIs.31 The m6ACluster-A modification pattern in this study is consistent with this phenotype. The immune desert
phenotype is characterised by a lack of immune infiltration of tumour cells and involvement of the WNT/β-catenin signalling
pathway.31,63 In addition, this phenotype responds poorly to single-agent ICIs and is consistent with the m6ACluster-C
modification pattern in this study. Therefore, scholars have proposed TME as a therapeutic target.64 The three immunophe-
notypes of TME provide a clear understanding of the state of TIME in NSCLC, allowing for the development of appropriate
treatment protocols to help guide and improve the effectiveness of immunotherapy in NSCLC.

In this study, co-DEGs in the three m6A modification patterns were significantly enriched in RNA metabolism and
modification, which is consistent with the enrichment of functions of m6A regulators. In addition, clustering analysis of the
co-DEGs of the three m6A gene signature subgroups and clustering analysis of the 28 m6A regulators of the
three m6A modification patterns revealed highly similar results in terms of sample expression and prognosis, suggesting
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that these co-DEGs can be considered m6A modification gene signatures. To further explore the m6A modification
characteristics of patients with NSCLC to more precisely guide patient treatment strategies, we established
an m6A scoring scheme using these co-DEGs. The m6A scores in the three m6A modification patterns and
three m6A gene signature subgroups exhibited consistency, which further confirmed our previous hypothesis. Interestingly,
we found that m6A scores were significantly negatively correlated with TMB and positively correlated with immune
infiltration. Furthermore, m6A scores exhibited a significantly negative correlation with DNA repair, chromosomal homo-
logous recombination and the P53 signalling pathway. Among various types of mutations, nonsynonymous mutations alter
the amino acid coding sequence, resulting in the expression of abnormal proteins by tumour cells. These abnormal proteins, if
degraded to short peptides (antigenic epitopes) in tumour cells or APCs, bind with high affinity to MHC class I or II
molecules and are presented as complexes on the cell surface, where they are recognised as “non-self” by T cells, causing
T cell activation and the consequent tumour T cells are then attacked and cleared by effector T cells. This abnormal protein
that causes T cell activation is called a “neoantigen”.65,66 Therefore, theoretically, the higher the TMB, the higher the
production of neoantigens, which will eventually be recognised by T cells, and the greater the immunocidal activity at the
tumour site.66,67 However, this study demonstrated the opposite phenomenon, with a significantly lower level of T cell
infiltration in the low-m6A-score group than in the high-m6A-score group. Studies have reported that a 10/1-megabase (Mb)
mutation usually corresponds to 150 nonsynonymous mutations in the coding region of the tumour genome.68 Only 10% of
these non-synonymous mutations produce mutant peptides that bind with high affinity to the MHC.32 Of these, 1% are
recognised by the T cells of patients,69 which indicated that 150 nonsynonymous mutations may eventually produce only 1–2
neoantigens. In addition, some neoantigens have an immune advantage and may be ignored by the immune system.68 Martin
et al reported that there are more than 100 mutations in tumour suppressor genes, with p53 being one of them, which cause
cancer by evading surveillance of the immune system.70 In addition, Figure 5G reveals that the high-TMB group was mainly
enriched in the geneCluster-C signature genes, which is similar to the analysis of m6ACluster-C and represents a decrease in
immune infiltration, whereas the low-TMB group was mainly enriched in the geneCluster-B signature genes, which is similar
to the analysis of m6ACluster-A and represents an increase in immune infiltration. Overall, these findings concur well with
the hypothesis proposed in this study.

Finally, we assessed the association between prognosis and m6A scores in NSCLC. KM survival analysis revealed
significantly better survival in the high-m6A-score group than in the low-m6A-score group, whereas multivariate Cox
analysis confirmed that the m6A score can be used as a favourable prognostic factor for patients with NSCLC
independently of clinical factors (age, gender and stage). Furthermore, to assess the practical clinical application and
guide clinical precision treatment, we incorporated the m6A score and clinical factors into a nomogram to predict patient
survival at 1, 3 and 5 years. Currently, Nomogram is widely used as prognostic models in oncology and medicine. With
the ability to generate an individual probability of a clinical event by integrating diverse prognostic and determinant
variables, nomograms meet the desire for biologically and clinically integrated models and fulfil the drive towards
personalised medicine.49,71 In addition, the calibration curves had a good overlap with the 1-, 3- and 5-year prediction
curves, implying high accuracy of the nomogram for predicting survival. PD-L1 is one of the well-established markers
for predicting the efficacy of clinical immunotherapy and has shown remarkable results, particularly in lung cancer.72 We
further assessed the effect of immunotherapy between the high- and low-m6A-score groups, and consistent with previous
analyses, the expression of PD-L1/CTLA-4 was higher in the high-m6A-score group than in the low-m6A-score group,
implying that the high-m6A-score group had better therapeutic efficacy. In addition, IPS prediction presented consistent
results, with the immunotherapeutic efficacy being better in the high-m6A-score group than in the low-m6A-score group,
regardless of the presence or absence of PD-1/CTLA-4 expression.

In this study, we comprehensively assessed m6A modification patterns based on 28 m6A regulators in 1210 NSCLC
samples and systematically correlated these modification patterns with the characteristics of TME cell infiltration. The
results of comprehensive analyses suggest that dysregulation of RNA methylation is an important basis for understanding
tumour progression and immune regulation in NSCLC. Therefore, systematic analysis of m6A methylation modification
patterns in patients with NSCLC can help to guide precise clinical therapy and improve patient survival outcomes.
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m6A, N6-methyladenosine; TME, tumour microenvironment; NSCLC, non-small cell lung cancer; co-DEGs, commonly
differentially expressed genes; TIME, tumour immune microenvironment; PCA, principal component analysis; TMB,
tumour mutational burden; ICI, immune checkpoint inhibitors; IPS, immunophenoscore; mRNA, messenger RNA;
lncRNA, long non-coding RNA; miRNA, microRNA; m1A, N1-methyladenosine; m7A, N7-methyladenosine; m5A,
5-methylcytosine; CT, computed tomography; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; PD-1, pro-
grammed death receptor-1; PD-L1, programmed death receptor-1 ligand; TCGA, The Cancer Genome Atlas; GEO,
Gene Expression Omnibus; FPKM, fragments per kilobase of transcript per million mapped reads; TPM, transcripts per
kilobase million; CNV, copy number variation; TMB, tumour mutational burden; KM, Kaplan–Meier; GSVA, gene set
variation analysis; ESTIMATE, estimation of stromal and immune cells in malignant tumour tissues using expression
data; ssGSEA, single-sample gene set enrichment analysis; DEGs, differentially expressed genes; GO, gene ontology;
FDR, false discovery rate; EMT, epithelial–mesenchymal transition; TGF-β, transforming growth factor beta; Mb,
megabase; TCIA, The Cancer Immunome Atlas.
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